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Driving requires multiple cognitive functions including visuospatial perception and recruits

widespread brain networks. Recently, traffic accidents in dementia, particularly in

Alzheimer disease spectrum (ADS), have increased and become an urgent social

problem. Therefore, it is necessary to develop the objective and reliable biomarkers for

driving ability in patients with ADS. Interestingly, even in the early stage of the disease,

patients with ADS are characterized by the impairment of visuospatial function such as

radial optic flow (OF) perception related to self-motion perception. For the last decade,

we have studied the feasibility of event-related potentials (ERPs) in response to radial OF

in ADS and proposed that OF-ERPs provided an additional information on the alteration

of visuospatial perception in ADS (1, 2). Hence, we hypothesized that OF-ERPs can be a

possible predictive biomarker of driving ability in ADS. In this review, the recent concept

of neural substrates of driving in healthy humans are firstly outlined. Second, we mention

the alterations of driving performance and its brain network in ADS. Third, the current

status of assessment tools for driving ability is stated. Fourth, we describe ERP studies

related to driving ability in ADS. Further, the neural basis of OF processing andOF-ERPs in

healthy humans are mentioned. Finally, the application of OF-ERPs to ADS is described.

The aim of this review was to introduce the potential use of OF-ERPs for assessment of

driving ability in ADS.

Keywords: Alzheimer disease spectrum, radial optic flow perception, event-related potentials, driving ability,

Alzheimer’s disease, mild cognitive impairment

INTRODUCTION

Driving is a complicated skill that needs to integrate multiple cognitive, perceptual and motor
abilities (3), and is supported by widely distributed brain network responsible for these complex
processes (4–8). The driving ability can be disturbed by a decline in these brain networks due to
normal aging and cognitive impairment such as dementia (3, 9–11). In recent years, the number
of individuals with dementia is steadily increasing due to aging of the population (12). Under such
circumstances, traffic accidents in individuals with dementia have increased and become an urgent
social problem (11).

Among dementia, Alzheimer’s disease (AD) is the most common (12). AD progresses on a
spectrum with three stages, so-called, “AD spectrum (ADS)” (13); (1) preclinical AD (14), (2)
mild cognitive impairment (MCI) due to AD (15), and (3) AD dementia (16). AD dementia is
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characterized by the impairment of short-term episodic memory,
orientation, visuospatial function, language and executive
function (12). The major neuropathological hallmarks of AD
are deposition of β amyloid (senile plaques) and accumulation
of neurofibrillary tangles, which cause a series of toxic events
that result in synaptic dysfunction, neuronal loss and brain
atrophy (12). Overall, multiple cognitive function associated with
distributed brain network are impaired due to the AD pathology,
resulting in the decline of driving ability in patients with AD.

There are various methods to assess driving ability, which
include on-road test, driving simulation, and neuropsychological
tests. However, recent systematic review and meta-analysis on
these methods have demonstrated a lack of consistency of the
findings among the studies though the several cognitive tests
are considered to be the predictors of driving performance in
AD patients (3, 17). So far, there have been no tests sufficient
to determine driving safety, so it is necessary to establish a
reliable method that can accurately evaluate driving ability in
ADS. Interestingly, visuospatial dysfunction is often an early
symptom even in the early stage of ADS (18, 19). Specifically,
psychophysical studies demonstrated that AD patients exhibited
selective elevation of motion coherence thresholds for radial
optic flow (OF) motion which was related to self-motion
perception (20), compared with those of coherent horizontal
(HO) motion and static forms (19). In addition, the impaired OF
perception was correlated with poor performance of the spatial
navigation test (19). These findings suggest that the deficits of OF
perception is responsible for the impairment of spatial navigation
including the driving performance in AD patients. Some patients
with MCI also exhibited selective impairment of coherent OF
motion perception (18).

Event-rerated potentials (ERPs) are a pertinent tool to assess
the visual function as well as dysfunction in humans because
ERPs are non-invasive, objective, rapid, repeatable with the low
cost. ERPs are also characterized by excellent temporal resolution
(< 1ms) and can measure neural activity directly compared
with functional magnetic resonance imaging (fMRI) (21, 22).
Therefore, radial OF-ERPs may be a neural biomarker for decline
of driving performance in ADS.

In this review, we first outline the neural basis of driving
ability in healthy humans. Second, we describe the alterations of
performance and associated brain function for driving in ADS.
Third, we refer to current status of the assessment tests for driving
and its problems. Fourth, ERP studies related to driving ability
in ADS are stated. Further, we mention the neural basis of OF
perception and findings of OF-related ERPs in healthy humans.
Finally, we introduce the potential use of OF-ERPs for assessing
driving ability of ADS. The aim of this review was to stress the
feasibility of neurophysiological evaluation of OF perception that
can be a neural biomarker for altered driving ability in ADS.

NEURAL BASIS OF DRIVING ABILITY IN
HEALTHY INDIVIDUALS

Driving requires the coordination of multiple cognitive functions
and recruitment of associated multiple brain regions. Several
fMRI studies on various driving tasks have demonstrated the

activation of widespread brain network including occipital,
parietal, frontal, motor and cerebellar regions and others to
maintain safe driving (4–8). Figure 1 shows an example of
activated brain regions while driving in a recent fMRI study
(4). In their study, during driving only condition, the occipital
activations were observed in the inferior, superior and middle
occipital gyri and lingual gyrus. The activated areas of parietal
lobe were superior and inferior parietal lobe, postcentral gyrus,
and precuneus. The activations of frontal regions consisted of the
inferior, middle and superior frontal gyri and precentral gyrus.
The superior and middle temporal gyri were the activated areas
of temporal regions. The activations of the cerebellum included
the uvular, declive, and cerebellar tonsil. In addition, the limbic
region such as cingulate gyrus, sub-lobar region including insula
and lentiform nucleus were activated (4).

During driving, occipital and parietal regions plays a crucial
role in visuospatial perception and attention to visual motion
and fixed landmarks during vehicle movement. The frontal
region is important for the executive function, working memory,
processing thoughts, and decision-making. The motor and
cerebellar regions engage in fine-control and action planning
duringmovement execution (4–8). Furthermore, the recruitment
of these brain regions is changeable but not uniform while
driving. For instance, during distracted driving, brain activations
shift the posterior regions to the frontal regions, particularly in
the prefrontal areas (6). Taken together, because brain networks
related to driving are broadly distributed, they may be susceptible
to brain disorder such as ADS which shows extensive brain
damage.

ALTERED DRIVING PERFORMANCE IN
ADS

Older drivers are at higher risk for traffic accidents such as
crashes, injuries and deaths than other age groups (11). Further,
individuals with AD dementia have an increased risk of traffic
accidents compared to healthy older drivers (11). Severity of
decline in driving performance was correlated with a degree of
cognitive impairment in AD dementia (23). Individuals with
MCI also had significantly more errors (collisions, center line
crossings, road edge excursions, stop sign missed, speed limit
exceedance) compared with healthy control drivers (10). MCI is
classified into two types: amnestic MCI (aMCI) (with memory
impairment) and non-aMCI (without memory impairment)
(24). MCI is further classified into single-domain MCI (with
impairment in single cognitive domain) and multiple-domain
MCI (with impairment in multiple cognitive domain) (24).
Patients with multiple-domain aMCI have the two or more
impairments of memory, attention, viusospatial function, and
executive function. Comparing multiple-domain aMCI with
single-domain aMCI, the former demonstrates greater driving
difficulty compared with the latter and healthy controls (10).
Since all these cognitive functions are important for driving
performance, multiple-domain aMCI may exhibit a greater
driving difficulty than single-domain aMCI.

A single-photon emission computed tomography (SPECT)
study has demonstrated that severity of impaired driving
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FIGURE 1 | Activated brain regions during driving in fMRI. Distributed brain networks including occipital, parietal, frontal, motor, and cerebellar regions are mainly

activated while driving only task. fMRI, functional magnetic resonance imaging. [Modified from (4), licensed under Creative Commons].

performance is significantly correlated with the changes of
cerebral blood flow in the temporo-parietal regions in early
stage of AD (25). A positron emission tomography (PET) study
showed that the executive functioning was correlated with
metabolism in the temporo-parietal regions, which was impaired
in early stage of AD (26). Neuropsychological studies also
reported a significant relationship between driving performance
and visuospatial perceptual ability in AD (17). These findings

indicate that the hypoperfusion or hypometabolism of temporo-
parietal regions reflects the impairments of visuospatial
perception and executive function, which result in impaired
driving performance in early stage of AD. Moreover, with
increased severity of driving impairment, the perfusion of
frontal region was also reduced in addition to temporo-parietal
regions in SPECT (25). The AD pathology is observed in the
temporo-parietal regions in the early stage of the disease while
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that pathology spread into the frontal regions in the later stage
(27). Therefore, the impairment of executive function involving
the frontal regions can be more correlated with the driving
impairment for the late stage of AD. Interestingly, a recent PET
study have revealed that driving risk is strongly correlated with
accumulation of amyloid even in the preclinical stage of AD
(28). In another study using tau and amyloid PET, participants
at Stage 2 [amyloid (+) and tau (+)] of preclinical AD (14)
were more likely to receive a marginal/fail rating compared to
participants at Stage 0 [amyloid (-) and tau (-)] or 1 [amyloid (+)
and tau (-)] (11, 14). This finding suggests that individuals with
preclinical AD (Stage 2) may already decline in driving skills.

Overall, the driving performance is gradually worsening along
with the course of ADS from preclinical AD to AD dementia.
These alterations of driving performance seem to be induced
by the progression of AD pathology. In particular, the early
pathological change in the posterior temporo-parietal regions
associated with visuospatial function (OF perception) may be
responsible for the impaired driving in the early stage of ADS.

ASSESSMENT TOOLS FOR DRIVING
ABILITY IN ADS

Various methods including on-road test, driving simulation
and neuropsychological tests have been used for evaluating
driving ability (3, 17, 29). The on-road test is the gold
standard for assessing fitness to drive, but it requires much
time for patients. There is also a need for someone who is
proficient in the judgment. The driving simulation is similar
to the on-road test, but it is expensive. Therefore, these two

tests cannot be routinely performed at the medical clinics.
For this reason, neuropsychological tests are commonly used.
Neuropsychological tests can evaluate various aspects of brain
function including attention, executive function and visuospatial
abilities known to be impaired in patients with ADS. For
example, the following tests are frequently used; the Mini-
Mental State Examination (MMSE) for memory, attention and
language skill, the Trail Making Test Part A and B (TMT-A and
-B) for cognitive flexibility, Drawing test for visuo-constructive
ability, and Maze test for visual orientation (29). However,
these neuropsychological examinations, especially when doing
multiple tests, require a long time to perform, so that patients
often get tired. Characteristics with some pros and cons of these
assessment tools are briefly summarized in Table 1.

There have been many studies that investigate the usefulness
of above mentioned tests as predictors of driving ability (3, 17,
29). However, a recent systematic review (17) demonstrated a
lack of consistency in the findings, with some studies showing
a relationship between cognitive test and driving performance
for individuals with AD, whereas others did not. Further, this
review suggested that deficits in a single cognitive ability were
not a reliable predictor of driving performance. In contrast, a
composite battery that assessed the multiple cognitive domains
required to be an efficient driver was the best predictor of
driving performance in individuals with AD (17). Another
study compared the predictive value of the three types of
assessment such as clinical interview, neuropsychological test
battery (including multiple tests) and driving simulation (29).
They found that neuropsychological assessment provided the
best prediction of fitness to drive. Clinical interviews were
less objective and less standardized than neuropsychological

TABLE 1 | Assessment tools for driving ability in ADS.

Assessment tools Characteristics Pros Cons

On-road test - Gold standard

- Evaluate driving abilities using actual vehicle

by a trained expert

- Close to driving in the natural environment - Expensive

- Limited availability

- Need a trained expert

- Long time to perform

- Cannot examine the

driving ability under

hazardous conditions

Driving simulators - Mimic real-world driving using a front monitor,

a handle, an accelerator, a brake pedal, etc.

which resemble an actual vehicle

- Wide range of test conditions (e.g., night and day,

different weather conditions, or road

environments)

- Especially, we can safely examine the driving

performance under hazardous conditions

- Expensive

- Limited availability

Neuropsychological

tests

- Assess various cognitive functions

indispensable for driving (e.g., attention,

executive function and visuospatial abilities,

etc)

- Widely available

- Multiple options for standardized measures

- Long time to perform

- Need a trained expert

ERPs - Directly measure neural activity from scalp

electrodes while watching OF stimuli in the

case of OF-ERPs

- Widely available

- Non-invasive

- Inexpensive

- Short time to perform

- Easy to use

- Currently not

standardization for

driving assessment

ERPs, event-related potentials; OF, optic flow.
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tests and driving simulation. Driving simulation is also not
sufficiently predictive if used alone. However, combining all
three types of assessments yielded the best prediction for
fitness to drive in patients with AD (29). Other systematic
review and meta-analysis have demonstrated that executive
function, attention, visuospatial function and global cognition
revealed by neuropsychological tests may be predictive of driving
performance in patients with MCI and AD. Specifically, TMT-
A and -B and Maze test emerged as the best single predictors
of driving performance though there were variability and
inconsistencies. On-road and simulator assessments have yielded
inconsistent results in terms of the safety to drive in patients with
MCI and AD (3).

From the results of these studies, there has been no single test
sufficient to determine driving safety in patients with MCI and
AD though the combined use of these tests is somewhat useful.
Accordingly, it is necessary to establish an objective method that
can be performed easily, in a short time, at a low cost, but has high
reliability. Note that ERPs have all such features, therefore, ERPs
are suitable for evaluating driving ability in ADS. In the following
section, we describe ERP researches on driving evaluation in
ADS.

ASSESSMENT OF DRIVING ABILITY IN
ADS USING ERPS

ERPs are electrical potential generated by the brain time-locked
to a sensory, cognitive, or motor event and provide a powerful,
non-invasive technique with superb temporal resolution, for
studying the brain’s synaptic function (30–32). In general, early
ERP components (< 200ms) reflect sensory processes as they
depend mainly on the physical parameters of the stimulus, so-
called exogenous component. Conversely, later ERP components
(> 200ms) are relatively more dependent on the mental
operations performed on the stimuli as well as on non-sensory
factors such as predictability, higher perceptual and semantic
features, so-called endogenous component.

ERPs have been extensively used for functional evaluation of
brain in ADS (30–32). The P300 component (around at 300–
500ms) elicited by an oddball paradigm has been most studied
in ADS as the convenient measure of the cognitive dysfunction.
In general, early sensory components at around 50–100ms are
relatively spared whereas potentials starting around 200ms and
beyond are more consistently abnormal even in the early stage of
AD andMCI. Thus, ERPs may reveal neurophysiological changes
related to the expansion of the neocortical association areas of AD
pathology (32).

For the ERP research on driving, the P300 cognitive
component is often used as an index of driving performance
in healthy individuals (33–36). However, there have been no
P300-ERP studies on driving ability in ADS. To our knowledge,
only two ERP studies used N200 component for the driving
ability of AD (37, 38) (Table 2). In a study of (37), ERPs
were recorded in young and older normal controls, and early
AD patients while participants viewed real-world videos and
dot motion stimuli (OF) simulating self-movement scenes.

In both stimulus conditions, N200 latencies were delayed by
aging whereas AD patients exhibited the diminished N200
amplitude. In addition, AD patients were uniquely unresponsive
to increments in motion speed. Since OF is crucial for speed
judgments and braking during vehicular navigation, the authors
proposed that the AD unresponsiveness to accelerations might
reveal some of the mechanism involved in their driving
impairment and potentially help identify high-risk individuals
at earlier stage. In another study (abstract form) (38), early
AD patients and older normal control took a virtual reality
driving evaluation that incorporates multiple cognitive, visual
and motor tests. OF-ERPs were also recorded. Compared to
older normal control, AD patients had significantly lower driving
scores and smaller N200 amplitudes. Furthermore, there was a
highly significant correlation between driving scores and N200
amplitudes. The authors concluded that significant correlations
between vehicular driving scores andN200 amplitudes supported
the role of extrastriate cortical dysfunction in impaired driving
capacity and that the potential use of ERPs as screening tools
for selective functional impairments and as biomarkers of
AD.

These two studies (37, 38) suggest that OF-ERPs (sensory
N200 component) may be useful for evaluation of driving
ability in AD. However, it remains unknown whether the N200
component is the best predictor of driving ability in AD, and
whether or not OF-ERPs can be an index of driving ability
even in aMCI. For the last decade, we have been studying the
feasibility of sensory ERPs in response to radial OF in aMCI
and AD and proposed that OF-ERPs provided an additional
information on the alteration of visuospatial perception in ADS
(1, 2). The visuospatial deficits (impaired OF perception) related
to the posterior temporo-parietal dysfunction play a key role
in the navigational or driving impairment in ADS (18, 19, 25).
Hence, we hypothesized that sensory ERPs elicited by OF but
not P300 cognitive ERPs could be a neural biomarker in driving
impairment even in the early stage of ADS. In the following
section, we describe neural basis of OF processing in healthy
humans and the potential use of OF-ERPs as a driving evaluation
method.

NEURAL BASIS OF OF PERCEPTION IN
HEALTHY HUMANS

When we move through our environment with walking or
cars, the radial pattern of OF is produced at the retina
(Figure 2A). The ability of visual motion system that analyzes
OF is biologically important because it provides visual cues that
can be used to perceive the direction of self-motion, to guide
locomotion and to avoid obstacles (20, 39). Thus, the drivers
must analyze radial OF information continuously to control
his/her vehicle during driving, so that the OF processing is
indispensable for safe driving.

In humans, there are two functionally and anatomically
segregated visual pathways: the ventral and dorsal pathways
(Figure 3) (21, 22, 42). Both pathways begin in the retina and
project to the primary visual cortex (V1). After V1, the ventral
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TABLE 2 | ERP studies on driving ability in ADS.

References Participants Study design and protocol Outcome measure Summary of main findings

Fernandez and

Duffy (2012) (37)

- [OF (dot motion)]

- Early AD (n = 15; age, 78.6

± 8.0)

- Older normal control (n = 16;

age, 76.2 ± 10.0)

- Young normal control

(n = 12; age, unknown)

[Real-world video motion

stimuli]

- Early AD (n = 6; age, 73.2 ±

6.3)

- Older normal control (n = 5;

age, 70.6 ± 6.4)

- Young normal control (n = 9;

age, 29.33 ± 8.5)

- Cross-sectional study

- ERPs evoked by OF (dot

motion)

(Changes of coherence and

speed)

- ERPs evoked by real-world

video motion stimuli

(Changes of coherence and

speed)

- N200 amplitude and latency - Diminished N200 amplitude in early AD

- Increasing speed elicits smaller N200

amplitudes in early AD

Fernandez-

Romero and Cox

(2016) (38)

(abstract form)

- Early AD (n = unknown; age,

unknown)

- Older normal control

(n = unknown; age,

unknown)

- Cross-sectional study

- ERPs evoked by OF

- Virtual reality driving

evaluation

- N200 amplitude and latency

- Multiple cognitive, visual and

motor tests

- Smaller N200 amplitude in early AD

- Lower driving score in early AD

- Significant correlations between

vehicular driving scores and N200

amplitudes

Yamasaki et al (1) - aMCI (n = 18; age, 72.4 ±

6.9)

- Early AD (n = 18; age, 75.5

± 5.7)

- Older normal control (n = 18;

age, 71.8 ± 4.1)

- Young normal control

(n = 18; age, 28.2 ± 5.1)

- Cross-sectional study

- ERPs evoked by OF and HO

(dot motion)

- N170 and P200 amplitudes

and latencies

- Prolonged latency of OF-specific P200 in

aMCI

- Prolonged latencies of N170 and P200 in

early AD

- Significant correlation between

OF-specific P200 latency and MMSE

score

Yamasaki et al (2) - aMCI (n = 15; age, 74.4 ±

4.4)

- Older normal control (n = 15;

age, 73.5 ± 4.5)

- Young normal control

(n = 15; age, 27.9 ± 5.0)

- Cross-sectional study

- ERPs evoked by OF (dot

motion), faces, words,

chromatic and achromatic

gratings

- N170 and P200 amplitudes

and latencies for OF

- N170 amplitudes and

latencies for faces and words

- N120 amplitude and latency

for chromatic gratings

- Steady-state response for

achromatic gratings

- Prolonged N170 and P200 latencies for

OF in aMCI

- Prolonged N170 latencies for faces and

words in aMCI

- Normal N120 for chromatic gratings in

aMCI

- Normal steady-state response for

achromatic gratings in aMCI

- Significant correlations between N170

latency for OF and LM WMS-R scores,

and between P200 amplitude for OF and

LM WMS-R scores

- High AUC in N170 and P200 latencies

for OF in ROC analysis

aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s disease; ERPs, event-related potentials; OF, optic flow; MMSE, Mini-Mental State Examination; LM WMS-R, logical memory

in Wechsler Memory Scale-Revised; ROC, receiver operating characteristic; AUC, area under the curve.

FIGURE 2 | Radial OF motion. (A) When we move through our environment, radial OF pattern is produced by forward self-movement. (B) Coherent radial OF motion

stimuli used in our study. We can create radial OF motion stimuli easily using random dots. Dots radiate from the focus of expansion, which corresponds to the

observer’s direction of heading. OF, optic flow.
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FIGURE 3 | Parallel visual pathways in humans. There are two major parallel

streams: ventral and dorsal pathways in humans. Detailed functions of the two

streams are provided in the text (see section Neural Basis of OF Perception in

Healthy Humans). A recent study has revealed the importance of

interconnection between IPL and SPL for OF processing (40) so that we

modified this figure considering this point. d-d pathway, dorso-dorsal pathway;

v-d pathway, ventro-dorsal pathway; LGN, lateral geniculate nucleus; MT,

middle temporal area; MST, medial superior temporal area; IPL, inferior parietal

lobule, SPL, superior parietal lobule; IT, inferior temporal cortex. [Modified from

(41), Copyright (2012) with permission from IOS press].

stream is important for form and color perception, projecting
to V4 and the inferior temporal (IT) cortex. In contrast, the
dorsal stream is responsible for motion perception, connecting
to V5/middle temporal (MT)+ (V5/MT and medial superior
temporal area [MST]), V6 and the posterior parietal cortex (21).
The dorsal stream also comprises two distinct functional flows;
the dorso-dorsal (d-d) and ventro-dorsal (v-d) streams (43).
The d-d stream consists of V6 and the superior parietal lobule
(SPL) while the v-d stream involves V5/MT and the inferior
parietal lobule (IPL). From the concept of such visual processing
mechanism, the OF perception is mainly processed by the dorsal
stream.

Primate studies have reported a number of cortical areas
that selectively respond to OF, including the dorsal part of the
MST (44), the ventral intraparietal area (VIP) (45), area 7a
(46) as well as area PEc (47). Conversely, V5/MT neurons do
not show such specific selectivity (48). In humans, several OF
selective areas have been identified by neuroimaging studies
within the dorsal streams (49–57). These OF selective areas
contain visual areas such as MST and V6, multisensory areas
such as the VIP, the precuneus motion area (PcM) and cingulate
sulcus visual area, and vestibular areas such as the putative
area 2v (p2v) and parieto-insular vestibular cortex (PIVC). A
recent fMRI study have demonstrated that the posterior-insular
cortex (PIC) area plays an important role in the integration of
visual and vestibular stimuli for the perception of self-motion
while the PIVC is selectively responsive to vestibular stimulation
(58, 59). Overall, the VIP, PcM and p2V are located within
the d-d stream (SPL) while the v-d stream (IPL) consists of
PIC (40).

OF-ERPS IN HEALTHY HUMANS

In order to compare OF processing with HO processing in
healthy humans, we recorded ERPs for coherent OF and HO
motion stimuli in healthy young subjects by using a high-
density EEG system (60) (Figures 2B, 4). We used coherent
motion stimuli as the visual stimuli, which consisted of 400 white
square dots randomly distributed on a black background. The
white dots moved at a velocity of 5.0◦/s. Two types of motion
stimuli (OF and HO) were used. OF stimuli contained dots
that moved in a radial outward pattern while HO contained
dots that moved leftward or rightward. The coherent level was
90% in both stimuli. Both stimuli had the same dot density,
luminance, contrast and average dot speed. Random motion
(RM) was used as a baseline condition. The OF and HO stimuli
were presented for 750ms, with the presentation of RM for
1,500–3,000ms alternately. The N170 [analogous to N200 in
previous ERP studies (37, 38), about 170ms] and P200 (about
200ms) were recorded as major components. We analyzed the
peak latencies, amplitudes, scalp distribution and the sources in
both components.

The N170 was distributed over occipito-temporal regions in
response to both OF and HO stimuli. The distribution of the
OF-N170 extended further into the parietal region compared
with those of HO-N170 (Figure 4B). The OF-N170 amplitude
was significantly larger and its latency was significantly shorter
than those of HO-N170 (Figure 4A). Exact low resolution brain
electromagnetic tomography (eLORETA) analysis of the N170
revealed that the current density was significantly elevated over
the occipito-temporal areas including V5/MT+ in response to
both stimuli compared with RM baseline (Figure 5A). These
findings were consistent with those of minimum-norm estimate
(MNE) of visual evoked magnetic fields (VEFs) (61). A direct
comparison between OF and HO stimuli revealed no significant
difference in the current density of the N170. Current density
estimation with eLORETA in ERPs and MNE in VEFs provided
strong evidence that the generator source of the N170 was
located in V5/MT+ for both stimuli. Therefore, the N170
constitutes a non-specific motion component derived from an
area close to V5/MT+. However, OF stimuli elicited an N170
with a higher amplitude and shorter latency, compared with HO
(Figure 4A), which may reflect a higher activity of V5/MT+
during OF processing. Alternatively, V5/MT+ can be subdivided
into V5/MT and MST (50, 62). V5/MT neurons respond to both
OF and HO stimuli (48), whereas MST selectively responds to
OF (44, 46). Thus, the selective activation of MST neurons may
contribute to the higher amplitude and shorter latency of the
OF-N170 response.

The P200 component exhibited distinct characteristics
between OF and HO. The OF-P200 was distributed over the
parieto-central region (Figure 4). HO stimulus also evoked an
observable P200, but its topography was limited to the central
region (Figure 4). The P200 amplitude was significantly larger
for OF compared with HO stimuli. Similarly, the latency of
OF-P200 was significantly faster compared with that of HO-
P200 (Figure 4A). Regarding the parietal OF-P200, the current
density was significantly elevated in the IPL (Figure 5B, top
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FIGURE 4 | ERPs in response to coherent OF and HO motion stimuli and their scalp topography in healthy subjects. (A) It is evident that the N170 and P200 are

distinct motion-related components. The N170 component was distributed over occipito-temporal areas regardless of the stimulus type, extending further to the

parietal region in the OF condition only. (B) The P200 component in response to OF stimuli was distributed over the parieto-central region while that of HO was

distributed over the central region. The color bar represents the amplitude value (red = positive, blue = negative). Please note that this figure was presented at 2009

International Symposium on Early Detection and Rehabilitation Technology of Dementia. December 11–12, 2009, Okayama, Japan. ERPs, event-related potentials;

HO, horizontal motion.

row). In contrast, for the central HO-P200, the current density
was distributed over the SPL (Figure 5B, middle row). A
direct comparison revealed that the current density of the IPL
in response to OF stimuli compared with HO stimuli was
significantly elevated (red color). Conversely, the current density
of SPL was significantly elevated in HO compared with OF
(blue color) (Figure 5B, bottom row). Overall, these findings
suggest that the parietal OF-P200 is functionally coupled with the
IPL (the v-d stream) and that it is the OF-specific component.

Conversely, the central HO-P200 is related to the SPL (the d-
d stream) (60). These functional dissociations between IPL (OF
perception) and SPL (HO perception) were consistent with our
fMRI study (41). Therefore, we propose that different spatio-
temporal processing is driven by these motion stimuli within the
two distinct dorsal streams in humans. From these findings, it
is likely that ERPs with coherent OF and HO motion are useful
for functional evaluation of the dorsal stream. More specifically,
OF-related ERPs (OF-N170 and OF-P200 components) are
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FIGURE 5 | eLORETA-based statistical nonparametric maps for a comparison between OF and HO in GFP peaks of N170 and P200. (A) The current density of N170

was significantly elevated over the occipito-temporal areas including V5/MT+ in both stimulus conditions. (B) The current density of the parietal P200 for OF was

significantly elevated in the left IPL (BA 39/40). Conversely, there was a significant elevation of the current density of the central P200 for HO in the bilateral SPL (BA 7).

In the figure at the bottom, red and blue mean OF and HO, respectively. Please note that this figure was presented at 2009 International Symposium on Early

Detection and Rehabilitation Technology of Dementia. December 11–12, 2009, Okayama, Japan. eLORETA, exact low resolution brain electromagnetic tomography;

GFP, global field power; RM, random motion.

considered to be able to identify subtle changes of visuospatial
function (OF perception) associated with driving ability in
individuals.

OF-ERPS IN ADS

To examine whether we can detect the impairment of OF
perception in aMCI and AD, ERPs for OF and HOwere recorded
in patients with aMCI and AD, and in healthy old and young
adults (1) (Table 2). aMCI was defined according to the criteria of
Petersen (24). The patients with AD met the criteria for probable

AD according to NINCDS-ADRDA (63). Neuropsychological
tests including MMSE and the Clinical Dementia Rating (CDR)
were performed. Regarding ERPs, visual stimuli and analysis
were same as the former study in healthy young subjects (60).
There was no significant difference in both OF-N170 and HO-
N170 responses between aMCI patients and healthy old adults
(Figure 6). In contrast, the latency of OF-P200 was significantly
prolonged in aMCI patients compared with healthy old adults
(Figure 6). Therefore, within the dorsal stream, the v-d stream
(IPL) related to OF perception, but not the d-d stream (SPL)
associated with HO perception, is selectively impaired in aMCI
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FIGURE 6 | ERPs in response to coherent OF and HO motion stimuli in the MCI, AD and healthy control groups. MCI patients exhibit more prolongation of P200

latency for OF than healthy elderly adults, but no prolongation of N170 latency for both stimuli. AD patients show a prolongation of both N170 and P200 latencies

compared with other groups. MCI, mild cognitive impairment. [Modified from (64), Copyright (2012) with permission from IEEE].

patients. On the other hand, AD patients showed a prolongation
of N170 and P200 latencies for both OF and HO stimuli
compared with healthy old adults and aMCI patients (Figure 6).
Our results indicate that aMCI patients exhibit a selective
impairment of OF perception related to the higher-level of dorsal
stream (v-d stream including IPL). Conversely, AD patients show

the impairments of both OF and HO perception associated with
the distributed higher-level dorsal stream (both v-d and d-d
streams including IPL, SPL and V5/MT+). These findings were
consistent with the spread of AD pathology following disease
progression (1, 64). Thus, we can detect the impairment of OF
perception even in patients with aMCI by using OF-ERPs.

Frontiers in Neurology | www.frontiersin.org 10 September 2018 | Volume 9 | Article 750

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yamasaki and Tobimatsu Driving Ability in Alzheimer Disease Spectrum

We further recorded ERPs to multimodal visual stimuli
(chromatic and achromatic gratings, faces, kanji and kana
words and OF motion) in aMCI patients, healthy old and
young adults (2) (Table 2). Inclusion criteria for aMCI patients
and healthy old adults followed the criteria of the Japanese
Alzheimer’s Disease Neuroimaging Initiative (65). These criteria
were based on several neuropsychological tests: MMSE, CDR,
Geriatric Depression Scale and the logical memory test
(delayed recall) of the Wechsler Memory Scale-Revised (WMS-
R). Multimodal visual stimuli were optimized to activate
elements of each visual stream separately. The OF stimulus
was same as the former studies (1, 60). ERP responses to
lower (V1) level stimuli (chromatic and achromatic gratings)
were not significantly differed between aMCI patients and
healthy old adults. Conversely, ERP latencies for higher-ventral
(faces and kanji words) and higher-dorsal (kana words and
OF motion) were significantly prolonged in aMCI patients.
Interestingly, OF-related ERPs were significantly correlated with
the logical memory test (delayed recall) of the WMS-R (OF-
N170 latency, r = −0.507; OF-P200 amplitude, r = 0.493)
(Figure 7A). Furthermore, the receiver operating characteristic
(ROC) analysis exhibited that the highest area under the curve
(AUC) was observed for OF-ERP latencies (OF-N170 latency,
AUC = 0.856; OF-P200 latency, AUC = 0.831) (Figure 7B).

This suggests that OF-ERPs have the best distinguishing ability
between aMCI and healthy old adults.

A POTENTIAL USE OF OPTIC FLOW-ERPS
IN ASSESSING DRIVING ABILITY IN ADS

Overall, in our ERP studies (1, 2), OF-related visuospatial
perception indispensable for driving was associated with
cognitive function in ADS. As previously mentioned, severity
of decline in driving ability was correlated with the degree of
cognitive function (23) or visuospatial function (17). Therefore,
we assume that OF-ERPs can detect early signs of decline in
driving ability in patients with ADS.

In support of our view that altered OF-related visuospatial
perception is associated with the driving disability in ADS,
Vilhelmsen et al. (66) found that the latency of N2 (analogous
to N170 in our study) increased as the speed of OF-motion
increased (driving speeds 25, 50, and 75 km/h) in healthy young
subjects. They supposed that the subjects perceived the OF
stimulus with higher speeds as more complex than that of
the lower speeds, which resulted in the increased N2 latency.
Healthy individuals can handle our OF stimulus easily but the
damagedADS brainmay needmore effort because of an excessive

FIGURE 7 | Correlation and ROC analyses. (A) Correlation of ERPs with delayed LM WMS-R scores. ERPs for OF motion stimuli are significantly correlated with

delayed LM WMS-R scores. (B) The results of ROC curve analysis for discriminability of ERP components. The N170 and P200 latencies for OF motion have AUCs ≥

the threshold of 0.7 for acceptable discrimination. Please note that AD group was not recruited in this study [Modified from (1), Copyright (2016) with permission from

IOS press]. LM WMS-R, logical memory in Wechsler Memory Scale-Revised; ROC, receiver operating characteristic; AUC, area under the curve.
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load for the visuospatial processing system. This interpretation
may explain the delayed N170 and P200 latencies in our
study (1, 2).

Based on ERP findings of our (1, 2) and other groups (37, 38),
OF-ERPs (both N170 and P200 components) may be useful for
evaluation of driving ability in aMCI and AD patients. However,
it should be kept in mind that the relationship between OF-
ERPs and the performance of on-road and driving simulator tests
has not established. In addition, we have not yet determined
the reference values of OF-ERPs (amplitude and latency) on
driving ability. Thus, in the near future, we will perform a large-
scale longitudinal ERP study for determining the relationship
between driving ability and OF perception in a wide range of
ADS. By doing so, we can assess driver’s aptitude to prevent
the traffic accidents in patients with ADS. Meanwhile, we are
currently trying to develop the simple and reliable touch panel-
type assessment system of driving ability using radial OF stimuli
(measuring OF-detection threshold) (https://kaken.nii.ac.jp/en/
grant/KAKENHI-PROJECT-17K09801/). This system may be
useful for driving performance evaluation, which is much simpler
than ERPs.

CONCLUSIONS

To maintain safe driving, widespread brain networks including
occipital, parietal, frontal, motor and cerebellar regions are
recruited. These brain networks are vulnerable in ADS pathology
that shows extensive neocortical brain damage. In ADS, the
driving ability continues to gradually decline accompanied by
the course of AD pathology. Especially, the early pathological
change in the posterior temporo-parietal regions related to OF

perception is responsible for the impaired driving in the early
stage of ADS. Although various methods including on-road test,
driving simulation and neuropsychological tests are used for
evaluating driving ability, there is no single test sufficient to
determine driving safety in ADS patients. Conversely, ERPs are
non-invasive and objective method that can be performed easily,
in a short time, at a low cost, but has high reliability. Based on
previous and our ERP studies, OF-ERPs can be an indicative
neural biomarker for assessing the decline of driving ability in
ADS.
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