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Epithelial barriers, which include the gastrointestinal, respiratory, and genitourinary
mucosa, compose the body’s front line of defense. Since barrier tissues are
persistently exposed to microbial challenges, a rapid response that can deal with
diverse invading pathogens is crucial. Because B cells have been perceived as
indirectly contributing to immune responses through antibody production, B cells
functioning in the peripheral organs have been outside the scope of researchers.
However, recent evidence supports the existence of tissue-resident memory B cells
(BRMs) in the lungs. This population’s defensive response was stronger and faster than
that of their circulating counterparts and could resist heterogeneous strains. With such
traits, BRMs could be a promising target for vaccine design, but much about them
remains to be revealed, including their locations, origin, specific markers, and the
mechanisms of their establishment and maintenance. There is evidence for resident B
cells in organs other than the lungs, suggesting that B cells are directly involved in the
immune reactions of multiple non-lymphoid organs. This review summarizes the history of
the discovery of BRMs and discusses important unresolved questions. Unique
characteristics of humoral immunity that play an important role in the peripheral organs
will be described briefly. Future research on B cells residing in non-lymphoid organs will
provide new insights to help solve major problems regarding human health.

Keywords: resident memory B cells, respiratory infection, vaccine, humoral immunity, barrier tissues,
mucosal immunity
INTRODUCTION

Immune memory is an important component of our body’s immune system. It enables rapid and
strong responses to a pathogen by pathogen-specific memory cells. Another important protective
component is the barrier tissues of the body. Mucosal barrier tissues, including the lung, intestine,
skin, and female reproductive tract (FRT), etc., block pathogens from invading our body at its front
line. Secretory IgAs, broadly neutralizing antibodies and neutralizing antibodies are secreted to the
mucosa and bind to invading pathogens, thereby isolating these harmful organisms in the mucosa
and excluding them from infecting host cells. This effector mechanism is not only efficient but is also
safe because it causes less inflammatory response at the site of infection, while T cell-mediated
responses usually cause collateral damage to the host (1).
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During infection, mature naïve B cells specific to the pathogen
can enter one of four differentiation fates (2, 3). In the earlier
stages of immune response, the extrafollicular response generates
short-lived antibody-secreting cells (ASCs) and germinal center
(GC)–independent memory B cells (MBCs) that have undergone
class-switch recombination but have minimal somatic
hypermutation. The extrafollicular response is in charge of the
early response against influenza virus, but it also the major
mechanism protecting against several pathogens, including
malaria and Salmonella (4). In the GC, a repetitive course of
affinity maturation produces plasmablasts (PBs) and MBCs that
synthesize high-affinity immunoglobulins. PBs migrate to the
bone marrow (BM) where they differentiate into long-lived
plasma cells (PCs), but MBCs circulate through the body until
they re-encounter the specific antigen. These MBCs have the
capacity to re-enter the GCs or generate ASCs, providing a rapid
and stronger immunity for defense upon secondary infection (5).

Since the major basis of B-cell immunity is circulating
antibodies, it was speculated that there is no need for resident
MBCs in the peripheral tissues. Moreover, for proper antibody
production, support from GC reactions should be provided. As
GCs is a complex system built on the collaborative interactions of
special types of stromal cells and immune cells, it is reasonable to
question whether B cells in the mucosal tissues have access to this
support. Therefore, in contrast to the research on T cells, there
are few studies considering the concept of tissue-resident B cells.

A recent study provided direct evidence for the existence of
resident memory B cells (BRMs) in the lungs, but no direct
evidence supporting BRMs in other organs has been reported (6).
In this review, we will skim through the history of the discovery
of BRMs and the humoral immunity of non-lymphoid barrier
tissues. The probability of the existence of BRMs in non-
lymphoid organs other than the lungs will be examined. Last,
in anticipation of identifying BRM-specific markers, markers for
MBCs and their tissue residency will be reviewed in comparison
with those of resident memory T cells (TRM).
TISSUE-RESIDENT MEMORY B CELLS

Evidence for Tissue-Resident Cells
It is now evident that some lymphocyte subsets are present in situ
in non-lymphoid tissues and do not recirculate. Multiple
experimental models have been used to demonstrate the
residency of various cell types, including subsets of innate
lymphoid cells, T cells, and recently B cells. Intravenous
antibody labeling (iv-labeling) is a method that captures cells in
circulation (7). Antibodies are injected intravenously into a
mouse a few minutes before euthanasia. Circulating cells are
captured by the antibodies but cells situated in the tissue are
protected from them, allowing cells in each compartment to be
distinguished from one another. The parabiosis model directly
demonstrates the residency of the sessile cells. It is created by
surgically joining two mice expressing distinct alleles. Circulating
cells reach an equilibrium in both parabionts through the
conjoined circulatory system, but the tissue-resident cells stay
in the tissue, demonstrating that they reside in the tissue and do
Frontiers in Immunology | www.frontiersin.org 2
not recirculate (8–10). When infected tissues containing primed
resident cells that express congenic markers are transplanted to
naïve organisms, the primed resident cells do not recirculate to
the recipient. Upon reactivation, local cells undergo secondary
restimulation exclusively in the grafts, without the involvement of
the recipient (11, 12). Models in which circulating lymphocytes
have been ablated with cell type-specific antibodies have also
been used (8, 13).

Based on studies using these experimental methods, the
paradigm of TRM was established and intensively investigated
over a decade. In contrast to TRMs, the history of BRMs is short
and began with direct experimental evidence for resident non-
circulating MBCs in the respiratory system (6). Since this
discovery, subsequent studies have elucidated the unique
characteristics of BRMs, and B cells in the human peripheral
organs with resident phenotypes have been reported as well.

Brief History of BRMs
Only recently was a subset of B cells acknowledged to be resident
in the lungs, but the notion of MBCs at the periphery that are
distinct from the circulating MBCs and that do not recirculate is
not new (Table 1). In 2008, an analysis of the dispersion of MBCs
after local influenza infection was reported (14). In the analysis,
after intranasal influenza virus infection, the distribution ofMBCs
in the blood, lung, and lymphoid tissues including mediastinal
lymph nodes (mLNs), Peyer’s patches, and spleen was examined.
Among multiple organs, MBCs were found in the lymphoid
tissues of the respiratory system, namely the mLNs and nasal-
associated lymphoid tissue. Interestingly, a number of MBCs
comparable to that in the mLNs were found in lungs 9 days
post-infection. These lung MBCs persisted for at least 84 days,
suggesting the establishment of peripheral MBCs in response to
local antigen encounters. The authors anticipated the existence of
mechanisms for tissue homing and delayed egress resembling
those of TRMs. A few years later, more focused examinations of
lung MBCs were performed. Cells situated in the lungs were
separated from circulating cells by perfusing the right ventricle
(RV) with PBS to clear the lungs of blood (15). Lungs harvested
from influenza-infected mice after 160 days of infection still
possessed MBC cells. When isolated MBCs were transferred
into scid mice, lung MBCs outperformed MBCs derived from
the mLN and the spleen in clearing the virus. These cells
expressed higher levels of CD69, CXCR3, and IgA compared
with MBCs in the mLNs and the spleen. These data suggest that
lung MBCs are imprinted to migrate to the lungs and stay there.
Next, the cross-reactive nature of lung MBCs was revealed, and it
was shown that local lung GCs were responsible for supplying
these cells (16). As antigenic drift is the main problem in
confronting influenza virus infection, this result shows the
importance of local lung mucosal immunity in defending
against the infection. These early studies demonstrated
interesting characteristics of a novel B-cell subset in the
periphery but did not provide direct evidence for MBCs that
are sessile in the lungs.

In 2019, through a parabiosis model and iv-labeling, lung
MBCs were identified as a resident subset of cells in the lungs (6).
In this study, resident lung MBCs were established upon local
July 2022 | Volume 13 | Article 953088

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lee and Oh Tissue-Resident Memory B Cells
antigen infection, but not through systemic immunization, and
did not access the circulation of the parabiont. Also, this cell
population was preserved in situ when the provision of B cells
from the circulation was blocked by fingolimod (FTY720),
implying the independence of the subset from the circulation.
Functionally, these resident B cells differentiated rapidly into
ASCs during secondary infection, providing a rapid antibody
response against the pathogen. These results suggest that BRMs
are a key component in mucosal humoral immunity. Local
resident MBCs have also been shown to contribute to the
secretion of local IgA (17). Importantly, mice with these cells
showed superior protection against both the homologous and
heterologous strains of influenza virus, supporting the cross-
reactivity of local humoral immunity.

Following BRMs’ identification as resident lymphocytes,
diverse aspects of their biology have been investigated. First,
BRMs are not a pathogen-specific cell population: establishment
of BRMs in the lungs is detected in the S. pneumococcus–infected
model as well as influenza virus infection (18). Second, MBCs in
human lungs and gut with resident phenotypes have also been
described (18–20). IgD–CD27+ MBCs from the lungs and
draining LNs expressed higher levels of CD69, a representative
marker for tissue-resident lymphocytes, compared with the
spleen (20). When the phenotypes of CD27+ MBCs derived
from multiple human organs including the spleen, blood, BM,
LN, tonsil, and the gut were investigated, CD27+ MBCs in the gut
included a higher percentage of CD45RB and CD69 double-
positive cells (19). Also, an analysis of transcriptional profiles
showed that lung MBCs cluster discretely from MBCs in lung-
draining LNs or PBMCs, implying that lung BRMs have
Frontiers in Immunology | www.frontiersin.org 3
distinctive features other than the expression of CD69 (20).
Markers and phenotypes of BRMs will be further discussed below.

Recently, the fate of BRMs upon secondary challenge was
reported (21). In a live-imaging analysis, alveolar BRMs of
influenza-infected mice were attracted by CXCL9 and CXCL10
induced by alveolar macrophages and migrated to inflammation
foci to differentiate into PCs upon secondary challenge. The study
not only demonstrates how BRMs react upon secondary challenge
but also suggests that they interact with surrounding cells.
QUESTIONS ABOUT RESIDENT MEMORY
B CELLS

Location of Resident Memory B Cells
Besides their presence, many aspects of BRMs are not discovered
yet, including their location, markers, origin, the underlying
mechanism that triggers their generation, and the environment
that supports their maintenance (Figure 1). Regarding location,
two studies using different infection models, one influenza virus
and the other S. pneumoniae, have reported seemingly
contradictory results (18, 20). The study using the influenza
virus model showed that BRMs reside in the inducible bronchus-
associated lymphoid tissues (iBALTs) by demonstrating the
presence of antigen-specific B cells in the iBALTs beyond 110
days after infection. But BRMs were also present in an S.
pneumococcus-infected model, in which iBALTs do not form.
These are possibly complementary results, showing that BRMs
not only reside in the tertiary lymphoid organs where survival
TABLE 1 | Brief history of BRM research.

2008 2012 2015 2019 2020 2021 2022

MBCs are
distributed in
the lungs

Lung MBCs discovered Cross-reactive nature
of lung MBCs

Lung BRMs that
do not recirculate

Gut MBCs with
resident
phenotype

BRMs, a
common
feature of
infected lungs

BRMs, a
transcriptionally &
functionally distinct B
cell subset

MBCs
remained in the
lungs beyond
12 weeks post
infection.

Lung MBCs were isolated by
RV perfusion.

Many cross-reactive
lung MBCs originate
from lung GCs, which
show distinct selection
features.

Non-circulating
BRMs were
discovered through a
parabiosis model
and iv-labeling.

Majority of human
gut CD27+ MBCs
were CD45RB and
CD69 double
positive.

BRMs form in
S. pneumoniae
infection.

Human and murine BRMs
have a transcriptional
profile distinct from that of
MBCs in PBMC and
SLOs.

When transferred into scid
mice, the subset migrated to
the lungs and was superior in
resisting secondary viral
challenge.

BRMs are
independent from
their circulating
counterparts.

Gene sets of lung
CD4 and CD8
TRMs were
enriched in gut
MBCs.

BRMs are also
found in the
pneumococcal
pneumonia
patients.

BRMs are the main
source of respiratory IgAs.

BRMs are
established upon
encountering local
antigen.

BRMs migrate to sites of
inflammation and
differentiate into PCs.

Joo et al., 2008 Onodera et al., 2012 Adachi et al., 2015 Allie et al., 2019 Weisel et al., 2020 Barker al., 2021 Mathew et al., 2021
Oh et al., 2021
Tan et al., 2022
Maclean et al., 2022
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niches are provided but also can persist in the bare lung
parenchyma with minimum support.

A recent study reported that BRMs not situated in the
iBALTs, namely alveolar BRMs, relocate themselves to the
inflammatory foci upon secondary challenge in an influenza
virus infection model (21). In this study, aggregates of previously
activated B cells within iBALT that express tdTomato in Aicda
(AID)Cre/+ Rosa26tdTomato reporter mice expressed the GC B-cell
marker GL7 as well. The authors also showed that the cells within
iBALT-like structures display typical extensive but confined
motility behavior associated with GC B-cell characteristics,
suggesting that the cells in the iBALT are GC B cells, not
BRMs. As previous studies suggested BRMs residing within
iBALT, the question of the differences of BRMs located in each
locus remains. The mechanism that supports long-standing
BRMs in the lung requires further investigation, especially
alveolar BRMs minimally supported by adjacent cells. This
could resemble that of PCs in the gut lamina propria. A subset
of lamina propria PCs live for decades and their survival is
supported by surrounding cells (22). Cytokine profiling of biopsy
cultures has revealed the presence of IL-6 and APRIL, which are
B-cell survival factors (23). Production of these cytokines by gut
epithelium, eosinophils, macrophages, and DCs may provide the
survival niche for PCs (24, 25). The possibility that innate
immune cells and the induced stromal cells support the
survival of alveolar BRMs needs to be examined.
Frontiers in Immunology | www.frontiersin.org 4
Origin of Resident Memory B Cells
Given that the fate of B cells can be determined by signals provided
by the surrounding tissues, the environment where BRMs are
generated would affect the characteristics of BRMs (3). The GCs in
the mLNs or GC-like structures of the iBALTs have been
suggested as the sites for BRM generation in nasal influenza
virus infection (6, 16). BRM cells are proposed to be generated
in a T-cell-dependent manner at an early time point after infection
(6). IgM+ BRMs can be identified in the lungs at day 10, but
isotype-switched ones require a longer time, not exceeding 30
days. Given that GC B cells emerge earlier in the mLNs than in the
lungs, it is reasonable to think that early BRMs originate from the
mLNs (16). Still, specific labeling of the lungs with EdU revealed
that BRMs can also arise from the lymphoid structures in the lungs
(16). These results led to the proposal that early BRMs originate
from B cells that migrate from the draining lymph nodes and late
BRMs originate from the iBALTs (16). Questions remain as to
whether iBALT-originated MBCs can access the circulation and
whether B cells are determined to become BRMs during the GC
reaction or if any MBCs have the capacity to become resident cells
when proper conditions are provided.

Cells of different origins would have different features.
Lung-specific EdU labeling has also revealed that a larger
proportion of BRMs originating from the lungs are cross-
reactive, in comparison with BRMs derived from the draining
LN (16). This suggests that lung GC reactions are distinct from
FIGURE 1 | Overview of lung BRM. BRMs are established in sites exposed to local antigens. It is likely that early lung BRMs derive from the draining LNs and late cross-
reactive BRMs originate from lung GC reactions, which occur in iBALTs. Lung BRMs can be located within the iBALTs or reside throughout the lung parenchyma in close
contact with alveoli, independent of iBALTs. Upon secondary infection, alveolar BRMs migrate to the inflammation foci, which is mediated by alveolar macrophages, and
differentiate into PCs. The corresponding functional role of BRMs in iBALT has not been reported. The illustration of the BRM shows most of the surface molecules
described in published studies so far. The upregulation of CD69, which reduces surface expression of S1PR1, is consistently reported. Klf2 is a transcription factor that
mediates S1PR1 expression. The expression of genes encoding the LN homing molecules Sell and Ccr7 is downregulated. CXCR3 and CCR6 facilitate recruitment and/
or retention of BRM in the lung. In addition, CCR6 is related to BRM differentiation into PCs in recall response. The upregulation of CD44 and CD11a in BRM is also
reported. These may serve as an adhesion molecule for BRMs, but their functional role needs to be validated. Compared with circulating MBCs, lung BRMs have been
shown to express higher levels of FCRL5, CD80, and PD-L2.
July 2022 | Volume 13 | Article 953088
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those of mLNs and that this may endow BRMs with different
features (26). Fate-mapping techniques that can distinguish
MBCs originating from different organs would be valuable in
elucidating the heterogeneous characteristics of BRMs in
the lungs.

Markers for Resident Memory B Cells
Elucidating the nature of BRMs urgently requires specific
markers. Although BRM-specific markers have not yet been
discovered, they can be identified by using gating schemes
combining MBC with resident markers. Classically, it has been
thought that MBCs are generated from the GCs in a T-cell-
dependent manner by which they lose the expression of IgM and
IgD and gain somatic hypermutation (27, 28). Therefore, in both
humans and mice, isotype-switched B cells have been widely
accepted as a surrogate population for MBCs. But this approach
can be misleading since studies have revealed that a large
compartment of MBCs is generated through a route
independent of GC reaction. It is evident that IgM-expressing
MBCs exist (29–34). Also, though in rare cases, the presence of
IgD-only and IgD/IgM double-positive MBCs has been
suggested in humans (35, 36).

In humans, CD27 is expressed by most MBCs and is
commonly accepted as a defining marker of this population,
but this is not true in mice (35, 37). In the absence of a definitive
surface marker that encompasses murine MBCs, B cells that
express CD38, a surface molecule downregulated in the PC and
GC B cells and have an isotype-switched phenotype are
considered to be MBCs (38–40).

Systematic analysis of MBC gene expression has suggested
CD80, PD-L2, and CD73 as MBC markers, and the combination
of these markers divides MBCs into three major subsets (41–43).
These subsets are CD80 PD-L2 double negative, PD-L2 single
positive, and CD80 PD-L2 double positive. These three subsets
differ in their general properties of B cells, such as isotype
switching and somatic hypermutation. Regarding antibody
isotypes, 95% of the CD80-PD-L2- subset express IgM, about
40% of CD80+PD-L2+ cells have IgM, and 90% of CD80-PD-L2+

cells express IgM (43). When the BCR mutation burden was
evaluated, CD80-PD-L2- cells were less mutated, whereas 80% of
CD80+PD-L2+cells had a mutated Vl1 gene segment, and CD80-

PD-L2+ cells were in between (43, 44). In line with these findings,
CD80-PD-L2- cells were found to be produced earlier in the GC
reaction, around day 5 post-infection, while the production of
CD80+ PD-L2+ cells dominated after 12 days, and this subset
required a stronger signal from CD40-CD40L interaction with T
cells. CD80-PD-L2+ MBCs peaked between these time points
(34). Functional studies have revealed that three MBC subsets
enter distinct routes of differentiation upon reactivation. CD80-

PD-L2- cells predominantly reenter the GC reaction and
generate most of the ASCs that appear later. CD80+PD-L2+

MBCs generate IgG ASCs at an earlier time point. Again, CD80-

PD-L2+ subsets are intermediate in that they can choose either
route (5). Analysis of RNA expression patterns also supports this
feature (5). Microarray data suggest that CD80-PD-L2- MBCs
display higher expression levels of genes encoding cell cycle–
Frontiers in Immunology | www.frontiersin.org 5
promoting molecules, and CD80+PD-L2+ MBCs express higher
levels of Zbtb32, which is related to PC differentiation (45).

MBCs of peripheral organs express these markers as well.
MBCs from the Peyer’s patches were isolated by gating CD138-

CD9-CD80+CD73+ B cells (46). These markers have also been
detected in BRMs in the lungs. Compared with MBCs in the
mLN and spleen, lung BRMs were found to express fewer CD73
but more PD-L2 (6). These markers are evidence of the
heterogeneous nature of MBCs.

Currently, iv-labeling is used to identify resident subsets of
MBCs. To find specific markers for BRMs, such as CD69 and
CD103 for CD8+ TRMs, transcriptional profiles of both murine
and human BRMs have been analyzed (17, 20, 47). From their
first appearance, lung MBCs showed higher expression of
CXCR3 and CD69 compared with their counterparts in the
mLN and spleen. Higher expression of these two molecules has
been consistently reported in subsequent studies on BRMs. This
expression pattern suggests the tendency of BRMs to head
toward peripheral tissues and the operation of a mechanism
delaying their egress, which is also observed in TRMs. Analysis of
TRM transcriptional profiles has revealed the downregulation of
S1PR1, the key receptor that recognizes the egression element
S1P (48–50). In the TRM the transcription factor KLF2, which
mediates the expression of S1PR1, is downregulated (49), and
CD69, which internalizes and degrades S1PR1, is expressed (51,
52). Similarly, in the mouse model, lung BRMs, which were iv-
labeling negative, were clustered discretely from iv-labeling-
positive lung MBCs and MBCs from the blood, spleen, and
mLN (20). The marked expression pattern of lung BRMs was the
downregulation of Ccr7, Sell, S1pr1, and Klf2, and upregulation
of Cxcr3, Ccr6, Ccr1, and Cd69. In addition, BRMs in a
pneumococcal pneumonia model upregulated CD11a and
CD44 but downregulated CD62L, a phenotype similar to that
of lung CD4 TRM cells (53, 54). A similar pattern is also
observed in human organs. Upregulation of CD69 and the two
chemokine receptors CXCR3 and CCR6 has been detected
in CD27+ B cells from human lungs (18, 20). At the transcript
level, downregulation of S1PR1, SELL, and CCR7 was observed.
Also, as mentioned above, MBCs in the gut are mostly CD69
positive (19). These results imply that BRMs share underlying
mechanisms that are in common among lymphocytes resident in
non-lymphoid organs.

Other surface markers or transcriptional regulators specific to
BRMs need to be identified. CD103, a marker for CD8+ TRMs, is
not expressed in lung BRMs (6). In the case of TRMs, several
transcription factors (TFs) that regulate the development and
maintenance of resident cells are known (10). Blimp-1, Hobit
(a homolog of Blimp-1), and AhR promote the generation and
maintenance of resident cells, while the expression of Klf2 and the
T-box TFs Eomes and T-bet oppose it. Some of these TFs have an
effect on B cells but in a cell-type-specific manner (3, 55, 56), and
studies testing these TFs on BRM formation have yet to be
reported. The fact that the transcriptional program that decides
the differentiation fate of MBCs is still not fully discovered is an
obstacle to identifying regulatory factors in BRM formation.
However, since rapid responsiveness and cross-reactivity make
July 2022 | Volume 13 | Article 953088
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BRMs a promising cell type that can aid resistance to fatal
infection, the underlying transcriptional program should be
thoroughly revealed in order to utilize this cell population.
HUMORAL IMMUNE CELLS SITUATED IN
NON-LYMPHOID BARRIER ORGANS

Resident Memory B Cells and Antibody-
Secreting Cells in the Intestine
The intestine is a unique organ in the sense that it harbors
numerous lymphoid organs, the gut-associated lymphoid tissues
(GALT), from birth and is the site where active interaction with
the environment shapes the humoral immunity of the region.
The humoral immunity of the intestine is well described in other
reviews (57, 58). After pointing out several aspects of the gut
humoral immune system, this review will focus on the resident
memory B cells in the gut.

Factors that promote the dominance of IgA in the mucosa-
associated lymphoid tissues (MALTs) are fairly well investigated
in the gut. In T-cell-dependent class-switch recombination,
CD40 signaling and TGF-b play an important role. It appears
that NO produced by inducible nitric-oxide synthase-expressing
DCs induces the expression of TGFbRII (59). Also, DCs are
major players in the T cell-independent response. These cells
provide proliferation-inducing ligand (APRIL) and B cell-
activating factor (BAFF) that promote IgA-specific class
switching. These cells are activated by commensal microbiota
Frontiers in Immunology | www.frontiersin.org 6
through toll-like receptor signaling. Dietary factors also have an
effect on the production of IgA. Retinoic acid signaling is
suggested to be important in generating IgA, and short-chain
fatty acids produced by gut microbiota support antibody
production by controlling the metabolism of B cells (60, 61).
Collectively, these results show the tight relationship between the
microbiota and the humoral immunity of the gut.

Another interesting example of the interaction between the
environment and the immune system is the imprinting of
GALT-derived ASCs by gut-homing molecules (Figure 2A).
Retinoic acid secreted by DCs in the GALTs induces the
expression of these molecules, which are integrin a4b7 that
binds to mucosal addressin cell adhesion molecule 1
(MAdCAM-1) expressed on endothelial cells in the lamina
propria, and the chemokine receptors CCR9 and CCR10,
which respond to CCL25 and CCL28 produced by the
intestinal epithelium (62–64). ASCs expressing these molecules
home back to the gut lamina propria, where they secrete
antibodies. Human IgMhi transitional B cells expressing a4b7
tend to migrate to the intestine to enrich the GALTs (65). MBCs
are not an exception. These molecules have been suggested to be
essential for the recruitment of IgA+ MBCs to the intestine
(66, 67).

Returned MBCs are likely to recirculate between different
Peyer’s patches and re-enter the GC response, resulting in the
persistence and evolution of the IgA repertoire (46). BCR
repertoire analysis has revealed that PCs are more clonally
related to MBCs, suggesting that MBCs recirculate. New clones
FIGURE 2 | Overview of B cells in multiple peripheral organs. (A) The gut microbiota is a consistent stimulus to immune cells in the gut. MBCs and PCs that are
formed access the circulation and return to the gut; this migration is mediated by the chemokine receptors CCR9 and CCR10, and integrin a4b7. PCs reside in the
lamina propria and MBCs enter the GC reaction, which results in the evolution of BCR repertoires. (B) Several clues for the existence of skin-associated B cells are
provided. B cells that migrate to the skin have higher expression of MHCII, CD1, CD86, CD80, and IgM. The migration to the organ is mediated by CCR6 and CLA.
B cells in the skin produce antibodies locally and regulate the immune reaction directly by producing the pro-inflammatory cytokines such as IL-6 or the anti-
inflammatory cytokine, IL-10. (C) BRMs are not established in the lower FRT. Upon secondary infection, circulating MBCs rapidly migrate to the tissues in a CXCR3-
dependent manner. These cells show higher expression of MBC markers including PD-L2 and CD80. These cells could not stay long in the lower FRT tissues.
July 2022 | Volume 13 | Article 953088
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were introduced upon new infection. The authors discussed this
observation and proposed that this mechanism is necessary for
stable interaction between the host and microbiota (46). In
humans, a clonal relationship between IgM+ MBCs and IgA+

MBCs and PCs has been observed, suggesting that gut IgM+

MBCs can switch to expressing IgA (68). Recently, a study
reported that the majority of CD19+CD27+ B cells in the
human gut are CD45RB CD69 double-positive, a distinguishing
feature of gut MBCs (19). CD4+ and CD8+ lung TRM gene sets
were found to be enriched in this double-positive subset. These
data imply the possibility that some unidentified portion of
recruited MBCs may reside in the gut for a long period and
operate in a unique manner.

Skin-Associated B Cells and
Their Function
The skin is the largest barrier tissue that faces a variety of daily
threats, including UV, injuries, pathogens, and commensals.
Traditionally, the skin was thought to lack B cells and contain
mostly T cells (69, 70). However, recent studies have reported the
presence of B cells with interesting functions, including antibody
production and antibody-independent function, in both healthy
and diseased skin (Figure 2B) (71).

Clonally restricted B cells have been observed in normal skin,
implying the existence of B cells specific for local skin antigens
(72). In normal skin of an ovine model, skin-associated B cells
were found to be a heterogeneous population that comprised a B-
1 B-cell–like phenotype, IgMhi and CD11bhi, and an activated
phenotype, expressing higher levels of MHC II and CD80/86
(73). IgM ASCs that reside in healthy mouse and human skin
have also been observed (74). The survival of ASCs was
dependent on APRIL and BAFF produced at the site. It was
suggested that these B cells migrate to the skin through a CCR6-
CCL20 axis (73). Cutaneous lymphocyte antigen is the molecule
that guides T cells into the skin. As parenteral immunization
induced its expression in ASCs, it appears that B cells are
recruited to the skin in a similar manner (75). Though direct
evidence of skin BRMs was not provided, these results imply
their possible existence. In addition, skin-associated B cells
appear to be directly involved in immune reactions in the skin.

The functions of B cells in the skin in pathologic conditions
are relatively well studied. One is local antibody production.
For example, pemphigus is characterized by circulating anti-
desmoglein 1/3 (Dsg1/3) autoantibodies that target the
desmosomal adhesion molecules anchoring epidermal
keratinocytes (76). It has been suggested that Dsg1/3-specific
B cells infiltrate the lesion and that autoantibodies can be
produced locally (77). B cells can secrete cytokines to promote
inflammation. A study using a bleomycin-induced scleroderma
model reported an accumulation of IL-6–producing B cells in the
inflamed skin, and the skin and lung fibrosis were attenuated in
IL-6 deficient mice (78). The result demonstrates the antibody-
independent function of B cells in the skin.

Regulatory B cells (Bregs) are capable of suppressing the
inflammatory response by producing the anti-inflammatory
cytokine IL-10. A subset of both mice and human skin–
Frontiers in Immunology | www.frontiersin.org 7
associated B cells with innate-like phenotypes, which are
CD1dhi CD5+ in mice and CD11b+ in humans, is reported to
produce IL-10 upon stimulation (79). Bregs have been found to
limit inflammation in several disease models. IL-10–deficient
mice show more severe fibrosis in the scleroderma model
mentioned above (78). Peritoneal B-1a cells display a
regulatory function in a contact hypersensitivity model, and
IL-10–producing CD1dhiCD5+ B cells can negatively regulate
inflammation in an imiquimod-induced psoriasis model (80, 81).

Given the diverse role of B-cell inflammatory skin disorders,
depleting pro-inflammatory B cell subsets while retaining the
regulatory subset would be a promising means for treating these
diseases, but the identity of Bregs is not fully elucidated. The
question of whether these cells are a specific lineage or if any B
cell subsets can become Bregs under certain conditions should be
answered first. If the latter is the case, the conditions should be
specified (82).

Memory B Cells in the Lower Female
Reproductive Tract
In terms of BRM, the lower FRT is the lungs’ opposite.
Circulating antibodies are unable to enter the tissue or reach
the lower FRT lumen (83, 84). Local immunization, however, can
increase the titer of antibodies in the vaginal lumen, with the
activity of these antibodies being higher than that of their
circulating counterparts (85, 86). Also, antibodies that are
passively transferred to the lumen are capable of controlling
infection (87). These findings imply that antibodies in the lower
FRT lumen are produced locally. This hypothesis is supported by
the presence of PCs in the lower FRT of mice locally immunized
with attenuated HSV type 2. These antibody-producing cells
appeared under the epithelium after secondary challenge with
wild-type viruses and lasted for 10 months. The increment of
IgG-producing cells was more than 10 times higher than the
increment of IgA-producing plasma cells, which explains why
IgG is the dominant antibody isotype in the lower FRT (86).
Similar results were found in a study of HIV-1: the level of
vaginal secretion of anti–HIV-1 antibodies was higher than that
in the serum (85). A study on SIVmac239Dnef vaccination also
showed that PCs appeared after vaccination, supporting the
presence of local antibody production (88).

Notably, tissues that compose the lower FRT do not permit
access by circulating B cells. Immunization with attenuated
HSV-2 is insufficient to establish PCs and MBCs in the tissue.
In the mouse genital herpes model, only after a secondary
challenge with wild-type virus were IgG+ circulating MBCs
recruited, and they contributed to the proper antibody
production (Figure 2C) (87). These cells express high levels of
CD80, PD-L2, and CXCR3. Their migration is mediated by
CXCR3-ligand chemokines induced by IFN-g produced from
CD4 TRM maintained in memory lymphoid clusters, which are
immune clusters composed mainly of CD4 TRMs and
macrophages (89). However, in contrast to the lung, in which
BRMs are embedded for at least 120 days, BRMs do not form in
the lower FRT (87). This discrepancy may result from the
different microenvironments the two organs provide to B cells.
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CONCLUDING REMARKS

In this review, we have briefly described the discovery of BRMs in
the lung. The timeline is short but several studies highlighting its
distinguishing features have been published recently. The rapid
response of BRMs upon secondary infection and their cross-
reactive potential make them a valuable target for vaccine design.
To control this cell population, several questions including their
location, origin, specific markers, and transcriptional regulators
must be answered. The different features of BRMs and their
survival niches in different locations should be identified.
Identifying the origin of BRMs and the cross-talk between
BRMs and the microenvironment will help to determine the
factors that regulate the generation and establishment of BRMs.
Although there is no direct evidence of BRM existence in other
barrier tissues rather than the lung, B cells and ASCs have diverse
properties and play important roles in multiple barrier tissues.
Further investigation is required to elucidate the characteristics
and the residency features of these cells. Understanding the
molecular pathways that regulate the interaction of these cells
Frontiers in Immunology | www.frontiersin.org 8
and their microenvironment could reveal the key factors that
determine tissue-specific immune properties.
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