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Fourteen years ago, the first article on molecular genetics was published in this journal: Child Development,
Molecular Genetics, and What to Do With Genes Once They Are Found (R. Plomin & M. Rutter, 1998). The goal of
the article was to outline what developmentalists can do with genes once they are found. These new
directions for developmental research are still relevant today. The problem lies with the phrase ‘‘once they
are found’’: It has been much more difficult than expected to identify genes responsible for the heritability of
complex traits and common disorders, the so-called missing heritability problem. The present article considers
reasons for the missing heritability problem and possible solutions.

The first article on molecular genetics in Child Devel-
opment was published in 1998 with the title: ‘‘Child
Development, Molecular Genetics, and What to Do
With Genes Once They Are Found’’ (Plomin &
Rutter, 1998). The article considered three general
topics: finding genes (how DNA variants are used to
find linkages and associations between genes and
behavior), getting genes (the practicalities of how de-
velopmentalists can get DNA and genotype their
samples for specific genes), and using genes. This last
topic, using genes, was the main point of the article.

Where are we now, 14 years later? The basic
descriptions of the first two topics—finding genes
and getting genes—remain relevant although some
updating is necessary. For example, in relation to
finding genes, the field is now dominated by a tech-
nique that was not possible in 1998 (genome-wide
association [GWA]). In terms of getting genes, the
major technology used today was not invented in
1998 (microarrays), and the major technology that is
beginning to revolutionize this field would have been
thought to be wishful thinking just a few years ago
(whole-genome sequencing). This article updates the
1998 article in relation to these three advances.

The examples of the key third topic—using genes—
are just as relevant today: answering questions
about developmental continuities, about psycho-
pathological patterns, and about environmental risk
mechanisms. These examples of ‘‘what to do with

genes once they are found’’ led us to encourage de-
velopmentalists to obtain DNA in their research—-
not to join in the hunt for genes but to be able to use
these genes once they are found. All would be well
now 14 years later except for one crucial problem:
Progress has been slow in finding genes associated
with behavior. This problem is the focus of the pres-
ent article, which discusses reasons why progress
has been slow, attempts to address the problem, and
implications for developmentalists.

The 1998 article was overly optimistic, especially
in the use of the word ‘‘soon’’ in the following
quote: ‘‘Although gene-behavior associations are
currently available in only a few domains, the inten-
sity of the research effort to find genes associated
with behavior makes it likely that such associations
will soon be widespread’’ (Plomin & Rutter, 1998,
p. 1225). The article concluded: ‘‘We have no doubt
that this potential, when actualized, will transform
both developmental psychology and developmental
psychopathology’’ (p. 1223).

I continue to support this view, even though it will
take more time for this potential to be actualized.
Although the 1998 article was overly optimistic
about the time it would take, it was merely obeying
what has been called ‘‘the first law of technology’’ by
Francis Collins in his book on the DNA revolution:
‘‘The consequences of a radical new technology are
almost always overestimated in the short term and
underestimated in the long term’’ (Collins, 2010).

The first section of the present article describes
three major technological advances since 1998:
whole-genome sequencing, microarrays, and GWA.
The second section reviews the first harvests from
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GWA studies, which leads to what has been called
the missing heritability problem. The final section
considers ways in which the missing heritability
problem is being addressed and its implications for
developmental research.

Since 1998: Whole-Genome Sequencing,
Microarrays, and GWA

During the past 14 years, there have been many
advances in the technology-led field of molecular
genetics, but three are especially worth noting
because they will have a direct impact on develop-
mentalists: whole-genome sequencing, microarrays,
and GWA.

Whole-Genome Sequencing

The most fundamental breakthrough since 1998
has been identifying the sequence of the 3 billion
nucleotide base pairs across the 23 pairs of chromo-
somes in the human genome. The Human Genome
Project was completed in 2003, exactly 50 years
after the discovery of the structure and function of
DNA (Watson & Crick, 1953). It required the effort
of 2,000 researchers and cost $3 billion (http://
www.genome.gov/11006943). As an indication of
the speed of technological innovation in molecular
genetics, it is now possible to sequence the genome
of an individual in a few hours for less than
$20,000 in high-throughput DNA factories with
hundreds of sequencing machines and technicians.
Eight groups are now closing in on the $10 million
Archon X Prize for a so-called ‘‘next generation
sequencing’’ device that can completely sequence
100 human genomes within 10 days at a cost of no
more than $10,000 per genome (http://genomics.
xprize.org/).

There are two major ways in which whole-gen-
ome sequencing will affect developmentalists. The
first impact is conceptual. Prior to the Human Gen-
ome Project, research focused on the less than 2%
of DNA, that constitutes what has traditionally
been called a gene—that is, DNA that is transcribed
into RNA, which is then translated into the amino
acid sequences that are the building blocks of pro-
teins. About 20,000 such ‘‘genes’’ have been identi-
fied in the human genome. The remaining 98% of
the genome was thought to be evolutionary detri-
tus. However, the Human Genome Project opened
up a new world of genetics, leading to research that
shows that at least half of the rest of the genome
involves DNA that is transcribed into RNA but the

RNA is not translated into amino acid sequences.
For these so-called noncoding genes, the RNA itself
regulates the expression of other genes, provoking
thought about what a gene is (Gerstein et al., 2007).
Although many of the thousands of rare single-
gene human disorders involve mutations in coding
genes, noncoding genes may contribute more sub-
tly to the heritability of the complex traits and com-
mon disorders that are the focus of the behavioral
sciences. Information from the whole genome, not
just the 2% of DNA involved in coding genes, is
needed to investigate noncoding genes as well as
other new discoveries about the genome.

The second way in which whole-genome sequenc-
ing will affect developmentalists is more practical
but highly contentious. As the cost of sequencing the
genome continues to plummet, the entire sequence of
the genome will be known for many individuals. In
2008, the 1000 Genomes Project was launched, which
will catalog human genetic variation throughout
the world (Durbin et al., 2010). In 2010, a 10,000
Genomes Project was funded by the Wellcome Trust
in the United Kingdom, which will identify even
rarer DNA variants (http://www.wellcome.ac.uk/
News/Media-office/Press-releases/2010/WTX060061.
htm). Some members of the genomics community
have predicted that whole-genome sequences will be
a standard part of medicine in the next few years. For
example, Francis Collins, the director of the U.S.
National Institutes of Health and former director of
the Human Genome Project, after describing caveats
and cautions, predicts in his book on ‘‘personalized
medicine’’: ‘‘I am almost certain, however, that
whole-genome sequencing will become part of new-
born screening in the next few years. . . . It is likely
that within a few decades people will look back on
our current circumstance with a sense of disbelief
that we screened for so few conditions’’ (Collins,
2010, p. 50). The experience of having his genome
sequenced has been described by psychologist Steve
Pinker (2009), who was one of the first 10 people to
have their genome sequenced as part of the Personal
Genomes Project, which aims to give everyone access
to their whole-genome sequence for personalized
medical decisions (http://www.personalgenomes.org).

There are many issues involved in this DNA
revolution (Guttmacher, McGuire, Ponder, & Ste-
fansson, 2010) but the simple point here is that if
whole-genome sequence data becomes part of new-
born screening or is otherwise widely available for
many individuals, no DNA would need to be
collected and no genotyping would need to be done
in order to make use of this genome sequence data
in developmental research.
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DNA Microarrays

Because it is not clear when whole-genome
sequencing will be widely available, developmental
researchers will first use DNA microarrays that can
currently genotype 1 million DNA variants across
the genome on a microarray or ‘‘chip’’ the size of a
postage stamp (Plomin & Schalkwyk, 2007). Of the
3 billion nucleotide base pairs of DNA in the
human genome, fewer than 0.5% (i.e., 5 in 1,000)
differ for at least 1% of the population, although
there are many more rarer variants seen in fewer
than 1% of the population. Because only DNA dif-
ferences can account for heritability, an interim
strategy is to focus on DNA variants rather than
sequencing the entire genome. Although it has been
possible for decades to detect DNA variants such
as SNPs, genotyping them one by one is very
expensive in time and money. Microarrays, which
became available commercially in 2000, can geno-
type millions of SNPs in parallel quickly and in-
expensively. A microarray is a tiny slide that is
dotted with short single-stranded DNA sequences
called probes. The microarray is used to detect
SNPs in the usual way: Fluorescently labeled sin-
gle-stranded DNA from an individual is allowed to
hybridize with a single-stranded probe which will
only happen if there is an exact match of DNA
sequence. The critical difference with microarray
analysis is that an individual’s entire genome is
first chopped into small DNA pieces and all the
pieces are copied many times; a florescent tag is
attached to each DNA piece so that florescence will
be detected if the piece of DNA hybridizes with a
probe on the microarray. This method makes it pos-
sible to genotype all the DNA pieces simulta-
neously. Multiple copies of each target on an array
make the genotyping highly accurate. Microarrays
can also be used to study expression levels of all
the genes in the genome, called the transcriptome.
Such RNA microarrays assess the quantity of all
the RNA transcripts in the genome, which is spe-
cific to tissue, age, and state. Although we mention
gene expression later, our focus here is on DNA
sequence variation, which is not tissue, age, or state
specific.

DNA microarray platforms can genotype mil-
lions of SNPs selected to capture as much DNA
variation as possible throughout the genome. These
microarrays and their progenitors were designed to
facilitate GWA, which is discussed in the following
section. However, any DNA probes can be selected
for genotyping on a microarray. For example,
microarrays could include rare SNPs rather the

common SNPs typically used on microarrays
designed to maximize genomic information for
GWA; we will return to this issue in the later sec-
tion on ‘‘missing heritability.’’

Some microarrays include probes for a type of
DNA variant called a copy number variant (CNV),
which was discovered as a result of the Human
Genome Project because these regions of the gen-
ome were difficult to sequence. CNVs are DNA
segments from a thousand to millions of bases in
size that are deleted or duplicated, which can lead
to the duplication or deletion of whole genes or
parts of them (Conrad et al., 2010; Cooper, Zerr,
Kidd, Eichler, & Nickerson, 2008; Redon et al.,
2006). CNVs are also part of the story of missing
heritability, as discussed later.

Microarrays can be customized to genotype DNA
variants for disease, which is the source of the bur-
geoning business of direct-to-consumer genetic test-
ing, such as the service offered by 23andMe which
tests for over 100 diseases and traits for about $100.
Again there are huge issues to consider including
issues of practical utility, but it is noteworthy that in
his book on the DNA revolution in personalized
medicine, Collins (2010) is a proponent of direct-
to-consumer genetic testing.

Customized DNA microarrays are quickly becom-
ing more specialized. For example, specialized DNA
microarrays are now available for all DNA variants
related to cardiovascular (CardioChip) and immuno-
logical (ImmunoChip) function and dysfunction.
The cost of creating a customized DNA microarray is
substantial but the cost of using such a microarray
drops as a function of the quantity produced. For
example, a developmental DNA microarray (Devo-
Chip?) could be customized for domains of behav-
ioral development that include all of the many
hundreds or thousands of DNA variants that may be
associated with each domain at different ages as they
interact and correlate with different environments.
The ability to genotype thousands of DNA variants
cheaply is crucial because, as discussed later, the her-
itability of complex traits and common disorders is
due to many genes. Individually, these genes have
such small effects in the population that they will be
of little use to developmentalists. However, together
in polygenic composites, they could have a major
impact on developmental research, as discussed
later.

Genome-Wide Association

As mentioned in the previous section, DNA
microarrays, with their ability to genotype millions
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of DNA variants quickly and cheaply, made it pos-
sible to look for DNA associations systematically
throughout the entire genome, called GWA. For
decades, linkage had been used as a genome-wide
approach that required only a few hundred DNA
variants to identify the genes responsible for hun-
dreds of single-gene disorders such as Hunting-
ton’s disease, phenylketonuria, and fragile-X
syndrome. Linkage looks for coinheritance of a
DNA variant and a disorder within families (i.e., a
violation of Mendel’s second law of independent
assortment), as explained in the 1998 article.
Coinheritance of the DNA variant and the disorder
indicates that they are ‘‘linked’’ on the same chro-
mosome; the tighter the coinheritance, the closer
the DNA variant and gene for the disorder are on
the chromosome.

Although linkage works very well for finding
genes responsible for monogenic disorders, it lacks
power to detect genes of smaller effect size (Risch &
Merikangas, 1996). It became apparent in the 1990s
that linkage studies were largely coming up empty-
handed in research on common disorders, which
suggested that the heritability of these phenotypes is
not due to a single gene. The power of linkage meth-
ods was increased by studying many small family
groups (e.g., parent–offspring triads or siblings)
rather than a few large family pedigrees, but linkage
could still only detect relatively large effects and
few of these were found for common disorders.

While linkage is systematic but not powerful,
association is powerful but, until the advent of
microarrays, association was not systematic. Associ-
ation involves a correlation between an allele and a
trait among unrelated individuals in a population
in the sense that individuals with a particular allele
differ on the trait from individuals with different
alleles. Association is much more powerful statisti-
cally than linkage for identifying genes of small
effect size (Risch & Merikangas, 1996).

The advantage of linkage is that it is far sighted
in the sense that linkage can be detected when the
DNA variant is millions of base pairs away from
the causal DNA variant, which is why only a few
hundred DNA markers are needed to detect link-
age across the genome. In contrast, association is
near sighted in that it detects association only when
the DNA variant is within a few thousand base
pairs of the causal DNA variant, thus requiring
hundreds of thousands of DNA markers to detect
association across the genome.

For this reason, until microarrays became avail-
able, association studies focused on specific candi-
date genes, that is, genes that have some rationale

for being associated with the trait. A few candidate
genes such as dopamine and serotonin genes have
been used in hundreds of behavioral studies, includ-
ing developmental studies, during the past two
decades. One problem with the candidate gene
approach is that we often do not have strong hypoth-
eses as to which genes are candidate genes. Indeed,
the general rule of pleiotropy (each gene has many
effects) suggests that most of the thousands of genes
expressed in the brain could be considered as candi-
dates. Another problem is that candidate gene stud-
ies are limited to the 2% of the DNA in traditional
coding regions, as mentioned earlier.

However, the biggest problem for candidate gene
association studies was that their results were diffi-
cult to replicate (Tabor, Risch, & Myers, 2002). This
was a general problem for all complex traits, not just
for behavior (Ioannidis, Ntzani, Trikalinos, & Conto-
poulos-Ioannidis, 2001). For example, in a review of
600 reported associations with common medical
diseases, only 6 had been consistently replicated
(Hirschhorn, Lohmueller, Byrne, & Hirschhorn,
2002), although a follow-up meta-analysis indicated
greater replication for larger studies (Lohmueller,
Pearce, Pike, Lander, & Hirschhorn, 2003). As dis-
cussed next, the reason for these failures to replicate
was primarily that the largest effect sizes are much
smaller than expected and the studies were under-
powered to detect them. Few candidate gene associ-
ations have been replicated in GWA studies (Siontis,
Patsopoulos, & Ioannidis, 2010).

Since 2005, GWA has revolutionized attempts to
find DNA variation responsible for the heritability
of common disorders and quantitative traits (Hirsch-
horn & Daly, 2005). The genome-wide feature of
GWA refers to the genotyping of hundreds of
thousands of common DNA variants distributed
throughout the genome that ‘‘tag’’ most of the com-
mon sequence variation in the genome. That is, with
a million well-chosen SNPs, adjacent SNPs on a
chromosome correlate greater than 0.95, so that
SNPs in between these pairs of SNPs add little addi-
tional information. GWA is hypothesis free in the
sense that it is not limited to candidate genes, nor is
it limited to DNA in coding regions. This hypothe-
sis-free aspect of GWA is important because new
sources of DNA variation continue to be discovered,
such as CNVs and noncoding RNA mentioned ear-
lier. More than 80% of associations found in GWA
studies fall outside coding regions (Manolio et al.,
2009). GWA was first proposed in 1996 (Risch &
Merikangas, 1996), but because microarrays were
not yet commercially available, the only attempts to
conduct GWA involved painstaking and expensive
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genotyping of each DNA marker individually,
which meant that only a few thousand markers were
genotyped (e.g., Plomin et al., 2001). Two articles
propelled GWA forward. The first was published in
2005, using GWA to identify an association of large
effect for age-related macular degeneration (Klein
et al., 2005). Although the GWA sample was very
small by current standards (96 cases, 50 controls)
and the first commercially available microarrays
included only 100,000 SNPs, an association was
identified with an odds ratio of nearly 5 and a popu-
lation attributable risk of about 50%. The frequency
of the risk allele was 72% in cases and 36% in con-
trols. The association was quickly accepted for three
related reasons: It was a large effect, it was immedi-
ately replicated in other independent studies (Thak-
kinstian et al., 2006), and it was in an unexpected
gene (complement factor H) but one that made sense
in retrospect and that opened up new therapeutic
possibilities. Moreover, this success was quickly
followed by finding another gene associated with
macular degeneration that also had a large effect
(Dewan et al., 2006) and was robustly replicated
(Chen et al., 2009). Most of the genetic risk for age-
related macular degeneration could be predicted by
these two genes. These results electrified the scien-
tific community. The results were especially exciting
because both genes involved inflammatory path-
ways which had not been considered as important
in relation to the disorder. Research along these lines
has led to clinical trials that are now underway to
test the efficacy of anti-inflammatory agents to pre-
vent macular degeneration (Collins, 2010).

This initial GWA success was followed by several
GWA articles reporting much smaller associations,
such as an association between SNPs in the interleu-
kin-23 gene and inflammatory bowel disease, which
showed an odds ratio of about 1.5 between cases
and controls (Duerr et al., 2006), a finding replicated
in several subsequent studies (Cho & Weaver, 2007).
The initial surge of GWA research culminated in
2007 with the groundbreaking Wellcome Trust
Case Control Consortium (WTCCC) article that
reported GWA results for 500,000 SNPs genotyped
for seven common disorders each with 2,000 cases
and 3,000 shared controls in collaboration with 50
research teams (Wellcome Trust Case Control Con-
sortium, 2007). More than 20 associations across the
seven disorders were significant despite correction
for the massive multiple testing involved in GWA
(p = 5 · 10)7). Bipolar disorder, the only behavioral
disorder, and hypertension showed weaker results
than the other disorders, with associations only
reaching ‘‘suggestive’’ significance (p = 5 · 10)5).

The journal Science, declared GWA the ‘‘Break-
through of the Year’’ for 2007. As of May 2011, 896
independent GWA published articles claimed gen-
ome-wide significant associations for 4,459 SNPs
(http://www.genome.gov/gwastudies/).

The Missing Heritability Problem

Although the first GWA success with macular degen-
eration discovered two genes of large effect, subse-
quent GWA studies have found much smaller effects.
Using the WTCCC results as an example, the largest
association for bipolar disorder was based on the
small allele frequency difference of 47% in cases ver-
sus 43% in controls, an odds ratio of just 1.2. One of
the most significant results, the association on chromo-
some 9 with coronary heart disease, yielded an odds
ratio of only 1.4. The only two large effect sizes were
for rheumatoid arthritis and Type 1 diabetes; both
involved the major histocompatibility locus on chro-
mosome 6, which was already known to harbor many
genes associated with these and other disorders.
Despite its large samples, WTCCC was only powered
to detect effect sizes larger than the effect sizes that
were actually detected, which has three implications.
First, some of these associations seem likely to fail to
replicate in independent samples. Second, even larger
sample sizes and more powerful methodologies are
needed to detect such small effects. The third
implication is that associations of large effect size can
be excluded. That is, although WTCCC had little
power to detect small associations, it had great power
to detect larger effect sizes and failed to do so.

The WTCCC results are typical of the hundreds
of subsequent reports on GWA analyses of
common disorders and quantitative traits, includ-
ing behavioral disorders and traits (Hindorff,
Junkins, Hall, Mehta, & Manolio, 2010; http://
www.genome.gov/gwastudies/). The largest odds
ratios from GWA studies of cases and controls are
typically less than 1.2 (McCarthy et al., 2008). For
quantitative traits, one of the largest effect sizes
(1%) is for the association between the FTO gene
and body weight (Frayling et al., 2007), a highly
replicated finding (Walley, Asher, & Froguel, 2009).
The largest effect sizes for height are even smaller
(Lango Allen et al., 2010). For behavioral traits, the
largest effect sizes in the first GWA studies of read-
ing, mathematics and general cognitive ability
assessed as quantitative traits in children are less
than 0.5% of the variance (Butcher, Davis, Craig, &
Plomin, 2008; Docherty, Davis, et al., 2010; Meaburn,
Harlaar, Craig, Schalkwyk, & Plomin, 2008).
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If the largest associations are so small, it is a safe
prediction that the tail of the distribution of effect
sizes will involve effects that are infinitesimally
small, perhaps ‘‘private’’ mutations that are idio-
syncratic to each individual. Hundreds or even
thousands of such associations will be needed to
explain the heritabilities of behavioral traits, which
are typically about 50% (Plomin, DeFries, Mc-
Clearn, & McGuffin, 2008). So far, putting all
known SNP associations for any trait explains only
a small proportion of heritability, typically about
5% (Manolio et al., 2009). An analysis based on
existing GWA findings for several traits suggests
that at most 20% of the known heritability of these
traits can be detected (Park et al., 2010). For the
GWA studies of cognitive development just men-
tioned, composites of the top hits accounted for less
than 5% of the variance of these traits.

The most informative data come from studies of
height, which is 90% heritable, in contrast to typical
heritabilities of 50% for behavioral traits. At least 40
genes were found to be associated with height from
the first wave of GWA studies, but together they
account for only about 5% of the variance of height
in studies of tens of thousands of people (Visscher,
2008). A more recent study of 183,000 individuals
indicates that with 180 variants it is possible to
explain about 10% of the variance (Lango Allen
et al., 2010), although it has been suggested that
much more of the heritability of height could be
accounted for using SNPs on existing microarrays
given sufficiently large samples (Visscher, Yang, &
Goddard, 2010; Yang et al., 2010). Similarly for
weight, a two-stage meta-analysis of 250,000 indi-
viduals identified 32 SNPs that together explain
about 10% of the heritability of body mass index
(Speliotes et al., 2010).

This gap between GWA-identified associations
and heritability has become known as the missing
heritability problem (Maher, 2008). Can the largest
effects really be so small? Gene hunters are still
recovering from the shock of finding that the larg-
est associations account for so little variance in the
population—after all, it was only two decades ago
that the field was limited to detecting monogenic
effects that account for all of the heritability.

Finding the Missing Heritability

The missing heritability problem needs to be reme-
died or at least relieved before the potential of
DNA can be actualized in developmental research.
How much of the heritability needs to be accounted

for before DNA can be useful for developmental
research depends on the research question.
Although it seems unlikely that all of the missing
heritability will be found, for reasons discussed
later in this section, GWA research might eventu-
ally identify more than half of the heritability. This
criterion fits with another criterion for GWA suc-
cess: to exceed the prediction from family data
(Aulchenko et al., 2009). First-degree relatives are
on average 50% similar for additive genetic effects
so that identifying half of the heritability should
exceed the prediction that is possible from first-
degree relatives. However, DNA predictions can be
more valuable than family risk estimates for three
reasons. First, DNA predictions are specific to indi-
viduals within a family in contrast to family risk
estimates, which are the same for all members of a
family. Second, predictions based on DNA are lim-
ited to genetics whereas predictions from family
risk can include nurture as well as nature. Third,
DNA sequence variation does not change during
development whereas family risk estimates—for
example, using parents’ characteristics to predict
children’s risks—can be complicated by develop-
mental change.

For some research questions, predicting even 5%
let alone 50% of the heritability could be useful. As
mentioned earlier, it is possible to aggregate the
small effects of many DNA variants associated with
a trait (Wray, Goddard, & Visscher, 2008). Such
polygenic composites have been called polygenic
susceptibility scores (Pharoah et al., 2002), genomic
profiles (Khoury, Yang, Gwinn, Little, & Flanders,
2004), SNP sets (Harlaar, Butcher, Meaburn, Craig,
& Plomin, 2005), genetic risk scores (Morrison et al.,
2007), and aggregate risk scores (Purcell et al.,
2009). Polygenic composites are beginning to be
used to predict the population-wide genetic risk for
common disorders, such as breast cancer (Pharoah
et al., 2007), atherosclerosis (Morrison et al., 2007),
coronary heart disease (Bare et al., 2007), age-
related macular degeneration (Maller et al., 2006),
recurrent venous thrombosis (Vljeg, Baglin, Bare,
Rosendaal, & Baglin, 2008), and Type 2 diabetes
(Lyssenko et al., 2005), although the practical limi-
tations of these approaches are increasingly recog-
nized (e.g., Paynter et al., 2010). For quantitative
traits, height is an exemplar for research using
polygenic composites (Lango Allen et al., 2010;
Visscher, 2008; Visscher et al., 2010; Yang et al., 2010).

The GWA research on learning and cognitive
abilities in children mentioned earlier provides
empirical examples. A polygenic composite (‘‘SNP
set’’) based on fewer than a dozen SNPs, each of
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which accounted for less than 0.5% of the variance,
yielded a normal distribution of genetic liability.
Even though the polygenic composites only
explained 3%–5% of the total variance, the top and
bottom 10% of these genotypic distributions dif-
fered by 1 SD on the measures of cognitive devel-
opment (Butcher et al., 2008; Davis et al., 2010;
Docherty, Davis, et al., 2010; Meaburn et al., 2008).
These SNP sets have been used to investigate issues
such as early prediction, multivariate issues, and
issues of genotype–environment interplay (Docher-
ty, Kovas, Petrill, & Plomin, 2010; Harlaar et al.,
2005; Haworth, Meaburn, Harlaar, & Plomin, 2007).
In addition, reliable polygenic composites of this
magnitude could be useful for genotypic selection
of groups at low and high genetic risk in areas of
research such as neuroimaging where large sam-
ples are difficult to study.

Dozens of articles have been published about the
missing heritability problem and ways to solve the
problem, although as yet there is no consensus
(e.g., Eichler et al., 2010; Frazer, Murray, Schork, &
Topol, 2009; Ku, Loy, Pawitan, & Chia, 2010;
Manolio et al., 2009; McCarthy et al., 2008). We
begin by discussing heritability itself.

Has Heritability Been Overestimated?

One easy explanation of the missing heritability
problem is that heritability might have been overes-
timated. Heritability is a statistic that estimates
the extent to which observed (phenotypic) individ-
ual differences for a trait can be accounted for by
genetic differences among individuals in a parti-
cular population with its particular mix of genetic
and environmental differences at the time of
assessment. Heritability is a descriptive population
statistic that will change as genetic and envi-
ronmental influences change in the population. It
refers to differences among individuals, not to a
single individual for whom both genotype and
environment are indispensable (Vineis & Pearce,
2010). Heritability does not imply genetic determin-
ism. Interpretations and misinterpretations of heri-
tability have been discussed elsewhere (e.g., Plomin
et al., 2008; Rutter, 2006; Visscher, Hill, & Wray,
2008).

Because the source of heritability is inherited dif-
ferences in DNA sequence, the ultimate test of the
accuracy of heritability estimates is the identifica-
tion of all of the DNA sequence variation responsi-
ble for heritability. Until then, it remains a
possibility that heritability has been overestimated.
One reason to think that heritability estimates are

roughly accurate is that the basic quantitative
genetic designs used to estimate heritability—fam-
ily, adoption and twin designs—generally converge
on similar estimates of heritability. Each of the
designs has potential problems, but they have dif-
ferent problems, which makes this convergence
reassuring. This convergence has been overlooked
in some recent discussions about heritability and
molecular genetics. For example, it has been sug-
gested that monozygotic (MZ) twins could share
newly appearing (de novo) mutations of large effect
such as CNVs that are not shared by dizygotic (DZ)
twins, and this could inflate estimates of heritability
(Clarke & Cooper, 2010). However, this speculation
is difficult to square with the converging results
from family and adoption studies of first-degree
relatives. Moreover, GWA data generally confirm
the basic premise of the twin method that MZ
twins are genetically identical and DZ twins are
50% similar on average (Visscher et al., 2006).

It should be noted that even if heritability has
been overestimated by a factor of two—that is, heri-
tability is 25% instead of 50%—there would still be
a missing heritability problem because known asso-
ciations to date account for less than 5% of the vari-
ance of common disorders and quantitative traits.

Common Variants Could Have Very Small Effects

It is generally accepted that there is a missing
heritability problem. The main strategy so far to
address the problem is to continue to use commer-
cially available microarrays, which only assess com-
mon variants, but to increase sample sizes, often
through meta-analyses of results from several stud-
ies, in order to detect smaller effects. This approach
has led to some successes, for example, for dis-
orders such as schizophrenia (Purcell et al., 2009;
Shi et al., 2009; Stefansson et al., 2009; Stone et al.,
2008), autism (Weiss et al., 2008), Type 2 diabetes
(Zeggini et al., 2008), Crohn’s disease (Barrett et al.,
2008), as well as quantitative traits such as height
(Weedon et al., 2008) and weight (Willer et al.,
2009). However, these studies underline the conclu-
sion that the largest effects of common variants are
very small, with odds ratios generally less than 1.2
for disorders and less than 1% of the variance
explained for continuous traits.

Although known GWA results only explain
about 5% of the heritability of complex traits, it is
at least theoretically possible that common variants
of smaller effect size in the population can account
for heritability (Gibson, 2010). Some empirical sup-
port for this possibility has also been reported:
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A novel analysis of height suggests that common
variants might be able to account for nearly all of
the heritability of height (Yang et al., 2010); similar
results have been reported for common disorders
(Lee, Wray, Goddard, & Visscher, 2011).

In addition to increasing sample sizes in order to
detect associations with common variants of very
small effect size, several other strategies could
increase power to detect such small effects. GWA
studies use a conservative threshold for significance
that corrects for genome-wide multiple testing (usu-
ally p < 5 · 10)8), even though only relatively large
effect sizes can clear such a high hurdle. Rather than
increasing the sample size for a single definitive
study, another way to increase power to detect small
effects is to use a series of replication studies with
less conservative p values in order to winnow the
small kernels of grain from the chaff, side-stepping
some of the daunting issues involved in correcting
for multiple testing in a single GWA study (Davis
et al., 2010; Docherty, Davis, et al., 2010).

Another promising direction is to focus on poly-
morphisms that are known to be functional, that is,
polymorphisms whose alleles are known to make a
difference phenotypically (Cooper et al., 2010).
Functional polymorphisms add considerable power
in GWA research by testing a direct association
between the polymorphism and the trait rather
than relying on indirect association via neighboring
polymorphisms. For example, a microarray is avail-
able that includes 15,000 SNPs in coding genes that
result in a change of an amino acid during transla-
tion (Birney et al., 2007). Another strategy for iden-
tifying functional polymorphisms is to identify
associated differences in gene expression profiles
throughout the genome (Pickrell et al., 2010). In
addition, research is underway to catalog functional
polymorphisms in noncoding regions of the
genome (Alexander, Fang, Rozowsky, Snyder, &
Gerstein, 2010). Eventually, whole-genome sequenc-
ing will make it possible to examine polymor-
phisms of any kind.

A final example of strategies for increasing the
power to detect associations of small effect is to go
beyond a SNP-by-SNP analysis to a gene-by-gene
analysis or multiple-gene systems in functionally
related groups of genes. For example, a study of
cognitive development in children reported an
association with a composite of SNPs composed
from genes in a functional gene group involving G
proteins which are important in cellular signaling
(Ruano et al., 2010).

Despite these efforts, it seems unlikely that
common variants with very small effects will com-

pletely solve the missing heritability problem. Fig-
ure 1 frames the issue by plotting allele frequency
(from small to large) against effect size (from rare to
common). As indicated in the lower right-hand cor-
ner, GWA can detect associations with common
alleles (population frequencies greater than 1%)
unless the effect sizes are miniscule. As indicated in
the upper left-hand corner, linkage analysis can
detect rare alleles with large effects. The upper
right-hand corner (common alleles with large effect)
seldom occurs. The most daunting prospect is the
lower left-hand corner: very rare alleles of small
effect, which will be extremely difficult to detect. In
between these extremes, in the middle of Figure 1,
is a promising area for finding missing heritability:
less common alleles (< 1%) not tagged by current
microarrays yet common enough to show modest
effects in the population. New microarrays are being
designed to capture these variants and whole-gen-
ome sequencing will eventually detect all variants
no matter how rare. It is likely that all five circles in
Figure 1 contribute to the missing heritability.

Rare Variants Could Have Large Effects

We suggest that a good target for missing herita-
bility is the middle of Figure 1—variants that are
not rare but are less common than those tagged by
commercially available microarrays. However, the
missing heritability argument tends to be phrased
in terms of common variants of small effect (lower-
right circle) versus rare variants of large effect
(upper-left circle; Goldstein, 2009; Hirschhorn, 2009;
McClellan & King, 2010; Schork, Murray, Frazer, &

Effect
Size

Allele Frequency

Rare Common

Large

Small

Monogenic 
Detected 
by Linkage

Missing
Heritability?

Polygenic 
Detected 
by GWA

Difficult 
to Detect

Highly Unlikely

Figure 1. The relation between effect size and allele frequency
for detecting associations.
Note. GWA = genome-wide association. Adapted from McCarthy
et al. (2008).
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Topol, 2009). Although 90% of human DNA varia-
tion involves evolutionarily old mutations that have
filtered through the population and are now rela-
tively common (McClellan & King, 2010), it has
been estimated that we each harbor 175 new muta-
tions, many of which will be found in only one per-
son or one family (Nachman & Crowell, 2000).
Many of these new mutations have no functional
significance and thus persist in the population in
the absence of selective pressure. However, muta-
tions with large effects are likely to be deleterious
(because the existing genome has been fine-tuned
by evolution) and result in a decrease in reproduc-
tive fitness, so that mutations with large effects are
likely to be of recent origin and therefore rare.

The rare-variant-of-large-effect position gained
strength as the first harvest of GWA studies using
common variants exposed the missing heritability
problem (Bodmer & Bonilla, 2008; Cirulli & Gold-
stein, 2010; Galvan, Ioannidis, & Dragani, 2010;
Gorlov, Gorlova, Sunyaev, Spitz, & Amos, 2008;
Schork et al., 2009). The idea is that common dis-
eases could be due to rare deleterious variants that
have a strong impact on the risk of disease in indi-
vidual patients but would not be detected by link-
age across different families (Risch & Merikangas,
1996), although studies of single large pedigrees
might be able to detect them (Galvan et al., 2010). It
is possible that the weak associations found for
common variants might reflect indirect associations
between these common variants and rare genetic
variants of large effect (Dickson, Wang, Krantz,
Hakonarson, & Goldstein, 2010), although this has
been disputed (Wray, Purcell, & Visscher, 2011).

Whole-genome sequencing of large samples as in
the 1000 Genomes Project mentioned earlier is
expected to identify millions of new rare SNPs and
CNVs, most of which are likely be new mutations
specific to an individual (Kuehn, 2008). This will raise
new design and analytic issues because each of us
may have hundreds of thousands of rare variants
(McClellan & King, 2010). For rare variants of large
effect, one possibility is to go back full circle to link-
age studies of a single large pedigree with the muta-
tion (Bourgain, Genin, Cox, & Clerget-Darpoux,
2007). For new mutations of small effect (lower left
circle in Figure 1), it may be possible to use a poly-
genic composite that sums the number of such muta-
tions across the genome as an overall index of genetic
risk, because most such mutations are likely to be
deleterious (Li & Leal, 2008; Morris & Zeggini, 2010).

The rare-variant position was enhanced by the
discovery of CNVs, described earlier, which have
been shown to contribute to several disorders

(Mefford & Eichler, 2009; Stankiewicz & Lupski,
2010; Wain, Armour, & Tobin, 2009), especially
schizophrenia (Sebat, Levy, & McCarthy, 2009; Ste-
fansson et al., 2008; Williams, Owen, & O’Donovan,
2009), autism (Bucan et al., 2009; Glessner et al.,
2009), and most recently hyperactivity (Williams
et al., 2010). The initial excitement about CNVs as a
solution to the missing heritability problem has
dulled somewhat for two reasons. First, CNVs are
difficult to detect reliably using available micro-
arrays; moreover, most common CNVs are tagged
reasonably well by SNPs on existing microarrays,
which implies that common CNVs are unlikely to
fill in much of the missing heritability (Craddock
et al., 2010). However, most CNVs are not common
(Itsara et al., 2009), which leaves CNVs as a con-
tender for rare-variant explanations of missing heri-
tability. Similar to any DNA variant, CNVs with
large effects are likely to be rare because they ought
to be subjected to negative selection.

The second reason is that CNVs associated with
autism and schizophrenia appear to be de novo,
that is, newly formed mutations that are not inher-
ited from either parent (Awadalla et al., 2010;
Stefansson et al., 2008; Stone et al., 2008; Weiss
et al., 2008). If mutations are not inherited they are
not a source of missing heritability.

Other Sources of Missing Heritability: Epistasis,
Gene–Environment Interaction, Epigenetics

Although most discussion of the missing herita-
bility problem has focused on the dimension of rare
versus common variants, many other possible
sources of missing heritability have been mooted.
We will briefly discuss three other possible sources
of missing heritability. Most often mentioned is the
possibility of interactions—interactions between
genes (called epistasis) or interactions between genes
and environment. These are daunting possibilities
because if it is so difficult to detect ‘‘main effect’’
associations between DNA variants and behavioral
traits, it will be much more difficult to detect inter-
actions in which the association with a gene
depends on other genes or on specific environments.

For both gene–gene and gene–environment inter-
action, it is important to distinguish different con-
notations of the word interaction (Kendler &
Gardner, 2010). At the level of processes and mech-
anisms, interaction is crucial. However, in quantita-
tive genetics, the word interaction is used much
more narrowly to refer to a statistical interaction in
the sense of analysis of variance; this is the context
in which heritability is estimated. In this narrow
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quantitative genetic context, heritability refers to
the ‘‘main effect’’ of genetic differences on individ-
ual differences in behavior. Translated to molecular
genetics, heritability denotes the extent to which
DNA variants are associated with individual differ-
ences in traits. The issue of interaction involves the
extent to which these associations depend on—are
moderated by—other DNA variants or by environ-
mental conditions.

It has been suggested that gene–gene interaction
is widespread and could contribute importantly to
missing heritability because GWA studies generally
identify only additive effects of each gene (Cordell,
2009; Moore & Williams, 2009; Phillips, 2008). How-
ever, there are reasons to doubt the importance of
epistatsis (Cirulli & Goldstein, 2010). Although ani-
mal model research has found some examples of
epistasis (Valdar et al., 2006), these examples usu-
ally involve major-gene pathological mutations. In
contrast, most complex traits including behavioral
traits show additive genetic effects (Flint, DeFries,
& Henderson, 2004). Evolutionary reasons why
genetic effects are likely to be additive have also
been mooted (Hill, Goddard, & Visscher, 2008).

Although molecular genetic data will be needed
to determine definitively the importance of epista-
sis, quantitative genetic research provides some
support for the view that most genetic effects are
additive. Quantitative genetic estimates of heritabil-
ity discriminate between narrow heritability, which
is limited to additive genetic variance, and broad
heritability, which also includes nonadditive (epi-
static) genetic variance (Plomin et al., 2008). For
example, parents and offspring only share additive
genetic effects so that estimates of heritability based
on parent–offspring designs estimate narrow herita-
bility. In contrast, the twin design, which compares
MZ and DZ twin similarity, estimates broad herita-
bility (see Plomin et al., 2008, for details). Compar-
ing estimates of narrow and broad heritability does
not suggest much evidence for epistatic effects.
Nonetheless, it seems likely that gene–gene inter-
action will identify some of the missing heritability.

Similarly, although gene–environment interaction
is the crucial interface for understanding mecha-
nisms by which genes have their effect on develop-
ment (Rutter, 2007), the limited question here is the
extent to which gene–environment interaction
accounts for heritability in the quantitative genetic
sense of associations between DNA variants that
are moderated by environmental factors. Similar
to gene–gene interaction, the potential effect of
gene–environment interaction on estimates of herita-
bility depends on the particular quantitative genetic

design (Plomin et al., 2008). Much has been written
about gene–environment interaction; the human and
nonhuman quantitative genetic literature suggests
that gene–environment interaction is also a viable
candidate to explain some of the missing heritability.

In addition to epistasis and gene–environment
interaction, gene expression in general and epigenet-
ics in particular have been mentioned in relation to
missing heritability. The double-helix structure of
DNA evolved as a mechanism for heritable trans-
mission from generation to generation. Single-
stranded RNA evolved to transcribe the DNA code
in response to the environment; this is the process of
gene expression. Gene expression changes from sec-
ond to second—as you read this, the transcription of
DNA to RNA is changing for many genes in your
brain. Epigenetic mechanisms, principally altera-
tions in methylation of DNA and changes in its chro-
matin structure, silence gene expression and result
in slow-motion, developmentally stable changes in
gene expression without altering DNA sequence
(Jaenisch & Bird, 2003). Just as microarrays have
made it possible to conduct DNA analysis across the
entire genome, microarrays have also made it possi-
ble to study profiles of gene expression (as assessed
by RNA transcripts) transcribed from all coding
genes in the genome (called the transcriptome) and
profiles of DNA methylation of all coding genes in
the genome (called the methylome or epigenome).
Because gene expression and methylation were
designed by evolution to be sensitive to the environ-
ment, the transcriptome and epigenome could be
useful as biomarkers of environmental change (Jirtle
& Skinner, 2007; Mill & Petronis, 2008; Mill et al.,
2008; Petronis, 2010), including prenatal experiences
(Zhang & Meaney, 2010) and mother–infant interac-
tion (Champagne & Curley, 2009; Meaney, 2010).

How does this relate to the issue of missing herita-
bility? The short answer is ‘‘not much’’ (Slatkin,
2009). Although epigenetics is often defined as heri-
table changes in gene expression, the use of the word
heritable is confusing because in the case of epigenet-
ics it only refers to stable changes in gene expression
as cells divide during mitosis, which is very different
from the normal use of the word heritable, which
denotes inheritance of DNA variation from genera-
tion to generation. Individual differences in DNA
methylation are best considered as a phenotypic trait,
which could be due to genetic as well as environmen-
tal differences. Indeed, individual differences in
DNA methylation across the genome appear to be
largely environmental in origin, as indicated by clas-
sical twin studies that compare MZ and DZ twins
(Kaminsky et al., 2009; Wong et al., 2010).
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Nonetheless, unlike other mechanisms of gene
expression, some epigenetic effects can be transmit-
ted across generations through a process known as
genomic imprinting, which could affect heritability
estimates (Daxinger & Whitelaw, 2010; Nelson &
Nadeau, 2010). Genomic imprinting is a process by
which certain genes are expressed in a parent-
of-origin-specific manner, that is, in which alleles
are only expressed when inherited from the mother
or from the father (Tollkuhn, Xu, & Shah, 2010).
Although only a few dozen genes have been shown
to be classically imprinted in humans, it is possible
that subtle imprinting effects could be more wide-
spread (Schalkwyk et al., 2010); for nonhuman
mammals, recent research has extended the list of
imprinted genes from about 100 to more than 1,000
(Gregg, Zhang, Butler, Haig, & Dulac, 2010; Gregg,
Zhang, Weissbourd, et al., 2010). Moreover, some
SNP associations have been shown to be moderated
by parent-of-origin effects resulting in stronger
associations with one parent or the other (Kong
et al., 2009). This dilution of SNP associations when
parent-of-origin effects are ignored in GWA studies
could contribute to missing heritability (Schalkwyk
et al., 2010). In addition, if parent-of-origin effects
are widespread, they might inflate heritability esti-
mates if MZ twins, who derive from the same fertil-
ized egg, share such imprinting effects to a greater
extent than DZ twins. However, caution has been
advised in this fast-growing field of behavioral epi-
genetics (Buchen, 2010), especially in relation to
human behavior (Miller, 2010).

Implications for Developmentalists

The goal of the 1998 article was to begin a discussion
about ‘‘what to do with genes once they are found.’’
I continue to believe that once genes are found they
will transform the ability of developmental research
to address questions about developmental continu-
ities, about psychopathological patterns, and about
environmental risk mechanisms. The present article
described two technological advances since 1998
that will facilitate the use of DNA in developmental
research. The first is the microarray, which makes it
possible to go beyond a few candidate genes to
study thousands of DNA variants relevant to the
development of behavioral domains as they interact
and correlate with the environment. The second is a
longer term prospect: If the predictions described
earlier come true that whole-genome sequencing
will be routinely obtained for newborns for pur-
poses of genomic screening and personalized medi-

cine, then all DNA variation throughout the genome
could be available potentially for use in research
without conducting any genotyping and even with-
out collecting DNA.

The present article attempted to update the 1998
article, especially to consider a crucial problem that
has emerged since 1998: the slow progress in identi-
fying the genes responsible for the heritability of
quantitative traits and common disorders. The
main implication of GWA studies is that the miss-
ing heritability is likely to be due to many DNA
variants of small effect; although rare variants of
large effect exist, they are unlikely to be a major
source of heritability in the population (Wray et al.,
2011). Two practical implications follow from the
conclusion that heritability is due to many DNA
variants of small effect. First, it will be difficult to
identify DNA associations of very small effect size
and it will be even more difficult to replicate such
associations. Second, as these DNA variants are
found, their application to developmental research
will require highly polygenic approaches involving
hundreds or thousands of genes. Fortunately, cus-
tom microarrays that genotype thousands of DNA
variants are less expensive than genotyping a few
DNA variants individually. Moreover, if whole-
genome sequencing becomes widely available it
will entirely sidestep the issue of cost, as indicated
earlier.

A third implication of the conclusion that herita-
bility is due to many genes of small effect is more
conceptual and far reaching, especially for develop-
mental psychopathology. To the extent that herita-
bility is due to alleles of small effect, regardless of
how common or rare the alleles are, it supports the
basic quantitative genetic model as developed by
Fisher in 1918. Fisher reconciled the two worlds of
genetics—the monogenic world of Mendel’s newly
rediscovered work on single-gene effects that led to
qualitative disorders and the polygenic world of
Galton that led to quantitative traits. The essence of
Fisher’s insight was that genes could work hereditar-
ily as Mendel’s experiments indicated, but if a trait is
influenced by several genes it would be normally
distributed as a quantitative trait. The converse of
this insight is important in the present context: If a
disorder is influenced by many genes—and this is
the conclusion that emerges from GWA research—its
genetic liability is likely to be normally distributed.
Thus, in terms of genetic liability, common dis-
orders are quantitative traits (Plomin, Haworth, &
Davis, 2009). In other words, genes that are found
to be associated with disorders in case-control stud-
ies are predicted to be correlated with the entire
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range of variation throughout the normal distribu-
tion. Stated more provocatively, this means that
from a genetic perspective there are no common
disorders, just the extremes of quantitative traits.

An important caveat is that common disorders
are genetically heterogeneous and often include ver-
sions of the disorder caused by a rare variant of
major effect. For example, 282 monogenic disorders
include lowered IQ among their symptoms, such as
the well-known disorders phenylketonuria and frag-
ile X syndrome, as well as many disorders less
known in this context such as neurofibromatosis and
Duchenne muscular dystrophy (Inlow & Restifo,
2004). However, because these disorders are so rare
in the population, these genes contribute little to the
heritability of IQ in the population despite their dra-
matic impact on affected individuals. That is, most
of the heritability is due to genes of small effect.

Three important implications follow from this
conclusion that common disorders are quantitative
traits. First, at all levels of analysis from biology to
brain to behavior, it should stimulate research on
quantitative dimensions rather than qualitative
disorders. Although the extremes of these quantitative
dimensions are important medically and socially,
there seems to be no scientific advantage in reifying
diagnostic constructs that have evolved historically
on the basis of symptoms rather than etiology. Focus-
ing on quantitative dimensions could lead to a new
approach to psychopathology based on etiology
rather than symptoms (Plomin et al., 2009).

Second, research on quantitative dimensions leads
away from the notion of curing diagnosed ‘‘cases’’
toward a public health model that focuses on pre-
venting problems and promoting health rather than
curing illness once it occurs (Brownson, Fielding, &
Maylahn, 2009). The third implication is related but
warrants separate consideration. Because polyge-
netic liabilities are normally distributed as a bell-
shaped curve, they draw attention to the neglected
positive side of the liability in addition to the nega-
tive side that has been the focus of most genetic
research to date. The positive side of polygenic liabil-
ity is not just low risk: It stimulates questions such as
how children flourish rather than fail and about
resilience rather than vulnerability. These are themes
that characterize the field of positive psychology
(Seligman & Csikszentmihalyi, 2000). For this rea-
son, this new direction for genetic research has been
called positive genetics (Plomin et al., 2009).

As the dust begins to settle from the explosions
from the new advances in molecular genetics such
as microarrays, genome-wide sequencing, and
GWAs studies, this article ends with an appeal for

open-mindedness and tolerance. Because molecular
genetics is such a fast-moving area of research, there
is a flavor-of-the-month faddism with favor passing
from linkage to candidate gene to GWA approaches,
from common variants to rare variants, and from
microarrays to whole-genome sequencing. Is GWA
the panacea for finding genes? No. Is it useful? Defi-
nitely. In the search for the effects of rare variants, a
more balanced research portfolio seems warranted
that includes linkage and candidate-gene (func-
tional) approaches. The answer to the current debate
about common versus rare variants is that both are
likely to be important. Finally, the field is currently
waiting for the next big thing, whole-genome
sequencing. Will it be a panacea? No. Will it be use-
ful? Definitely.
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