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Di-(2-ethylhexyl) phthalate (DEHP), a common plasticizer, is a ubiquitous environmental
pollutant that can disrupt endocrine function. Epidemiological studies suggest that chronic
exposure to DEHP in the environment is associated with the prevalence of childhood
allergic diseases; however, the underlying causal relationship and immunological
mechanism remain unclear. This study explored the immunomodulatory effect of DEHP
on allergic lung inflammation, while particularly focusing on the impact of DEHP and its
metabolite on dendritic cell differentiation and activity of peroxisome proliferator-activated
receptor gamma (PPARg). The results showed that exposure to DEHP at a human
tolerable daily intake dose exacerbated allergic lung inflammation in mice. Ex vivo flow
cytometric analysis revealed that DEHP-exposed mice displayed a significantly decreased
number of CD8a+ dendritic cells (DCs) in spleens and DC progenitors in the bone marrow,
as well as, less interleukin-12 production in splenic DCs and increased T helper 2
polarization. Pharmacological experiments showed that mono-(2-ethylhexyl) phthalate
(MEHP), the main metabolite of DEHP, significantly hampered the differentiation of CD8a+

DCs from Fms-like tyrosine kinase 3 ligand-differentiated bone marrow culture, by
modulating PPARg activity. These results suggested that chronic exposure to DEHP at
environmentally relevant levels, promotes allergic lung inflammation, at least in part, by
altering DC differentiation through the MEHP-PPARg axis. This study has crucial
implications for the interaction(s) between environmental pollutants and innate
immunity, with respect to the development of allergic asthma.
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INTRODUCTION

The prevalence of allergic diseases has dramatically increased
worldwide, especially in industrialized countries, for unknown
reasons (1). Allergic diseases constitute a substantial public
health concern and an economic burden. One explanation for
the high prevalence of allergic diseases in industrialized countries
is the observed dysregulation of immune development upon
long-term exposure to compounds that are classified as
environmental endocrine disruptors (2, 3). Epidemiological
studies have shown associations between exposure to
phthalates, particularly di-(2-ethylhexyl) phthalate (DEHP),
and the risk of developing allergies and asthma in children (4,
5). However, the mechanisms of action remain unclear, and no
causal relationship has been established.

DEHP, a widespread environmental contaminant and
endocrine disruptor, is used principally as a plasticizer for a
wide range of purposes, in both developed and developing
countries (6). The major route of DEHP exposure is from
food, owing to the wide use of this compound in the
manufacture of food packaging and containers (7). Notably,
DEHP has been declared illegal for use as a food additive in
Taiwan (8). In humans, exposure to DEHP results in detectable
concentrations of several of its metabolites in the urine, including
the hydrolytic metabolite mono-(2-ethylhexyl) phthalate
(MEHP) and the two oxidized metabolites mono-(2-ethyl-5-
hydroxyhexyl) phthalate and mono-(2-ethyl-5-oxohexyl)
phthalate (9, 10). At present, the level of DEHP exposure in
the general population appears to be lower than the tolerable
daily intake (TDI; 50 mg/kg body weight [BW] per day), based on
calculations made for the aforementioned urinary metabolites
(11, 12). However, long-term exposure to DEHP still poses a
health concern, because it has anti-androgenic activity through
an unidentified receptor and has been associated with
reproductive abnormalities, neurological defects, and the
development of certain tumor types (13, 14). In addition,
DEHP altered the function of human plasmacytoid dendritic
cells (pDCs) in vitro (15). Iatrogenic DEHP exposure affected gut
microbiota pattern and vaccine response in newborns (16).
These studies suggest that DEHP may have an adverse impact
on immune responses or development in humans.

Dendritic cells (DCs) are the key innate cell type that link
innate and adaptive immunity, and DC dysregulation promotes
the development of allergic diseases, as DCs instruct the
differentiation of allergen-specific T helper 2 (Th2) cells, and
in turn, lead to lung inflammation and remodeling (17, 18).
CD8a+ cDC is the major interleukin (IL)-12-producing cDC
subset, and blocking the differentiation of this subset skews
immunity to the Th2 response (19, 20). Our recent study
Abbreviations: BW, body weight; BMDC, bone marrow-derived dendritic cell;
BALF, bronchoalveolar lavage fluid; DEHP, di-(2-ethylhexyl) phthalate; MEHP,
mono-(2-ethylhexyl) phthalate; FABP4, fatty acid-binding protein 4; Flt3L, Fms-
like tyrosine kinase 3 ligand; FL-DC, Flt3L-differentiated dendritic cell; GM-CSF,
granulocyte macrophage colony-stimulating factor; GM-DC, GM-CSF-
differentiated dendritic cell; OVA, ovalbumin; PPARg, peroxisome proliferator-
activated receptor gamma; pDCs, plasmacytoid dendritic cells; TDI, tolerable
daily intake.
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demonstrated that transmaternal DEHP exposure aggravates
allergic lung inflammation in murine offspring, by prominently
increasing apoptosis in CD8a+ cDCs (21). It has been
demonstrated that MEHP, the primary metabolite of DEHP,
can activate the activity of peroxisome proliferator-activated
receptor gamma (PPARg) in cell transactivation assays (22),
and that PPARg mediates the cross-talk with other nuclear
receptors (23–25), thus affecting DC function (26, 27) and
differentiation (28), as well as, T-cell lipid metabolism (29, 30).
Furthermore, PPARg upregulation enhances the migration and
Th2-priming capacity of lung DCs, suggesting a pro-
inflammatory role for PPARg in Th2-mediated allergic lung
inflammation (31). However, a previous study suggested an
anti-inflammatory role for PPARg, in that PPARg-activated
DCs contribute to the development of CD4+ T-cell anergy
(32). Furthermore, PPARg activation in macrophages has anti-
inflammatory effects (33). In addition, systemic treatment with a
pharmacological PPARg agonist dampens inflammation, at least
in part by inhibiting DC function in various inflammatory
diseases, including asthma (34). Although it has been shown
that environmental levels of DEHP (30 µg/kg BW/day)
exacerbate ovalbumin (OVA)-induced murine asthma (35), it
remains largely unclear whether chronic exposure to low-dose
DEHP can enhance allergic lung inflammation mainly through
DCs. In addition, it also needs to be determined whether DEHP/
MEHP-conditioned DCs play a pro-inflammatory role or
inhibitory role, in a PPARg-dependent manner.

To address these important issues, we explored the potential
pathogenic role of DEHP in the development of allergic asthma
and its underlying mechanism. We established an OVA-induced
allergic lung inflammation model in mice, under conditions
mimicking human exposure levels and routes for DEHP. The
results demonstrated that chronic exposure to DEHP at
environmentally relevant levels exacerbates allergic lung
inflammation, by altering cDC differentiation in a PPARg-
dependent manner.
MATERIAL AND METHODS

Mice and Phthalate Exposure
Female BALB/c mice (6–8 weeks of age) were obtained from the
National Laboratory Animal Center, Taiwan. All mice were
maintained at the Animal Center of Kaohsiung Medical
University, which is internationally accredited by the
Association for Assessment and Accreditation of Laboratory
Animal Care. The protocol used in all animal experiments was
approved by the Institutional Animal Care and Use Committee
of Kaohsiung Medical University (permit numbers: 104115,
109075) and was carried out in accordance with the guidelines
and regulations of the institution.

To mimic the exposure that humans typically encounter in
daily life, female mice were administered a daily oral gavage of
DEHP or MEHP (AccuStandard, New Haven, CT, USA) at the
human TDI dose determined by the EU Scientific Committee for
Toxicity, Ecotoxicity, and the Environment (36), which is 37 mg
DEHP/kg BW, for a study period of 34 days. After the initial
May 2022 | Volume 13 | Article 581854
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administration of phthalate for 20 consecutive days, the mice
were immunized with OVA, to induce mild allergic lung
inflammation (Figure 1A). Control mice were orally
administered 0.33% ethanol in corn oil, as a vehicle control.
For bone marrow cell ex vivo analysis, the mice received a daily
oral gavage of DEHP, at a dosage of 37 mg DEHP/kg BW, or
vehicle for 10 d.

Model of Allergic Lung Inflammation
The mice were sensitized to OVA via peritoneal injection of 0.2
ml sterile saline containing 20 mg OVA (Sigma-Aldrich, St. Louis,
MO, USA) and 50 ml aluminum hydroxide hydrate adjuvant
(Thermo Fisher Scientific, Waltham, MA, USA). Ten days after
sensitization, the mice were challenged with 3% OVA aerosol for
20 min, for three consecutive days. On the day after the last
Frontiers in Immunology | www.frontiersin.org 3
challenge, cell subsets and cytokine levels in the bronchoalveolar
lavage fluid (BALF) were analyzed using multi-parametric flow
cytometry and enzyme-linked immunosorbent assay (ELISA),
respectively. Blood samples were collected before sacrifice, and
the sera were analyzed for the presence of anti-OVA
IgE (Figure 1A).

Flow Cytometry
For analysis of immune cells in BALF, the cells were stained with
FITC-conjugated anti-MHC class II (M5/114.15.2; eBioscience,
Northern Ireland, UK), PE-conjugated CCR3 (83101; R&D
Systems, Minneapolis, MN, USA), Alexa Fluor™ 700–
conjugated anti-CD3 (17A2; BD Biosciences, San Diego, CA,
USA), and anti-B220 (RA3-6B2; eBioscience) monoclonal
antibodies. Splenocytes were stained with FITC-conjugated
A B

D

E

C

FIGURE 1 | Effect of DEHP exposure on allergic lung inflammation in a BALB/c mouse model of mild asthma. (A) Schematic depiction of the model of OVA-induced
asthma, upon exposure to DEHP or MEHP. BALB/c mice were given oral DEHP or MEHP daily, at a dosage of 37 mg/kg BW, and all mice were immunized and challenged
with OVA. (B) Serum levels of OVA-specific IgE (10-fold dilution) were determined using ELISA. Cell subsets (C) and cytokine levels (D) in BALF were analyzed using flow
cytometry and ELISA, respectively. (E) Representative lung sections stained with hematoxylin and eosin. Scale bar: 50 mm. Results have been represented as mean ± SEM.
*P < 0.05, **P < 0.01, and ***P < 0.001 vs. vehicle (as assessed using Mann–Whitney U test). In (B) n = 5 mice per group; in (C, D) n = 14 or 15 mice per group in four
independent experiments; in (E) data are representative of two independent experiments.
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anti-CD8a (53-6.7; eBioscience), PE-conjugated anti-PDCA-1
(129C1; BioLegend, San Diego, CA, USA), PerCP-cy5.5-
conjugated anti-CD4 (RM45; BioLegend), APC-conjugated
anti-CD11c (N418; BioLegend), Alexa Fluor™ 700-conjugated
anti-MHC class II (M5/114.15.2), and LIVE/DEAD™ Fixable
Red (Invitrogen, Carlsbad, CA, USA).

For bone marrow DC progenitor analysis, bone marrow cells
were stained with eF450-conjugated anti-CD45 (30-F11;
eBioscience), PE-conjugated anti-CD4 (RM4-5), PE-conjugated
anti-CD8a (53-6.7), PE-conjugated anti-CD49 (DX5;
eBioscience), PerCP-cy5.5-conjugated anti-CD19 (1D3/CD19;
BioLegend), APC-conjugated anti-CD11c (N418), Alexa
Fluor™ 700-conjugated anti-MHC class II (M5/114.15.2), and
LIVE/DEAD™ Fixable Red. After washing, the cells were
intracellularly stained with PPARg rabbit mAb (C26H12; Cell
Signaling Technology, Danvers, MA, USA), followed by FITC-
conjugated goat anti-rabbit IgG (H+L) secondary antibody
(F2765; Invitrogen), in the presence of the Transcription
Factor Buffer Set (BD Biosciences). Flow cytometry (LSRII; BD
Biosciences) was used to carry out the phenotype analysis of
immune cells in the bone marrow or spleen, as well as, to analyze
the cellular composition of BALF.

The absolute number was determined by multiplying the
percentage of a given subset in viable cells by the total cell count
of the samples.

ELISA for OVA-Specific IgE
The levels of OVA-specific IgE in sera were determined using
ELISA. Briefly, 10-fold diluted serum (100 ml for each sample)
was added to the wells of an OVA-coated ELISA plate
(NuncMaxiSorp™ flat-bottom, Thermo Fisher Scientific),
followed by addition of biotinylated rat anti-mouse IgE (R35-
72, 2 mg/ml, BD Biosciences), horseradish peroxidase-conjugated
avidin (40-fold dilution, BD Biosciences), and NeA-Blue
(tetramethylbenzidine substrate; Clinical Science Products,
Mansfield, MA, USA). The reaction was stopped by the
addition of 3 N H3PO4, followed by measurement of the
absorbance using a VersaMax™ ELISA reader (Molecular
Devices, Temecula, CA, USA) at the wavelength of 450 nm,
corrected to the absorbance at the wavelength of 540 nm.

Histology
Whole lungs were fixed in 10% neutral-buffered formalin for 24
h, dehydrated, and embedded in paraffin. Tissue sections (3 mm
thickness) were stained with hematoxylin and eosin, according to
the manufacturer’s protocol (Novolink™ Polymer Detection
Systems, Leica, Newcastle, UK). Images of the stained tissues
were captured using a TissueFAXS Imaging System
(TissueGnostics, Vienna, Austria).

CD4+ T-Cell Differentiation
For splenic cDC purification, splenocytes were labeled with
CD11c-microbeads (Miltenyi Biotec, Sunnyvale, CA, USA) for
positive selection, according to the manufacturer’s instructions
(autoMACS® Separator, Miltenyi Biotec, Bergisch Gladbach,
Germany). Naïve CD4+ T cells were purified using a
CD4+CD62L+ T Cell Isolation Kit (Miltenyi Biotec), according
Frontiers in Immunology | www.frontiersin.org 4
to the manufacturer’s instructions. Purified naïve CD4+ T cells
were co-cultured with splenic cDCs for 5 d, in RPMI-1640
containing 10% FBS supplemented with anti-mouse CD3 (1
mg/ml) and recombinant mouse IL-2 (10 ng/ml, R&D
Systems). On day 5, the cells were re-stimulated with a cell
activation cocktail (BioLegend) and monesin (2 mM, BioLegend),
for a further 4 h. The cells were then stained with PE-conjugated
IL-4 (11B11, BD Biosciences) and APC-conjugated interferon
gamma (IFN-g; XMG1.2, BD Biosciences) using a Fixation/
Permeabilization Kit (BD Biosciences), according to the
manufacturer’s instructions.

Fms-Like Tyrosine Kinase 3 Ligand
(Flt3L)-Differentiated Dendritic Cell
(FL-DC) Treatment
FL-DCs were prepared as previously described (37), with some
modifications. In brief, bone marrow cells were cultured at a
concentration of 3×105 cells/ml in RPMI-1640 medium
containing 10% FBS supplemented with 200 ng/ml recombinant
murine Flt3L (rmFlt3L, PeproTech, Rocky Hill, NJ, USA) and 2-
mercaptoethanol (50 mM, Sigma-Aldrich), for 8 d. Cells were
treated with MEHP, GW9662 (PPARg antagonist; Tocris, Bristol,
UK), or GW1929 (PPARg agonist; Sigma-Aldrich) at various
concentrations or with 0.1% ethanol (vehicle control) at the
beginning of day 1 of culture. The medium containing rmFlt3L
and/or chemicals or 0.1% ethanol was refreshed on days 4 and 6.
On day 8, the cells were stained with the following antibodies, for
phenotype analysis using flow cytometry: PE-conjugated anti-
CD86 (GL-1; eBioscience), PerCP-cy5.5-conjugated anti-CD24
(M1/69; BioLegend), BV421-conjugated anti-CD45RA (14.8; BD
Biosciences), APC-conjugated anti-CD11c (N418), APCcy7-
conjugated anti-CD11b (M1/70; BioLegend), Alexa Fluor™ 700-
conjugated anti-MHC II (M5/114.15.2), and LIVE/DEAD™

Fixable Red. For functional analysis, day-8 FL-DCs were washed
and then stimulated with CpG1826 (10 mg/ml, InvivoGen,
Carlsbad, CA, USA) for 24 h. The supernatants of FL-DCs were
assessed for levels of cytokines using ELISA (R&D Systems).

Western Blot
Day-3 Flt3L-cultured bone marrow cells were treated withMEHP,
GW1929, and/or GW9662 for 6, 18, or 24 h. Cells treated with
0.1% ethanol were used as the vehicle control. Western blot
analysis was performed as described previously (38). Briefly,
harvested cells were lysed using radioimmunoprecipitation assay
buffer supplemented with protease inhibitors (Sigma-Aldrich).
The BCA Protein Assay Kit was used to determine the
concentration of the cell lysate samples, according to the
manufacturer’s instructions (Thermo Scientific). Equal amounts
of proteins were resolved using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and detected by
means of immunoblotting with antibodies against fatty acid-
binding protein 4 (FABP4; TA328110, OriGene, Rockville, MD,
USA), PPARg (H-100, Santa Cruz Biotechnology, Dallas, TX,
USA), and b-actin (A2228, Sigma-Aldrich). The signals were
visualized using an ECL chemiluminescence substrate (Thermo
Scientific), and the band intensities were quantified using the
ChemiDoc XRS+ System (Bio-Rad, Hercules, CA, USA).
May 2022 | Volume 13 | Article 581854
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Statistical Analysis
The non-parametric Mann–Whitney U test was used to compare
continuous variables between two groups. One-way ANOVA
followed by Dunnett’s multiple comparison test was used to
compare differences among three or more groups. All statistical
tests were performed using Prism 9.0 (GraphPad, San Diego, CA,
USA). Statistical significance was set at P<0.05.
RESULTS

Chronic, Low-Level Exposure to DEHP
Enhances OVA-Induced Allergic Lung
Inflammation in Mice
To simulate the exposure of humans to environmental DEHP,
BALB/c mice were administered daily oral doses of DEHP or its
major metabolite MEHP (37 mg/kg BW per day) during the entire
study period. After the initial 20-day exposure, the mice were
sensitized and challenged with OVA, to induce allergic lung
inflammation (Figure 1A). The selected dose of DEHP was
based on the previous human TDI determined by the EU
Scientific Committee for Toxicity, Ecotoxicity, and the
Environment (36), which is essentially midway between the
estimated total daily oral intake of Denmark children aged 1–6
years (26 mg/kg BW per day) and the current human TDI (50 mg/
kg BW per day), as recommended by the European Food Safety
Authority (39). Thus, the dose of 37 mg DEHP/kg BW per day
used here can be considered an environmentally relevant exposure
level for humans.

As shown in Figures 1B, C, exposure to DEHP significantly
enhanced the titer of OVA-specific IgE and eosinophil numbers
in the BALF. In addition, the IFN-g level in the BALF of DEHP-
treated mice was significantly lower than that in the control mice
(Figure 1D). Furthermore, upon exposure at the same oral dose,
the principal DEHP metabolite MEHP had a more profound
effect on allergic lung inflammation than DEHP, including
increased infiltration of eosinophils, neutrophils, and
lymphocytes, as well as, higher levels of IL-4 and IL-13
(Figures 1C, D). Histopathology revealed that exposure to
Frontiers in Immunology | www.frontiersin.org 5
DEHP and MEHP substantially increased the infiltration of
inflammatory cells into the lungs, as compared to exposure to
vehicle controls (Figure 1E). These data suggested that DEHP,
which quickly degrades into MEHP (9, 10), may promote allergic
lung inflammation in vivo.

DEHP Exposure Enhances the Th2-
Stimulating Activity of Splenic cDCs
Ex Vivo
As cDCs govern Th2-mediated lung inflammation (40), we next
examined whether chronic exposure to low-dose DEHP skews
cDCs to a Th2-stimulating or Th1-suppressing function. Naïve
CD4+ T cells were co-cultured with purified splenic cDCs from
10-day DEHP-exposed mice or those from the vehicle, in the
presence of anti-CD3 stimulation. As shown in Figures 2A, B,
cDCs from DEHP-exposed mice significantly increased the
percentage of IL-4+, but not IFN-g+ CD4+ T cells. In addition,
the purified cDCs from DEHP-exposed mice secreted
significantly lower IL-12 levels in response to CpG stimulation,
as compared to those from the vehicle group (Figure 2C). This
suggested the potential impact of DEHP exposure on allergic
inflammation, at least in part by modulating cDC differentiation
or function.

DEHP Exposure Alters the Differentiation
of Splenic DC Subsets In Vivo
Next, we asked whether altered cDC subsets contributed to the
imbalance of Th1 versus Th2 activity in the DEHP group. Flow
cytometric analysis of splenic DC subsets revealed that DEHP
exposure significantly decreased the percentage and number of
cDCs (CD11chighPDCA-1-), but not pDCs (CD11clowPDCA-1+)
in the spleen (Figures 3A, B). As CD8a+ cDCs preferentially
secrete high levels of IL-12 to induce Th1 differentiation, whereas
CD8a- cDCs promote Th2 or Th17 differentiation (41), we
analyzed the cDC subsets in the spleen. We observed a
significant loss in the percentage and absolute number of
CD8a+ cDCs, but not CD8a- cDCs (a prominent splenic DC
subset; Figure 3C) in the DEHP group. However, the expression
levels of CD86 and MHC class II in both DC subsets were not
A B C

FIGURE 2 | Analysis of cDC function in spleens. BALB/c mice were given oral DEHP, at a dosage of 37 mg/kg BW/day, or 0.33% ethanol in corn oil as vehicle, for
10 d. Purified splenic cDCs from treated mice were co-cultured with naïve CD4+ T cells in the presence of anti-CD3 monoclonal antibody for 5 d. (A) Representative
dot plots show cytokine-secreting cells gated from viable CD4+ T cells. (B) The percentages of cytokine-secreting cells in individual samples from both groups.
(C) IL-12 level in CpG1826-stimulated splenic cDCs from treated mice, as analyzed using ELISA. n=5 in each group. Data are representative of two independent
experiments. Results are shown as mean ± SEM. **P < 0.01, as assessed using Mann–Whitney U test.
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affected by DEHP exposure (Supplementary Figure 1). In
addition to CD8a+ cDCs, DEHP exposure significantly
decreased the absolute number of CD8+ T cells, but not CD4+

T cells and B cells, in the DEHP group (Supplementary
Figure 2). These data suggested that DEHP exposure may
specifically hamper the differentiation of steady-state CD8a+

DCs in vivo.
As the upstream precursors of splenic DC subsets can be

found in the bone marrow (42), we next analyzed the late DC
progenitor population (CD45+Lin-CD11c+MHC class II-) in the
bone marrow, which further differentiates into cDCs and pDCs
(43). Flow cytometric analysis revealed that the percentage of late
DC progenitors was significantly decreased in the bone marrow
of the DEHP group, as compared to that in the vehicle group
(Figures 4A, B); however, the apoptosis level in the late DC
progenitors was similar between these two groups (Figure 4C).
These data suggested that chronic DEHP exposure may affect
splenic cDC differentiation, at least in part by modulating the
differentiation of DC progenitors in the bone marrow.

PPARg Activity Involves in Altered DC
Differentiation in MEHP-Treated FL-DCs
As DEHP is rapidly metabolized to MEHP, a major metabolite in
the serum (9, 44), and MEHP is a partial agonist of PPARg (25),
we next investigated whether DEHP exposure altered DC
differentiation through the MEHP-PPARg axis. First, we
analyzed PPARg expression levels in DC progenitors and other
cell subsets in the bone marrow. Intracellular flow cytometric
Frontiers in Immunology | www.frontiersin.org 6
analysis revealed that PPARg protein was expressed in all bone
marrow Lin- populations, including late DC progenitors
(CD11c+MHC class II-), differentiating DCs (CD11c+MHC
class II+), and CD11c- subset (CD11c-MHC class II- and
CD11c-MHC class II+) (Figure 4D). The expression level of
PPARg was significantly higher in the differentiating DCs than in
late DC progenitors or the CD11c- subset (Figure 4F). However,
DEHP exposure significantly increased the PPARghigh cell
percentage and expression level in the late DC progenitors, but
not in the other two subpopulations (Figures 4E, F). These data
suggested that chronic and low-dose DEHP exposure may
specifically increase PPARg activity in late DC progenitors in
the bone marrow.

Next, we investigated whether the MEHP-PPARg activation
axis altered DC subset differentiation using Flt3L-induced bone-
marrow culture, as Flt3L-differentiated dendritic cells (FL-DCs)
comprise of CD8a+ DCs, CD8a- DCs, and pDCs, which are similar
to those normally found in mouse spleens (37). To mimic chronic
exposure to DEHP in humans, bonemarrow cells were treated with
MEHP for 7 days, starting from day 1, and the DC subsets were
analyzed on day 8. GW1929, a potent selective PPARg agonist, was
used as a positive control for PPARg activation. During the
differentiation period, daily treatment with GW1929, at a
concentration of 4 mM, significantly decreased the absolute
number of FL-DCs harvested from day-8 culture (Figures 5A,
left). The significant loss of DC subset upon GW1929 treatment
was that of cDCs (CD11c+CD45RA-), including CD8a+ DCs
(CD11blowCD24high) and CD8a- DCs (CD11bhighCD24low/-), but
A B

C

FIGURE 3 | Analysis of frequencies and numbers of splenic DC subsets. BALB/c mice were given oral DEHP, at a dosage of 37 mg/kg BW/day, or 0.33% ethanol in
corn oil as vehicle, for 10 d. Splenocytes from the treated mice were assessed for DC subsets using multi-parametric flow cytometry. (A) Representative dot plots showing
splenic cDCs (CD11chighPDCA-1-) or pDCs (CD11lowPDCA-1+) (left) and CD8a+ (CD4-CD8a+) and CD8a- (CD4+CD8a- and CD4-CD8a-) DCs gated on cDCs (right) from
a vehicle mouse. The percentages or numbers of cDCs, pDCs (B), CD8a+ DCs and CD8a- DCs (C) in spleens. n=14 mice per group from three independent experiments.
Results are shown as mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. vehicle (as assessed using Mann–Whitney U test).
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not pDCs (CD11c+CD45RA+) (Supplementary Figure 3A;
Figures 5B, C). Similar to GW1929, MEHP had a moderate
effect on CD8a+ DC differentiation. MEHP decreased the
percentages of CD8a+ DCs and cDCs, but not CD8a- DCs. Due
to the decreased percentage of the cDC subset, there was a
considerable change in the relative proportion of pDCs in
MEHP-treated conditions; however, there was no significant
difference in the absolute number of pDCs between vehicle and
MEHP treatment (Figures 5B, C). In addition, both GW1929 and
MEHP treatment significantly decreased IL-12 production in
CpG1826-stimulated FL-DCs (Figure 5D). On the other hand,
MEHP treatment did not affect CD86 andMHC class II expression
in CD8a+ DCs (Supplementary Figure 3B). These data suggested
Frontiers in Immunology | www.frontiersin.org 7
that the effect of MEHP on the disturbance of cDC differentiation is
associated with PPARg involvement.

We next examined whether GW9662, a selective PPARg
antagonist, reversed the effect of MEHP on DC differentiation.
Daily treatment with GW9662 did not alter the absolute
numbers of day-8 FL-DCs (Figure 5A, right) or the cDC
subset (Figure 5E; right). However, we unexpectedly observed
that GW9662 treatment alone significantly increased the
percentage and cell number of pDCs (Figure 5F). The
decreased percentages of cDCs or CD8a+ DCs upon GW9662
treatment were due to the relative increase in the proportion of
pDCs (Figures 5E, F; left panels). Co-treatment of MEHP with
GW9662 had a similar effect as treatment with GW9662 alone.
A B

D

E F

C

FIGURE 4 | Analysis of PPARg expression in bone marrow DC progenitors. BALB/c mice were given oral DEHP, at a dosage of 37 mg/kg BW/day, or 0.33% ethanol
in corn oil as vehicle, for 10 d. Bone marrow cells from treated mice were analyzed for DC progenitors using multi-parametric flow cytometry. (A) Representative dot
plots of DC progenitors (G1, CD11c+MHC class II-), differentiating DCs (G2, CD11c+MHC class II+), and CD11c- cells (G3) gated from viable Lin- bone marrow cells.
(B) The percentage of DC progenitors in viable Lin- bone marrow cells. (C) The percentage of dead cells (ViViD+) in DC progenitors (G1). (D) Representative histograms
showing intracellular PPARg expression in each cell subset. (E) The frequency of PPARghigh cells (M1) in the gated cells, as shown in (D). (F) The fold change of mean
fluorescence intensity (MFI) of PPARg (M2) versus isotype control (IC) in the gated cells, as shown in (D) n = 5 or 6 mice for each group. Results are shown as mean ±
SEM. *P < 0.05 and **P < 0.01, as assessed using Mann–Whitney U test. ####P < 0.0001, as assessed using one-way ANOVA followed by Dunnett’s multiple
comparison test.
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FIGURE 5 | DC subset analysis in Flt3L-induced bone-marrow culture. Bone marrow cells from BALB/c mice were treated with various concentrations of MEHP (20 mM),
GW1929 (4 mM), and/or GW9662 (4 mM) for 7 d, in the presence of rmFlt3L. Day-8 FL-DCs were harvested for subset analysis using multi-parametric flow cytometry. The
gating strategy is shown in Supplementary Figure 3. (A) Total cell numbers of day-8 FL-DCs treated with MEHP, GW1929, and/or GW9662. (B) The percentages and
cell numbers of cDCs gated from viable FL-DCs treated with MEHP or GW1929. (C) The percentages and cell numbers of CD8a+ DCs, CD8a- DCs, and pDCs gated from
CD11c+ cells treated with MEHP or GW1929. (D) IL-12 levels of treated FL-DCs after stimulation with CpG1826 for 24 h. (E) The percentages and cell numbers of cDCs
gated from viable FL-DCs treated with MEHP and/or GW9662. (F) The percentages and cell numbers of CD8a+ DCs, CD8a- DCs, and pDCs gated from CD11c+ cells
treated with MEHP and/or GW9662. n=5 or 6 for each treatment. Results are represented as mean ± SEM. *P < 0.05, **P < 0.01, and ****P < 0.0001, as assessed using
one-way ANOVA followed by Dunnett’s multiple comparison test. ns, non-significant.
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This finding suggested that inhibition of endogenous PPARg
activity may alter DC subset differentiation.
MEHP Alters cDC Differentiation, at Least
in Part in a PPARg Activation-
Dependent Manner
To ensure that PPARg activity was activated by MEHP, day-3
Flt3L-differentiating bone marrow cells were treated withMEHP,
GW1929, and/or GW9662, and then assessed for the expression
of PPARg or FABP4, a PPARg-regulated downstream gene (45).
Initially, western blot analysis showed that MEHP treatment for
6 or 18 hours only showed moderate enhancement of PPARg
expression, whereas GW1929 did increase PPARg expression
upon treatment at the concentration of 4 mM (Supplementary
Figure 4). Next, we analyzed intracellular PPARg expression in
DC progenitors using multi-parametric flow cytometry. After 6
hours of treatment, both MEHP and GW1929 significantly
increased the percentage of PPARg+ cells in DC progenitors,
and this effect was fully inhibited by the antagonist GW9662
(Figures 6A, B; left panel). Interestingly, MEHP did not affect
PPARg expression in differentiating DCs (CD11c+MHC class
II+) or CD11c- subsets , in Lin- bone marrow cells
(Supplementary Figures 5A, B; Figure 6B, middle and right
panels). However, GW1929 significantly increased PPARg
expression in these three subsets (Figure 6B), possibly because
its potency is approximately equivalent to that of rosiglitazone
and much higher than that of MEHP (25, 46). In addition,
western blot analysis revealed that MEHP upregulated FABP4
expression (approximately 1.5- to 2.1-fold) at 6, 18, and 24-hour
post-treatment, whereas this MHEP effect was reversed by
GW9662 (Figure 6C). In contrast, GW1929 dramatically
upregulated FABP4 expression from 6 to 24 h post-treatment
in Flt3L-differentiating bone marrow cells (Figure 6C).

To further ensure that MEHP displayed similar effect on
inflammatory DC differentiation via PPARg activation, GM-CSF
bone marrow culture were treated with MEHP, GW1929, and/or
GW9662 for 7 days. As Helft J et al. clearly revealed that GM-
CSF-culture produced MHC class IIhigh dendritic cells (GM-
DCs) and MHC class IIint macrophages (GM-Macs) (47), we
separately analyzed the effect of MEHP on DC and Mac subsets
using multi-parametric flow cytometry. As shown in
Supplementary Figure 6, MEHP treatment significantly
decreased the percentage and number of CD115- GM-DCs, but
not the CD115+ GM-Macs subset (Supplementary Figures 6C,
D). Interestingly, MEHP significantly increased the percentage
and number of the CD11bintMHC class IIint subset in a dose-
dependent manner (Supplementary Figure 6E). The effect of
MEHP on CD115- GM-DCs and the CD11bintMHC class IIint

subset is similar to that of GW1929 (PPARg agonist), but reverse
to that of GW9662 (PPARg antagonist) (Supplementary
Figures 6C, E). Taken together, analysis of GM-CSF-induced
cell culture revealed that MEHP treatment affects DC
differentiation, but not Mac differentiation, thus supporting the
findings observed in the FL-DCs. These results suggested that
chronic DEHP exposure may alter cDC differentiation, at least in
part through the MEHP-PPARg activation axis.
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DISCUSSION

The present study provides evidence that mimicking human
exposure to DEHP at physiologically relevant doses alters cDC
differentiation, leading to an enhanced allergic response. To the
best of our knowledge, this is the first study to demonstrate that
MEHP hinders CD8a+ DC differentiation, at least in part
through PPARg activation, in mice and in a Flt3L-
supplemented culture system (see Figure 7 for schematic
presentation). In addition, the in vitro pharmacological
experiments shown in this study suggest that PPARg
inactivation may alter pDC homeostasis. This study provides a
potential mechanistic link between ubiquitous phthalate
exposure and PPAR-regulated DC differentiation in allergic
lung inflammation.

Our purpose was to study the immunomodulatory effect
(low-level but continuous exposure), rather than toxic effect
(one single high-dose exposure) of DEHP on allergic asthma.
Therefore, the in vivo dose of DEHP selected in this study was
lower than the current human TDI (36, 39) and can be
considered an environmentally relevant dose. The in vitro
concentration of MEHP used in this study was up to 20 mM,
which is between the highest MEHP level (26.47 mg/ml, ~95 mM)
and median level (0.58 mg/ml, ~2 mM) that had been reported in
plasma with endometriosis (48). The in vitro concentration of
MEHP used in this study can be considered as low-level
exposure. In addition, in contrast to long-term treatment, 24-
hour short-term treatment with MEHP did not show any effect
on the differentiation of FL-DCs in vitro (data not shown). Taken
together, we expected that chronic exposure to DEHP at
environmentally relevant doses would not be toxic, but would
rather modulate cDC differentiation, which in turn would
modify the magnitude of the resultant allergic response.

Cell type-specific knockout strategies demonstrate that DCs,
macrophages, and CD4+ T cells express PPARg and coordinately
drive pathogenic type-2 lung inflammation (31, 49). Therefore,
DEHP exposure is expected to modulate the function or
homeostasis of these immune cell subsets via MEHP. Our
results suggest that MEHP is a bioactive metabolite of DEHP
in vivo, because MEHP at the same TDI dose exerts similar
effects on OVA-induced lung inflammation, in terms of
infiltrated cell types and their respective cytokine generation.
The in vitro results showed that long-term treatment of Flt3L-
induced bone marrow culture with MEHP significantly
decreased the number of CD8a+ DCs, supporting the
observation of altered splenic DC homeostasis in DEHP-
treated mice. In addition, the proportion of PPARghigh/+ DC
progenitors significantly increased in the bone marrow of
DEHP-treated mice or in MEHP-conditioned Flt3L-induced
bone marrow culture. Taken together, the present study
suggests that MEHP is the main bioactive metabolite of DEHP
that modulates allergic inflammation in vivo.

PPARg is a ligand-activated nuclear receptor that regulates
fatty acid storage, glucose metabolism, and immunity (50, 51). In
addition to promoting the polarization of type 2 macrophages (52)
and enhancing the accumulation of adipose tissue regulatory T-
cells at inflammatory sites (53), pharmacological PPARg activation
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FIGURE 6 | Expression and activity of PPARg in Flt3L-induced bone-marrow culture. (A) Day-3 Flt3L-differentiated bone marrow cells were treated with various concentrations
(mM) of MEHP, GW1929, and/or GW9662 for 6 h and then analyzed for PPARg expression using multi-parametric flow cytometry. Representative contour plots
showing intracellular PPARg expression in DC progenitors (G1, CD11c+MHC class II-) from treated cells gated on viable Lin- bone marrow cells. PPARg+ cells were
gated against fluorescence minus one (FMO) control. (B) Percentages of PPARg+ cells in each subset. n=5 or 6 mice for each group. Results are represented as
mean ± SEM. *P < 0.05, **P < 0.01, and ****P < 0.0001, as assessed using one-way ANOVA followed by Dunnett’s multiple comparison test. (C) Estimation of
protein levels of FABP4 and b-actin in day-3 Flt3L-differentiated bone marrow cells treated with various conditions for 6, 18, and 24 h, using western blot. Data are
representative of two experiments. Results are shown as fold enrichment by normalizing the relative ratio of FABP4 versus b-actin to vehicle control.
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also modulates DCs to display immune suppressive functions, as
demonstrated by GM-CSF bone marrow culture in mice (54),
human monocyte-derived DC differentiation (26, 55), and in vivo
models (34, 51). In the present study, the basal expression of
PPARg and FABP4 supports the endogenous activity of PPARg in
CD45+Lin- bone marrow cells. Unexpectedly, we observed that in
vitro MEHP treatment or in vivo DEHP exposure increased
PPARg expression only in DC progenitors (Lin-CD11c+MHC
class II-), but not in other Lin- subpopulations (CD11c+MHC
class II+ and CD11c- subsets), although all Lin- cells expressed
PPARg. However, in vitro GW1929 (agonist) treatment enhanced
PPARg expression in all three subsets (Lin-) in the bonemarrow. A
possible reason may be that MEHP is a partial PPARg agonist
whose efficacy is much lower than that of rosiglitazone (25) or
GW1929 (56), the full agonists of PPARg. Consistent with the
effect on PPARg expression, GW1929 also had a more dramatic
inhibitory effect on CD8a+ DC differentiation than MEHP, in
Flt3L-induced bone marrow culture. These results suggest that
chronic and low-level exposure to DEHP may block CD8a+ DC
differentiation, at least in part, through PPARg activation in a
steady state. The specific role(s) that PPARg plays in DC
progenitors remains unclear, and the underlying mechanism
needs to be investigated in depth.

The homeostasis of CD8a+ DCs seems to be sensitive to
modulation by chronic DEHP exposure at the human TDI level.
Our recent study demonstrated that chronic and low-dose
maternal exposure to DEHP enhances allergic lung
inflammation in young offspring, through at least four
generations (21). This ancestral DEHP exposure leads to
decreased numbers of splenic CD8a+ DCs and bone marrow
DC progenitors, at least in part through epigenetic modification
in DCs (21). Maternal DEHP-mediated DC homeostasis
Frontiers in Immunology | www.frontiersin.org 11
alteration has been shown to be related to apoptosis in DC
progenitors and splenic DCs from offspring (21), whereas the
present study shows that DEHP exposure limits the
differentiation of CD8a+ DCs from the bone marrow, instead
of apoptosis. In the context of OVA sensitization in the present
study, we speculated that Ag-specific Th2 cells activated by
splenic DCs could migrate to allergen-challenged lung (57),
leading to enhanced allergic lung inflammation in DEHP-
treated mice. Due to the complexity of DC network and
biology, the detailed mechanisms regarding the interaction
between environmental endocrine disruptors and immunity
await further in-depth studies.

There are two limitations in this study. The first one is that
the effect of DEHP/MEHP was not analyzed in inhaled-allergen
asthma model as airway DC subsets, comprising of resident,
migratory, and inflammatory DCs, also play important roles in
establishment of airway allergic inflammation (58, 59). The other
is that adoptive transfer experiment of MEHP-conditioned FL-
DCs was not performed. In summary, the current study provides
immunological evidence supporting a causal relationship
between environmental DEHP exposure and allergy
development. Our findings also provide a potential link
between plasticizers, PPARg, and cDC homeostasis. This study
also provides a rational basis for elucidating the effect of
phthalate exposure on tumor immunity and vaccine response,
in which CD8a+ DCs play important roles.
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FIGURE 7 | Schematic representation showing the effect of environmental DEHP exposure on allergic lung inflammation. Chronic and low-level exposure to DEHP, a
common plasticizer and environmental endocrine disruptor, may result in altered homeostasis of DC subsets, particularly block CD8a+ DC differentiation, through the
MEHP-PPARg activation axis. The loss of CD8a+ DCs, a main IL-12 cellular source, may contribute to the enhanced allergic lung inflammation, at least in part through
Th2 polarization in DEHP-exposed mice. Image created with BioRender.com.
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