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Sequence-based predictors of the residue-level protein function and structure cover a broad spectrum of
characteristics including intrinsic disorder, secondary structure, solvent accessibility and binding to
nucleic acids. They were catalogued and evaluated in numerous surveys and assessments. However,
methods focusing on a given characteristic are studied separately from predictors of other characteristics,
while they are typically used on the same proteins. We fill this void by studying complementarity of a
representative collection of methods that target different predictions using a large, taxonomically consis-
tent, and low similarity dataset of human proteins. First, we bridge the gap between the communities
that develop structure-trained vs. disorder-trained predictors of binding residues. Motivated by a recent
study of the protein-binding residue predictions, we empirically find that combining the structure-
trained and disorder-trained predictors of the DNA-binding and RNA-binding residues leads to substan-
tial improvements in predictive quality. Second, we investigate whether diverse predictors generate
results that accurately reproduce relations between secondary structure, solvent accessibility, interaction
sites, and intrinsic disorder that are present in the experimental data. Our empirical analysis concludes
that predictions accurately reflect all combinations of these relations. Altogether, this study provides
unique insights that support combining results produced by diverse residue-level predictors of protein
function and structure.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The residue-level annotations, also called 1-dimensional anno-
tations, cover a broad spectrum of structural and functional char-
acteristics of amino acids in protein sequences [1,2]. They
include various structural characteristics, such as secondary struc-
ture, solvent accessibility, intrinsic disorder, and flexibility, as well
as functional features, such as catalytic, cleavage and post-
translational modification sites and residues that interact with pro-
teins and nucleic acids. The amount of the experimental residue-
level annotations, which are commonly derived from the structural
data available in Protein Data Bank (PDB) [3], lags behind the
rapidly growing number of protein sequences. The current version
2021_04 of UniProt covers 225 million sequences and has doubled
in size since 2008 [4]. The huge amount of protein sequences that
lack the residue-level annotations has motivated the development
of hundreds of computational methods that predict these annota-
tions from the sequences. For instance, there are over 60 predictors
of the secondary structure [5-7], over 100 predictors of the intrin-
sic disorder [8-12], and close to 40 predictors of the residues that
bind nucleic acids [13-15]. Some of these methods are heavily
used, which can be indirectly measured by their citations. For
instance, the popular predictors of secondary structure, PSIPRED
[16], intrinsic disorder, IUPred [17], and glycosylation and phos-
phorylation sites, NetPhosK [18], were cited 6338, 2013, and
2002 times, respectively (source: Google Scholar as of February
14, 2022). Results produced by these tools are utilized to produce
hypotheses and support experimental investigations. For instance,
our DisoRDPbind [19,20], which predicts residues that interact
with proteins and nucleic acids, was recently used to study the
SARS-CoV-2 proteome [21], decode functions of genes from patho-
genic organisms [22], and investigate the mixed lineage leukemia 4
(MLL4) [23], heat shock factor 1 (Hsf1) [24] and mediator complex
subunit 15 (MED15) [25] proteins that are associated with cancer
and neurodegenerative diseases. Furthermore, results produced
by these predictors for millions of proteins and thousands of
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organisms are easily accessible via several popular large databases
including D2P2 [26], MobiDB [27] and DescribePROT [28].

Availability of the many sequence-based predictors of the
residue-level annotations has spurred numerous studies that sur-
vey and compare these tools [1,2,5-11,13-15,29-46]. A large por-
tion of these studies focuses on the empirical comparative
assessment of their predictive performance. These computational
tools use predictive models trained and tested using the ground
truth generated by experimental methods. They often rely on mod-
els produced from training data by machine learning (ML) algo-
rithms. Predictions produced by these models on test data are
evaluated against the experimental ground truth and compared
across different methods. While predictive performance of the
published tools is typically evaluated by the authors in the corre-
sponding publications, these assessments are usually limited in
scope (i.e., relatively few methods are compared) and may rely
on small test datasets and non-standard test protocols and metrics.
Consequently, large scale comparative studies were carried out for
some of the predictive targets including prediction of the sec-
ondary structure [1,7,38,39], intrinsic disorder [1,40-43], solvent
accessibility [1], protein interactions [29], and nucleic acids inter-
actions [13,15,32,44]. Moreover, several community assessments
were completed. These evaluations are done by independent asses-
sors (i.e., they do not participate as predictors) on blind datasets
(i.e., ground truth is unavailable to the predictors) using test proto-
cols and metrics that are agreed on by the corresponding commu-
nity. For instance, the secondary structure predictors were
evaluated as part of the Critical Assessment of Structure Prediction
(CASP) between CASP3 and CASP5 [47], the Critical Assessment of
Fully Automated Structure Prediction (CAFASP) [48-50], and the
EVAluation of protein structure prediction servers (EVA) [51] com-
munity assessment efforts. The disorder predictions were evalu-
ated by the community as part of CASP between CASP5 [52] and
CASP10 [53] and recently in the Critical Assessment of protein
Intrinsic Disorder (CAID) [41]. The sheer number and scale of these
studies demonstrates significant interest in the residue-level pre-
dictors. These surveys and assessments provide invaluable insights
about the predictors. They summarize and categorize the available
methods, quantify and compare their predictive quality, evaluate
progress and often suggest future research directions. These
insights assist the end user to rationally select the best tools and
the developers to appropriately focus their efforts.

However, these studies share certain shortcomings. First, they
always analyze and compare predictors that target the same struc-
tural/functional characteristic. In other words, relations between
different predictions were not assessed while they are biologically
relevant. For instance, interaction sites are located on the protein
surface, and thus it would be pertinent to investigate whether
the predicted interactions agree with the putative solvent accessi-
bility. A special case of this overlooked aspect is the presence of
two distinct subcommunities that predict residue-level interac-
tions. This stems from the fact that the corresponding experimen-
tal annotations are sourced from two databases: PDB [3] that
provides access to the structures of the protein–protein and
protein-nucleic acids complexes, and DisProt [54] that stores
experimental annotations of the interacting residues that are
intrinsically disordered (unstructured) [55,56]. Correspondingly,
one subcommunity develops predictors that focus on the
structure-annotated interactions [13,29] while the other on the
interactions in the disordered regions of the protein sequence
[8,57]. Recent work shows that the methods produced by the
two subcommunities complement each other for the prediction
of the protein-binding residues [58]. The unanswered question is
whether this is also the case for the prediction of the interactions
with nucleic acids. Altogether, studies that evaluate complemen-
tarity of predictors that target different characteristics and that
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use disorder-trained vs. order-trained data are lacking. Second,
the test datasets employed across different studies cover taxonom-
ically different protein chains. This makes it relatively difficult to
compare empirical results across studies. Case in point is the fact
that very different amounts of intrinsic disorder are found in
eukaryotes vs. prokaryotes [59,60] while the quality of the disorder
predictions depends on the amount of disorder [42].

We report results of an investigation that addresses these
issues. We specifically focus on analyzing representative tools that
predict several popular and different types of structural and func-
tional characteristics including secondary structure, solvent acces-
sibility, intrinsic disorder, and residues interacting with nucleic
acids. We do not attempt to compare multiple methods that pre-
dict the same characteristic since multitude of studies already offer
these results [7,13,15,32,38-44,47-53]. We curate a taxonomically
consistent dataset composed of human proteins that shares low
similarity with the training data used to develop the considered
predictors. We study whether combining results generated by
the structure- and disorder-trained predictors would lead to sub-
stantial improvements and whether relations observed using the
experimental data for all pairs of the considered characteristics
are accurately replicated by the respective predictions. We note
that the former analysis is constrained to the binding predictions
since the other characteristics (i.e., secondary structure and solvent
accessibility) are limited to the structured state and as such cannot
be predicted using disorder-trained predictors. Our particular focus
on the intrinsic disorder is indirectly motivated by the fact that the
results produced by AlphaFold2 [61], the method that arguably dis-
rupted protein structure prediction field, are less accurate to iden-
tify intrinsic disorder when compared to the modern disorder
predictors [62,63], such as flDPnn that we use here [64]. This, com-
bined with an easy access to the predictions of secondary structure,
solvent accessibility, intrinsic disorder, and nucleic acids interact-
ing residues for millions of proteins in related databases (i.e.,
D2P2 [26], MobiDB [27] and DescribePROT [28]), justifies the utility
of the various predictions that we study here.
2. Materials and methods

2.1. Datasets

Past studies assess different types of predictors on taxonomi-
cally inconsistent test datasets. Here, we perform the entire assess-
ment on the human proteome. We select this proteome due to its
high coverage by the experimental annotations (i.e., by far the
highest coverage in PDB and DisProt), allowing us to collect a large
amount of benchmark data. We collect the complete protein
sequences of the human proteome from UniProt [4]. We remove
protein fragments which we identify with the term ‘‘Fragment”
in the sequence descriptions, resulting in 43,789 protein
sequences. We map the PDB structures to the UniProt proteins
with the help of the Structure Integration with Function, Taxon-
omy and Sequences (SIFTS) software [65]. These structures provide
the ground truth annotations of the secondary structure, solvent
accessibility and protein-DNA and protein-RNA interactions. We
exclude short PDB chains that correspond to peptides (30 or fewer
amino acids). In cases where the same UniProt sequence is covered
by multiple PDB chains, we select the longest PDB chain to cover a
given portion of the UniProt sequence. In case of a tie we pick the
chain with the best structure resolution. Consequently, we find
5,133 UniProt sequences that include structural information
sourced from 6,417 PDB chains. Moreover, we supplement these
annotations with the experimental data on 790 intrinsically disor-
dered human protein that we collect from DisProt [54].
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Next, we check the collected proteins against the training data-
sets of the considered predictors to ensure that the benchmark
sequences share appropriately low similarity. We obtain the train-
ing sets of the five predictors (ASAquick, PSIPRED, flDPnn, Dis-
oRDPbind and DRNApred; selection of these methods is
explained in Section 2.3) and align them with the proteins from
the combined set of 5,133 PDB-annotated and 790 DisProt-
annotated human proteins using BLAST with 25% sequence similar-
ity [66]. The resulting 2,535 PDB-annotated and 318 DisProt-
annotated sequences that share <25% similarity to the training pro-
teins constitute our test dataset. We combine these two protein
sets, which results in the test dataset composed of 2,629 human
proteins that we use to investigate the complementarity of the
considered five predictors. Moreover, we use the remaining 2,598
PDB-annotated and 472 DisProt-annotated human sequences that
share >25% sequence similarity with the training datasets to
empirically train and validate a neural network model, which we
discuss in section 2.4. Combining the 2,598 PDB-annotated and
472 DisProt-annotated proteins results in 2,713 human sequences.
2.2. Collection of experimental annotations

We extract the experimental solvent accessibility and sec-
ondary structure directly from PDB structures. We run popular
DSSP program [67] to collect the 8-state secondary structure and
the absolute solvent accessibility for each residue in the 6,417
PDB chains. We convert the 8-state secondary structure to the 3-
state secondary structure using the encoding applied by the pre-
dictor that we employ [16], which is consistent with recent assess-
ments [7]. More specifically, H and G states are converted to helix
(H), E and B to strand (E), and the other states to coil (C). We also
normalize the absolute solvent accessibility using the residue-
specific factors from ref. [68] to obtain the relative solvent accessi-
bility. Similar to the secondary structure, this ensures that the
ground truth is compatible with the corresponding predicted char-
acteristics. Moreover, we collect the experimental intrinsic disor-
der from DisProt using its ontology and from PDB using
published approaches [53,69].

We apply BioLip, a frequently updated semi-manually curated
database of protein–ligand interactions extracted from the PDB
structures [70], to collect the annotations of the nucleic acid bind-
ing residues. We map the BioLip’s annotations into the human Uni-
Prot sequences and find 3,557 DNA-binding residues in 175 DNA-
binding proteins (7.4% of residues in these proteins) and 2,368
RNA-binding residues in 106 RNA-binding proteins (6.4% of resi-
dues in these proteins). We also collect annotations of the nucleic
acid binding residues from DisProt and identify 3,663 DNA-binding
residues in 41 DNA-binding proteins (18.8% of residues in these
proteins) and 781 RNA-binding residues in 7 RNA-binding proteins
(25.8% of residues in these proteins). Furthermore, we collect a
dataset of the non-nucleic acid binding human proteins, which is
necessary to assess methods that predict interactions with nucleic
acids. First, we identify a comprehensive collection of 3,638 nucleic
acid binding proteins by integrating data from multiple resources.
We collect the DNA-binding proteins from BioLip, 3D-footprint
[71], CIS-BP [72], JASPAR [73], HumanTF2 [74], SMiLE-seq [75], ani-
malTFDB [76], and using gene ontology (GO) terms [77] in UniProt.
We find the RNA-binding proteins from BioLip, ATtRACT [78],
RBPDB [79], and using the GO terms in UniProt. Next, we remove
human proteins that share over 30% similarity with any of the
3,638 nucleic acid binding proteins, which we measure with BLAST
[66,80]. We intersect the resulting 24,435 human proteins with the
sequences for which we collect experimental data and use the cor-
responding common subset as the non-nucleic acid binding
proteins.
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2.3. Collection of residue-level structure and function predictions

The prior assessments concentrate on comparing multiple pre-
dictors that address the same structural or functional characteristic
[7,13,15,32,38-44,47-53]. We intentionally avoid repeating this
type of analysis given the abundance of the available results. We
instead analyze several different types of commonly performed
predictions including predictions of the solvent accessibility, sec-
ondary structure, intrinsic disorder, and RNA- and DNA-binding
residues. We select a representative method for each of these char-
acteristics that satisfies the following three requirements: 1) they
are computationally efficient to be able to process our large protein
set, i.e., runtime <10 s per protein; 2) they have implementations
or webservers that facilitate large-scale predictions; and 3) they
were published in reputable journals. The five selected predictors
are summarized in Table 1. We chose ASAquick [81], fast predictor
of the solvent accessibility which secures predictive performance
that is competitive with slower, state-of-the-art predictors [82].
We normalize the ASAquick’s outputs the same way as the DSSP-
derived solvent accessibility to collect the putative relative solvent
accessibility. We picked PSIPRED [16,83], the most popular sec-
ondary structure predictor that ranked among the most accurate
predictors in multiple assessments [7,84]. We utilize the single-
sequence version of PSIPRED to scale to the large size of our data-
set. We select flDPnn for the disorder prediction [64]. This method
is the fastest among the most accurate disorder predictors that
were recently evaluated in CAID [41,85].

Moreover, we cover predictions of the nucleic acids-binding
residues with two methods that represent the corresponding two
subcommunities: one that focuses on the structure-based interac-
tions and the other that develops predictors of interactions for the
disordered regions. We select methods that predict both DNA-
binding and RNA-binding residues and which provide accurate
results by minimizing a recently identified cross-prediction issue
[13,15,86]. The cross-prediction means that predictors of the
DNA-binding residues also predict a significant number of residues
that bind other ligands (RNA and proteins) as DNA-binding, effec-
tively predicting binding residues irrespectively of the underlying
ligand. We choose DisoRDPbind [19,20,87], which is fast and pro-
vides accurate and cross-prediction reduced results [19,58]. This
tool was recently ranked second-best in the prediction of the inter-
acting disordered residues in the CAID experiment [41], second
only to ANCHOR2 [88] that predicts protein-binding residues.
Moreover, we select DRNApred [89] that predicts DNA and RNA
binding residues using models trained from the PDB structures,
and which was developed to minimize the cross-predictions
[86,89]. The residue-level experimental annotations and predic-
tions of the solvent accessibility, secondary structure, DNA-
binding residues, RNA-binding residues and intrinsic disorder are
available in Supplementary Dataset S1 (5,133 PDB-annotated
human sequences) and Supplementary Dataset S2 (790 DisProt-
annotated human sequences) at https://biomine.cs.vcu.edu/data-
sets/1Dassessment/. Furthermore, that page provides access to
the Supplementary Dataset S1-1 (2,535 PDB-annotated human
sequences) and Supplementary Dataset S2-1 (318 DisProt-
annotated human sequences) that include predictions and experi-
mental annotations for the datasets of human proteins that share
low similarity to the training data used to develop the considered
here predictors, which we discuss in Section 2.1.

We briefly summarize predictive performance of the considered
predictors on the 2,629 test proteins that share <25% similarity
with their training proteins. The Pearson correlation coefficient
for the solvent accessibility predictions from ASAquick is 0.52,
which is comparable to the previously reported value of 0.64
[90]. The Q3 (3-state accuracy) of the secondary structure predic-
tions produced with the single-sequence PSIPRED is 67.6, which
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Table 1
Summary of the selected predictors of the residue-level structure and function predictions.

Prediction target Predictor name Predictive model Availability Website

Solvent accessibility ASAquick Neural network Code https://mamiris.com/software.html
Secondary structure PSIPRED Neural network Code and Webserver https://bioinf.cs.ucl.ac.uk/psipred/
Intrinsic disorder flDPnn Deep neural network Code and Webserver https://biomine.cs.vcu.edu/servers/flDPnn/
Nucleic acid binding for disordered regions DisoRDPbind Logistic regression Webserver https://biomine.cs.vcu.edu/servers/DisoRDPbind/
Nucleic acid binding for structured regions DRNApred Logistic regression Webserver https://biomine.cs.vcu.edu/servers/DRNApred/
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is nearly the same as the Q3 = 66.8 that was measured in an earlier
study [91]. CAID that uses the DisProt-annotated proteins reports
AUC (area under the receiver operating characteristics curve) = 0.81
for flDPnn [41], which is on par with AUC = 0.79 that flDPnn
secures on the 318 DisProt-annotated human test proteins. We
assess DisoRDPbind and DRNApred using the DNA-/RNA-binding
proteins and non-nucleic acid binding proteins from the test data-
set. The results that we report in Section 3.1 reveal that DisoRDP-
bind secures AUC = 0.65 for the DNA binding and AUC = 0.62 for the
RNA binding. This is consistent with a recent assessment where
DisoRDPbind’s AUC are 0.67 and 0.60, respectively [92]. Similarly,
we report AUC = 0.68 for DNA binding and AUC = 0.60 for RNA
binding for DRNApred, while the previously published results are
0.68 and 0.65, respectively [89]. Overall, we find that the predictive
performance assessed on the human proteins is relatively similar
to the results that were reported in the past studies for the same
predictors. These results validate quality of the experimental and
putative data that we collected.

2.4. Development of the MetaNucBind model

The current predictors of the protein and nucleic acids binding
residues [8,13,15,29,32,34,44,57,93-95] are clustered into two dis-
tinct groups based on the source of training data used to derive
their predictive models: structures of the protein–protein/nucleic
acid complexes that are sourced from PDB [3] (i.e., structure-
trained) vs. the disordered binding regions that are sourced from
DisProt [54] (i.e., disorder trained). Interestingly, the correspond-
ing two prediction subcommunities test their methods on the
datasets that use the same source data type. We recently evaluated
predictors of the protein-binding residues on the disorder and
structure annotated data and found that combining the two types
of methods produces substantially more accurate predictions [58].
This suggests that the structure- and disorder-trained predictors of
protein-binding residues complement each other and motivates us
to investigate complementarity of predictors of the nucleic acid
binding residues.

We develop MetaNucBind, a neural network-based meta pre-
dictor that uses the RNA- and DNA-binding predictions from the
disorder-trained DisoRDPbind and the structure-trained DRNApred
to predict the combined set of disordered and structured binding
residues. We utilize a small deep feed-forward neural network
(FFNN) that uses a sliding window of predictions from DisoRDP-
bind and DRNApred as the input to predict the DNA-binding and
RNA-binding propensities for the residue in the middle of the win-
dow. We implement this network using python 3.8 with Kares
(2.4.0), Scikit-learn (0.24.2), Numpy (1.18.5), and Tensorflow
(2.3.0) libraries.

We parametrize the FFNN model, i.e., select the number of hid-
den layers and the window size = {1, 3, 5, and 7}, using training and
validation data extracted from the set of 2,713 proteins that share
high similarity with the training proteins of the selected predictors,
which we discuss in Section 2.1. We randomly select 70% of these
proteins to form a training dataset and the remaining 30% to estab-
lish a validation dataset. The training, validation and test datasets,
including the experimental residue-level annotations of the DNA-
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and RNA-binding, are available as the Supplementary Datasets
S3, S4, and S5, respectively, at https://biomine.cs.vcu.edu/data-
sets/1Dassessment/. The use of different window sizes evaluates
whether predictions for the adjacent residues would be useful to
more accurately determine prediction for the central residue. We
select the parameters that results in the maximal AUC on the val-
idation dataset. The resulting model uses the window size of 5 and
is composed of three hidden layers with 6, 4 and 2 nodes, and the
output layer with one node that produces the DNA- and RNA-
binding propensities. We observe that the use of windows pro-
duces marginal improvements in the predictive quality, i.e., AUC
increases by 0.01 for the DNA binding prediction and by 0.005
for the RNA binding prediction when comparing FFNNs that do
not use a window (window size = 1) with those that use the win-
dow of size 5. This suggests that the use of the predictions that are
adjacent in the sequence does not provide substantial improve-
ments for the prediction of the nucleic acid binding residues.

3. Results and discussion

3.1. Predictors of the nucleic acid interacting residues trained on the
disordered and structured data complement each other

Using the DNA-/RNA-binding proteins and non-nucleic acid
binding proteins from the low-similarity test dataset discussed in
Section 2.1, we evaluate the disorder-trained DisoRDPbind [19],
the structure-trained DRNApred [89], and the MetaNucBind that
combines their predictions using the deep FFNN model. We also
explore several simple approaches to combine the two predictions
including taking the minimum, maximum, and the average of the
normalized outputs from the two predictors, DisoRDPbind and
DRNApred. We summarize these results on the test dataset in
Table 2. We quantify predictive performance with the
commonly-used AUC; the corresponding ROC curves are in the
Supplementary Fig. S1. Moreover, we provide a selection of metrics
for the binary predictions that rely on a threshold to binarize the
predicted numeric propensities. We ensure that the binary predic-
tions are standardized across methods by setting a threshold that
produces consistent prediction rate, which in turn facilitates direct
side-by-side comparisons. We compute sensitivity at fixed false
positive rates (FPRs) of 0.2 and 0.3, and specificity at fixed true pos-
itive rates (TPR, which is the same as sensitivity) of 0.4 and 0.5.

We find that the structure-trained and disorder-trained predic-
tors secure results that are consistent with their published predic-
tive performance, with AUC ranging between 0.604 and 0.679; see
details in Section 2.3. Table 2 shows that the minimum-based com-
bination performs rather poorly, with AUCs lower than the AUCs of
the input predictors. This can be explained by the fact that the two
input predictions are trained to generate high propensities to iden-
tify two distinct collections of binding residues (structure vs. disor-
der trained), and thus selecting a minimum effectively reduces the
number of predicted binding residues. This is why the correspond-
ing sensitivity values at 0.2 FPR are lower (0.445 for the DNA bind-
ing and 0.321 for the RNA binding) when compared to the
sensitivity secured by the input predictors (0.499 for DRNApred’s
DNA binding and 0.374 for DisoRDPbind’s RNA binding). The same
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Table 2
Assessment of predictions of the RNA-binding and DNA-binding residues on the low-similarity test dataset composed of the DNA-binding, RNA-binding and non-nucleic acid
binding human proteins. The evaluation covers MetaNucBind, the structure-trained DRNApred, the disorder-trained DisoRDPbind, and four combinations of their predictions
where ‘‘Min”/”Max”/”Average” are the minimal/maximal/average value of the two predictions.. We assess whether differences in predictive quality between the most accurate
MetaNucBind and the other methods are robust to different datasets, i.e., we repeat tests 50 times using randomly selected subsets of 50% of test proteins. We assess significance
of differences in the AUC, sensitivity and specificity scores using the t-test if the underlying data are normal; otherwise, we use the Wilcoxon signed-rank test; we test normality
with the Anderson-Darling test at the 0.05 significance. * denotes that the difference when compared to MetaNucBind is statistically significant at p-value < 0.05 significance,
� means that the difference is not statistically significant (p-value � 0.05). The best results for a given metric are shown in bold font.

Target
interaction

Predictor type Predictor
name

AUC Sensitivity at FPR = 0.2 Sensitivity at FPR = 0.3 Specificity at TPR = 0.4 Specificity at TPR = 0.5

DNA-binding Disorder-trained DisoRDPbind 0.654* 0.418* 0.530* 0.817* 0.731*
Structure-
trained

DRNApred 0.679* 0.499* 0.601* 0.859* 0.798*

Combination Min 0.651* 0.445* 0.541* 0.839* 0.736*
Max 0.714* 0.513* 0.632* 0.864* 0.807*
Average 0.717* 0.524� 0.639� 0.878� 0.816�

MetaNucBind 0.722 0.529 0.643 0.876 0.819
RNA-binding Disorder-trained DisoRDPbind 0.619* 0.344* 0.457* 0.758* 0.666*

Structure-
trained

DRNApred 0.604* 0.374* 0.440* 0.760* 0.638*

Combination Min 0.598* 0.321* 0.428* 0.726* 0.634*
Max 0.692* 0.458� 0.585� 0.831� 0.765�

Average 0.700� 0.452� 0.582� 0.838� 0.766�

MetaNucBind 0.704 0.454 0.578 0.835 0.770
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is true when using the other binary metrics. The max-based and
the average-based combinations produce similar results, with the
average having a slight edge. The average-based consensus outper-
forms the results of the input predictors by the wide margin, with
AUC = 0.717 vs. 0.654 and 0.679 for the DNA binding, and with
AUC = 0.700 vs. 0.604 and 0.619 for the RNA binding. The corre-
sponding sensitivity at 0.2 FPR improves by a similarly large mar-
gin, from 0.499 to 0.524 for the DNA binding, and from 0.374 to
0.452 for the RNA binding. Overall, the reduction in sensitivity
when using the minimum-based approach coupled with the
increase in sensitivity when using the average- and maximum-
based combination suggests that the binding residues predicted
by the two methods share a limited amount of overlap and com-
plement each other.

The more sophisticated MetaNucBind model provides a modest
amount of improvements over the average-based consensus,
which can be attributed to the use of the neural network. However,
the increase in the performance over the results produced by the
disorder-trained and structure-trained predictors is substantial.
For the DNA binding prediction, MetaNucBind secures
AUC = 0.722 and sensitivity = 0.529 at 0.2 FPR, compared to
AUC = 0.679 and sensitivity = 0.499 for the best input predictor.
Similarly, the MetaNucBind’s AUC and sensitivity at 0.2 FPR are
0.704 and 0.454, respectively, for the RNA binding predictions vs.
0.619 and 0.374 for the best input predictor. These improvements
are statistically significant for both DNA-binding and RNA-binding
(p-value < 0.05). Altogether, these results reveal that the structure-
and disorder-trained methods generate complementary predic-
tions, which when combined together produce significantly higher
predictive quality. This is consistent with the conclusions that
were reported in the context of the prediction of the protein-
binding residues [58]. Moreover, we find that the improvements
are largely attributed to the complementary nature of the
structure-trained and disorder-trained predictions (i.e., large
increase for the average or maximum-based combinations vs input
predictors), rather than to using a sophisticated model to combine
these predictions (i.e., we note the modest improvements of Meta-
NucBind vs. the average-based model).

We provide the MetaNucBind predictor as a free and convenient
webserver located at https://biomine.cs.vcu.edu/servers/MetaNuc-
Bind/. This page collects the FASTA-formatted sequence of the
input protein and an optional email address. We send link to the
results to that email after the predictions are completed. The users
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are also directed to the results in the browser window. The predic-
tion process is fully automated and completed on the server side.
We provide the results in a parsable text file that includes the
sequence of the query protein, the putative propensities of DNA-
binding and RNA-binding, and the binary predictions of the puta-
tive DNA-binding residues and RNA-binding residues at the FPR
of 0.2 and 0.3. The MetaNucBind’s website also provides access
to the training, validation and test datasets used in this project.

3.2. Predictions accurately replicate relations between structural and
functional characteristics

The residue-level structural and functional characteristics are
inherently related with each other. For instance, binding residues
are expected to have high solvent accessibility. We empirically
identify relations between different experimentally measured
residue-level annotations for the six possible combinations of the
considered four characteristics: intrinsic disorder, secondary struc-
ture, solvent accessibility and RNA/DNA interaction sites. Next, we
investigate whether these relations are correctly replicated by the
corresponding predictions in order to find whether the different
types of predictions provide complementary information for the
same protein. These experiments rely on the test dataset with
the 2,629 sequences that shares low (<25%) similarity with the
training datasets of the considered here predictors.

Disordered protein regions carry out a diverse range of cellular
functions while they lack a well-defined equilibrium structure
under physiological conditions [55,96]. Bioinformatics studies esti-
mate that between 40 and 50% of the human proteins have disor-
dered regions [26,60,97,98]. While disordered proteins/regions are
unstructured in isolation, some of them fold into well-defined
structures upon binding with a target molecule [99,100]. This sug-
gests these regions possess propensity to form structure and raises
a question whether and how experimental annotations and predic-
tions of intrinsic disorder and secondary structure are related.
Fig. 1 summarizes the corresponding results on the test dataset.
Fig. 1(a) compares proportions of predicted secondary structures
between the experimentally verified disordered vs. structured resi-
dues. The proportions for the native structured residues are 0.38
for helix, 0.21 for strand and 0.41 for coil and they substantially
shift in favor of the most structurally flexible coil conformation
for the native disordered residues, i.e., 0.26 for helix, 0.08 for strand
and 0.66 for coil. This suggests that the secondary structure predic-

https://biomine.cs.vcu.edu/servers/MetaNucBind/
https://biomine.cs.vcu.edu/servers/MetaNucBind/


Fig. 1. Intrinsic disorder and secondary structure in the part of the low-similarity test dataset that has the corresponding experimental data. Panel (a) contrasts putative
secondary structures between the experimentally verified disordered vs. structured residues. Panel (b) summarizes the disorder predictions for the experimentally verified
disordered residues (in blue) and for these experimentally verified disordered residues grouped by their predicted secondary structure. The two bottom panels compare the
disorder predictions for native structured residues where their secondary structure is based on the experimental data (panels (c)) and based on the prediction (panels (d)).
The color-coded box plots (blue for disordered residues, red for helix, yellow for strand, and green for coil) represent distributions of the predicted disorder propensities using
the 5th (bottom whisker), 25th, 50th, 75th and 95th (top whisker) percentiles. We assess significance of differences in the disorder propensity values between residue sets
identified on the x-axis using the t-test if the underlying data are normal; otherwise, we use the Wilcoxon signed-rank test; we test normality with the Anderson-Darling test
at the 0.05 significance. The corresponding p-values are at the top of the box plots. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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tions are sensitive to the location of the experimentally annotated
disordered regions. The helix and strand predictions among the
native disordered regions can be justified by the fact that a
substantial portion of disordered regions that fold upon binding
includes these secondary structure states [101-103]. Moreover,
these folded states are significantly enriched in the helical confor-
mations when compared to the strands [102], which agrees with
our observations. Fig. 1(b) investigates disorder predictions for
the experimentally annotated disordered residues while Fig. 1(c)
and (d) analyze these predictions for the native structured resi-
dues. As expected, we find that the predicted propensities for dis-
order are much higher for the native disordered residues (Fig. 1(b))
than for the structured residues (Fig. 1(c) and (d)). Moreover, Fig. 1
(c) demonstrates that the highest putative disorder propensities
are for the native coil residues, followed by helices and by strands,
with all corresponding differences being statistically significant
(p-value < 0.05). Importantly, these relations are accurately repro-
duced when using predicted secondary structure (Fig. 1(d)), and
even when making predictions for the native disordered residues
(Fig. 1(b)). Altogether, our analysis implies that disorder and sec-
ondary structure predictions are in good agreement with each
other and with the underlying experimental data.

Next, we investigate the relation between intrinsic disorder and
solvent accessibility (Supplementary Figure S2). We note that dis-
ordered regions lack well-defined structure and their solvent
accessibility cannot be measured. However, we compare the puta-
tive solvent accessibility between the experimental disorder (Sup-
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plementary Figure S2(a)) and the putative disorder
(Supplementary Figure S2(b)). We find that disordered regions
have on average significantly higher putative solvent accessibility
(p-value < 0.05) and this relation holds true irrespective of whether
we use experimental or predicted disorder. This suggests that
putative solvent accessibility is a viable marker that can be used
to identify native disordered regions.

Fig. 2(a) and (c) show that the fractions of experimental disor-
dered residues among the native DNA-binding and RNA-binding
residues are 0.208 and 0.209, respectively, which are around 12%
higher than 0.185 that we measure for the non-nucleic acid bind-
ing residues. These differences are statistically significant (p-
value < 0.05). This observation is supported by several studies that
suggest that intrinsic disorder is substantially enriched among the
DNA-binding and RNA-binding proteins [104-110]. Fig. 2(b) and
(d) also reveal large and statistically significant differences in the
amounts of the experimental disordered residues among the resi-
dues grouped based on the predicted DNA/RNA-binding annota-
tions (p-value < 0.05). Moreover, Fig. 2(e) and (g) demonstrate
that the putative disordered residues are significantly more abun-
dant among the native DNA-/RNA-binding residues than among
the native non-nucleic acid binding residues (p-value < 0.05). This
concurs with a recent study that finds that disorder predictions are
accurate for the nucleic acid-binding proteins [40]. Most impor-
tantly, we find that the fractions of the putative disordered resi-
dues among the predicted DNA/RNA-binding residues follow the
same relation as for the experimental data, including the fact that



Fig. 2. Intrinsic disorder for the DNA-/RNA-binding and non-nucleic acid binding residues in the part of the low-similarity test dataset that has the corresponding
experimental data. The six panels on the left (a, b, e, f, i, and j) focus on the DNA-binding residues. The six panels on the right (c, d, g, h, k, and l) show results for the RNA-
binding residues. The first and third columns of panels (a, e, i, c, g, and k) show results for the experimental DNA-/RNA-binding and non-nucleic acid binding residues, while
the second and fourth columns of panels (b, f, j, d, h, and l) summarize results for the putative DNA-/RNA binding and non-nucleic acid binding residues generated by
MetaNucBind. The color-coded bar plots (a, b, c, d, e, f, g, and h) represent the fraction of the disordered residues on binding (blue) and non-nucleic acid binding residues
(orange), and the white bars stand for the fraction of non-disordered residues among the binding and non-nucleic acid binding residues. The color-coded box plots (blue for
binding, orange for non-binding) represent distributions of the disorder propensity scores using the 5th (bottom whisker), 25th, 50th, 75th, and 95th (top whisker)
percentiles. We assess whether differences in the fractions of disorder between DNA-/RNA-binding and non-nucleic acid binding residues are robust to different datasets, i.e.,
we repeat tests 100 times on randomly selected subsets of 20% of test proteins. We assess the significance of differences in the fraction of disordered residues/disordered
scores between DNA-/RNA-binding and non-nucleic acid binding residues using the t-test if the underlying data are normal; otherwise, we use theWilcoxon signed-rank test;
we test normality with the Anderson-Darling test at the 0.05 significance. The corresponding p-values are shown inside the plots. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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differences are large and statistically significant (p-value < 0.05)
(Fig. 2(f) and (h)). We further explore these relations based on
the putative propensity of disorder, which is generated by most
of the disorder predictors. In agreement with the results that con-
sider fraction of the disordered residues, we find that the putative
propensities are much higher among the native DNA/RNA-binding
residues (Fig. 2(i) and (k); p-value < 0.05), as well as among the
predicted DNA-/RNA-binding residues (Fig. 2(j) and (l);
p-value < 0.05). To sum up, we observe that DNA-/RNA-binding
residues are substantially enriched in the intrinsic disorder
compared to the non-nucleic acid binding proteins, and that these
relations are reflected by both experimental and predicted data.

Residues that interact with nucleic acids typically localize on
the protein surface and thus their solvent accessibility should be
higher when compared to the other amino acids [111-114]. Fig. 3
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(a) and (c) show that experimental solvent accessibility of the
native DNA-/RNA-binding residues is indeed higher than for the
non-nucleic acid binding residues (p-value < 0.05), confirming
observations from the literature. Fig. 3(b) and (d) reveal that the
differences in the experimental solvent accessibility between resi-
dues grouped based on the predicted binding annotations are also
large and statistically significant (p-value < 0.05) and consistent
with the results based on the experimental annotations of interac-
tions. This implies that the underlying predictions are accurate,
which in turn is supported by the past empirical assessments of
these methods [19,89]. Furthermore, Fig. 3(e) and (g) demonstrate
that the putative solvent accessibility is much higher for the exper-
imentally annotated binding residues (p-value < 0.05), suggesting
that the solvent accessibility predictions are useful in differentiat-
ing nucleic acid interacting vs. non-interacting residues. The key



Fig. 3. Solvent accessibility for the DNA-/RNA-binding and non-nucleic acid binding residues in the part of the low-similarity test dataset that has the corresponding
experimental data. The four panels on the left (a, b, e, and f) focus on the DNA-binding residues. The four panels on the right (c, d, g, and h) show results for the RNA-binding
residues. The upper (lower) row of panels shows the experimental (predicted) solvent accessibility. The first and third columns of panels (a, e, c, and g) show the experimental
DNA-/RNA-binding and non-nucleic acid binding residues, while the second and fourth columns of panels (b, f, d, and h) give the putative DNA-/RNA binding and non-nucleic
acid binding residues generated by MetaNucBind. The color-coded box plots (blue for binding, orange for non-binding) represent distributions of the solvent accessibility
values using the 5th (bottom whisker), 25th, 50th, 75th and 95th (top whisker) percentiles. We assess significance of differences in the solvent accessibility values between
DNA-/RNA-binding and non-nucleic acid binding residues using the t-test if the underlying data are normal; otherwise, we use the Wilcoxon signed-rank test; we test
normality with the Anderson-Darling test at the 0.05 significance. The corresponding p-values are at the top of the box plots. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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finding, which stems from Fig. 3(f) and (h), is that the predicted
solvent accessibility for the predicted binding residues maintains
the same relations as we observe using the experimental data.

We investigate relation between the DNA-/RNA-binding resi-
dues and secondary structures in Fig. 4. The fractions of residues
in each secondary structure state for the DNA-binding and RNA-
binding proteins are shown using the light-colored bars. These
results show that the DNA/RNA-binding proteins are enriched in
the coil and helix conformations, which together cover over 80%
of their sequences, irrespective whether the experimental or puta-
tive annotations are used. We also calculate relative fractions of
the DNA-binding and RNA-binding residues in each secondary
structure state for the DNA-binding and RNA-binding proteins.
These values are shown inside the bars and represented using
the dark-colored areas. Fig. 4(a) and (c) display the results based
on the experimental data. We find that the relative fractions of
DNA-binding residues (Fig. 4(a)) in the coil and helix conformation
are 0.036 and 0.035, respectively, which is about 4 times higher
that the relative fraction of 0.009 in the strand conformation. Sim-
ilarly, the relative fractions of RNA-binding residues (Fig. 4(c)) in
the coil, helix, and strand conformation are 0.028, 0.024, and
0.008, respectively. When compared to the overall rates of the sec-
ondary structures shown with the light-colored bars, this suggests
that the nucleic acid binding residues are disproportionally
depleted among the strand residues. We assess significance of dif-
ferences in the relative amounts of the DNA/RNA-binding residues
between any two secondary structure states and observe that the
relative fractions in the coil conformation are statistically higher
than in the helix conformation, and in coil/helix conformation
are statistically higher than in the strand conformation
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(p-value < 0.05). The enrichment in the helical conformations is
supported by studies of coiled-coils motifs in the DNA-/RNA-
binding proteins [115,116]. Fig. 4(b) and (d) compare the relative
fractions of native DNA-/RNA-binding residues between different
predicted secondary structures. The corresponding relations are
consistent with the observation from the experimental data,
including the statistical significance (p-value < 0.05). This indicates
that the predicted secondary structures are relatively accurate,
agreeing with the past favorable benchmark results of the PSIPRED
method [7,84]. Fig. 4(e) shows that the relations between putative
DNA-binding annotations and the experimental secondary struc-
tures replicates the relations between experimental data. However,
the relative fraction of the predicted RNA-binding residues in the
helix conformation is statistically higher than in the coil conforma-
tion (p-value < 0.05) in Fig. 4(g). Comparison with Fig. 4(c) reveals
that the RNA binding residues are overpredicted among the helical
residues and underpredicted among coils. The main point, which is
reflected in Fig. 4(f) and (h) that quantify the relations between
predicted DNA-/RNA-binding and predicted secondary structure,
is that the relations that we identify using the predictions replicate
the relations observed based on experimental data. This includes
the highest relative fraction of DNA-/RNA-binding residues in the
coil conformation, followed by helix and strand, and the fact that
the three pairwise differences are statistically significant (p-
value < 0.05).

The remaining experiment focuses on the relation between the
secondary structures and solvent accessibility (Fig. 5). Fig. 5(a)
reveals that residues in the coil conformation have statistically sig-
nificantly higher solvent accessibility compared to the helical resi-
dues (p-value < 0.05), which in turn have significantly higher



Fig. 4. Secondary structure for the DNA-/RNA-binding proteins in the part of the low-similarity test dataset that has the corresponding experimental data. The four panels on
the left (a, b, e, and f) focus on the DNA-binding residues. The four panels on the right (c, d, g, and h) show results for the RNA-binding residues. The color-coded bars give the
fractions of the secondary structures for residues in the DNA/RNA-binding proteins (light red for helix, light yellow for strand, and light green for coil). The dark-colored areas
inside the bars provide relative fractions of the DNA-/RNA-binding residues among the residues grouped by their secondary structures, i.e., DNA/RNA-binding residues among
the residues in the helix (in dark red), strand (in dark yellow), and coil (in dark green) conformations. The dark colored areas in the upper row of panels show the relative
fractions of the experimentally annotated DNA/RNA-binding residues while the lower row of panels displays these data for the DNA-/RNA-binding residues predicted by
MetaNucBind. We assess whether differences in the relative fractions of DNA/RNA-binding residues between residues in different secondary structure states (helix vs. coil,
helix vs. strand and strand vs. coil) are robust to different datasets, i.e., we repeat tests 100 times on randomly selected subsets of 20% of test proteins. We assess the
significance of differences in relative fractions of DNA-/RNA-binding residues between residues that have different secondary structures (helix vs. coil, helix vs. strand and
strand vs. coil) using the t-test if the underlying data are normal; otherwise, we use the Wilcoxon signed-rank test; we test normality with the Anderson-Darling test at the
0.05 significance. The corresponding p-values are included at the top of the box plots. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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solvent accessibility compared to the strand residues
(p-value < 0.05). This agrees with several works that show that
coils/loops are usually more solvent exposed than helices, while
strands are more frequently buried [117,118]. Fig. 5(b) compares
the experimental solvent accessibility values between residues
grouped based on their putative secondary structures. We observe
that it closely resembles the relations from the experimental data
from Fig. 1(a), including the statistical significance of the differ-
ences. Similarly, Fig. 5(c) summarizes the relation between puta-
tive solvent accessibility and experimental secondary structure.
We note that while the putative solvent accessibility is character-
ized by a narrower range of values compared to the native/exper-
imental values these predictions still accurately reflect relations
with the secondary structure. Finally, Fig. 5(d) shows that the rela-
tion between predicted solvent accessibility and predicted sec-
ondary structure replicates the relation between the
experimental values, including the highest solvent accessibility
values for coils followed by helices and strands and the fact that
the three pairwise differences (helix vs. coil, helix vs. strand and
strand vs. coil) are statistically significant (p-value < 0.05). This
suggests that the solvent accessibility and secondary structure pre-
dictions can be used both individually and together to accurately
reflect the native data. Furthermore, this provides the final piece
of support for our overarching claim that the relations between dif-
ferent types of native structural/functional characteristics of amino
acids are accurately replicated by the corresponding predictions.
4. Summary

The last few decades have seen an influx of sequence-based pre-
dictors of the residue-level annotations of protein function and
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structure. Popular examples include methods that predict intrinsic
disorder, secondary structure, solvent accessibility, and protein
and nucleic acid interaction sites. Numerous assessments and com-
parative surveys were done to catalogue and compare these meth-
ods [1,7,13,15,29,32,38-53]. These studies assist users in selection
of the most accurate or the most suitable tools, measure progress
over time and help in formulating future research directions. How-
ever, methods that focus on a given prediction target are typically
analyzed and evaluated in isolation from the other types of meth-
ods, while these diverse predictors are used to analyze the same
proteins. To the best of our knowledge, relationships between dif-
ferent predicted structural and functional features have never been
tested against the corresponding experimental data. This moti-
vated our systematic study that explored relations between all
pairs of the key residue-level characteristics including secondary
structure, solvent accessibility, intrinsic disorder and nucleic acids
binding. We study complementarity in two scenarios. First, when
combining predictions of the nucleic acid binding residues gener-
ated by the structure- and disorder-trained predictors. Second by
investigating whether relations among a comprehensive collection
of six pairs of the characteristics that are present in the experimen-
tal data are accurately reflected by the corresponding predictions.
These analyses rely on a large and consistent dataset of human
proteins that share low similarity (<25%) to the training data used
to develop the underlying predictors.

Our major finding is that the predictions accurately replicate
relations between solvent accessibility, secondary structure, inter-
action sites and intrinsic disorder that are measured using experi-
mental data. This suggests that the various predictions can be used
together to accurately reflect the native data, extending results of
the past studies that show that they produce accurate results indi-



Fig. 5. Relation between solvent accessibility and secondary structure on the part of the low-similarity test dataset that has the corresponding experimental data. Panel (a)
shows experimental values of solvent accessibility and secondary structure. Panel (b) summarizes experimental solvent accessibility and predicted secondary structure. Panel
(c) compares predicted solvent accessibility against the experimental secondary structure. Panel (d) shows relation between predicted solvent accessibility and predicted
secondary structure. The color-coded box plots (red for helix, yellow for strand, and green for coil) represent distributions of the solvent accessibility values using the 5th
(bottom whisker), 25th, 50th, 75th and 95th (top whisker) percentiles. We assess significance of differences in the solvent accessibility values between residues that have
different secondary structures (helix vs. coil, helix vs. strand and strand vs. coil) using the t-test if the underlying data are normal; otherwise, we use the Wilcoxon signed-
rank test; we test normality with the Anderson-Darling test at the 0.05 significance. The corresponding p-values are included at the top of the box plots. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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vidually. This paves the way to utilize multiple different residue-
level predictors together to gain insights concerning protein struc-
ture and function and to develop new bioinformatics systems. A
few recent examples include analysis of the SARS-CoV2 proteome
that applies predictions of protein and nucleic acids interacting
residues and intrinsic disorder [21]; development of a database
of membraneless organelles that describes associated proteins
using predictions of disorder, pi-pi contacts and nucleic acid bind-
ing residues [119]; system that predicts protein structure quality
using the putative solvent accessibility and intrinsic disorder
[120]; and a methodology that predicts deleterious single amino
acid variations by relying on the putative secondary structure,
intrinsic disorder, and coiled-coil regions [121].

Moreover, motivated a recent finding concerning prediction of
the protein-binding residues [58], we show that the structure-
trained and the disorder-trained predictors of DNA-binding and
RNA-binding residues produce complementary results.We find that
combining their outputs using a neural network produces predic-
tions that significantly outperform the results that they generate
individually. This suggests that they shouldbeused together tomax-
imize the accuracy of the prediction of nucleic acid binding residues.
We provide the resulting neural network model as a convenient
webserver at https://biomine.cs.vcu.edu/servers/MetaNucBind/.
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