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Stochastic process and tutorial 
of the African buffalo optimization
Julius Beneoluchi Odili1*, A. Noraziah2,3, Basem Alkazemi4 & M. Zarina5

This paper presents the data description of the African buffalo optimization algorithm (ABO). ABO is a 
recently-designed optimization algorithm that is inspired by the migrant behaviour of African buffalos 
in the vast African landscape. Organizing their large herds that could be over a thousand buffalos 
using just two principal sounds, the /maaa/ and the /waaa/ calls present a good foundation for the 
development of an optimization algorithm. Since elaborate descriptions of the manual workings of 
optimization algorithms are rare in literature, this paper aims at solving this problem, hence it is our 
main contribution. It is our belief that elaborate manual description of the workings of optimization 
algorithms make it user-friendly and encourage reproducibility of the experimental procedures 
performed using this algorithm. Again, our ability to describe the algorithm’s basic flow, stochastic 
and data generation processes in a language so simple that any non-expert can appreciate and use 
as well as the practical implementation of the popular benchmark Rosenbrock and Shekel Foxhole 
functions with the novel algorithm will assist the research community in benefiting maximally from 
the contributions of this novel algorithm. Finally, benchmarking the good experimental output of the 
ABO with those of the popular, highly effective and efficient Cuckoo Search and Flower Pollination 
Algorithm underscores the ABO as a worthy contribution to the existing body of population-based 
optimization algorithms

The obvious contributions of optimization to ensuring efficiency and effectiveness of industrial and engineer-
ing processes have led to the popularity of optimization as an indispensable subfield in artificial intelligence, 
computer science and engineering fields of study. Optimization has been described as the economics of science 
and engineering1. This definition is apt because optimization is concerned with the minimization of inputs in 
order to obtain maximum possible yield. It finds relevance in basically all aspects of science and engineering. 
In industrial production, for instance, manufacturing and process engineers are concerned with the optimiza-
tion of available resources (raw materials, industrial machines, human resources and time) in order to yield the 
greatest number of finished products of acceptable quality2. Optimization continues even to the distribution 
of such finished products. The transportation of the finished products to the distributors, customers and end-
users should be done in a way that will maximally benefit the organization in terms of time and cost. Even at the 
level of end-users, optimization is required by the consuming organizations cum individuals in their use of the 
finished products to meet their organizational/individual needs. From the foregoing discussion, the need for 
optimization cannot be over-emphasized3.

This overbearing influence of optimization has led to the development of several optimization algorithms 
in an attempt to improve the optimization procedures. Some of the popular optimization algorithms in litera-
ture include Genetic Algorithm, Particle Swarm Optimization, Sine-Cosine optimization algorithm4, Simulated 
Annealing, Hill Climbing, Tabu Search, Hybrid Whale Nelder Mead algorithm5, Great Deluge Algorithm etc6. 
These algorithms have been applied to solve several optimization problems ranging from vehicle routing, net-
work routing, constrained truss optimization problems7, job scheduling, collision-avoidance8, mobile ad-hoc 
networks, tuning PID parameters of Automatic Voltage Regulators9, sports and examination timetabling10, test 
suite optimization11, energy enhancement12, global optimization problems5, automobile connecting rod com-
ponents etc13 with good results.

The constant need for further improvements in the existing technologies has led to the development of some 
recent development algorithms. These newly-developed optimization algorithms are sometimes called twenty 
first century algorithms. Notable among these twenty first century algorithms are the Firefly, Ebola Optimization 
Search Algorithm14, Reptile Search Algorithm15, Bat Algorithm16, Dwarf Mongoose Optimization Algorithm17, 
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Animal Migration Optimization18, Grey Wolf Optimization19, League Championship20, Sine–Cosine, Water 
Cycle, Grasshopper, Harris Hawks Optimization, Dragon Fly Optimization Algorithm21, Whale Optimization22, 
Gaining-sharing knowledge based algorithm23 and the African Buffalo Optimization24 algorithms.

Since its introduction, the African Buffalo Optimization has enjoyed warm acceptance among researchers 
and wide application to different scientific and engineering processes25–28. So far, some of the application areas 
of the African Buffalo Optimization include Strategic management, numerical function evaluation29, travelling 
salesman’s problem, PID parameter tuning of automatic voltage regulators30, collision avoidance in electric fish31 
strategic integration of battery energy storage in distributed networks28 etc. This warm reception necessitated 
the need for a detailed explanation of the algorithm’s operational processes so that other researchers may better 
understand its internal mechanisms and further explore the strengths of the algorithm. This is the motivation 
for this study. This study is significant because it is rare to find a similar study highlighting the literal working of 
newly-designed algorithms from a human perspective. Instead what is available, in literature, is a brief description 
from a machine perspective32. It is hoped that this study will simplify software design and development using 
the African Buffalo Optimization algorithm in solving different engineering, scientific and industrial problems. 
Moreover, it is hoped that it will stimulate interest, among researchers, in highlighting the literal working of 
algorithms from a human perspective. The knowledge of the literal workings of the African Buffalo Optimization 
algorithm will enhance the understanding, implementation and use of the algorithm.

The rest of this paper is organized as follows: section two examines the materials and methods that basically 
describes the algorithms’ developmental processes as it relates specifically to the ABO; section three discusses 
the ABO algorithm; section four presents ABO solutions to global optimization problems as well technically 
exploring ABO’s search procedure in a two-dimensional search space; section five discusses the implementation 
of the ABO and the CS to solve the benchmark Rosenbrock function specifically highlighting the effects of the 
number of search population cum iterations in the search process and section six examines the ABO and FPA 
in solving the benchmark Dejong 5 (Shekel) function. Section seven draws conclusion on the study.

Materials and methods
The African buffalo optimization (ABO) was inspired by the migrant behaviour of the African buffalos, especially 
the organizational prowess of the buffalo herd in their movements from one part of Africa to the other in search 
of grazing pastures33. The development of the ABO began with a careful study of the movement and organiza-
tion of the African buffalos in existing literature as well as from television documentary programs on National 
Geographic Wild Channel34,35.

The design of the ABO is an effort to design a fast, robust, effective, efficient, yet simple-to-implement and 
user-friendly algorithm imbued with sufficient capacity to exploit and explore the solution space through thor-
ough simulation of the democratic cum communicative capabilities of cape buffalos, (otherwise called African 
buffalos) in their quest for solutions36.

ABO simulates the cooperative nature, communicative acumen coupled with the communal decision-making 
procedures of the African buffalos that places much premium on the harnessing of the collective intelligence of 
the entire herd. The buffalos use mainly two vocalizations to organize themselves in their search for solutions: the 
attraction sound /maaa/ for exploitation and repulsion /waaa/ sound for exploration. The herd movement, provi-
sion and protection of the entire buffalo community hinges on the effective utilization utilisation of both calls.

Stages in the development of the ABO.  As earlier observed, the design of a swarm intelligence algo-
rithm follows a six-step procedure. These six steps were diligently followed in the design of the African Buffalo 
Optimization37,38, namely:

	 i.	 Careful observation of the behavior of a group of organisms/creatures working harmoniously to realize 
the group’s objectives that seem rather impossible for an individual member of the group. The African 
buffalos were keenly studied based on observation from the National Geographic Wild television channel

	 ii.	 A model was developed that fully describes the behavior of a herd community, in this case of the African 
buffalos

	 iii.	 The development of a mathematical model based on the model of behavior developed in (ii)
	 iv.	 A pseudocode was designed to simulate the behavior of African buffalos
	 v.	 A programming code was developed to implement the pseudocode
	 vi.	 The programming code was subjected to various mathematical cum experimental evaluations with the 

aim of fine-tuning the algorithm’s parameters to achieve the set objectives39.

The methodology for design and applications of the ABO algorithm is presented in Fig. 1.

The ABO algorithm
The ABO algorithm40 and flowchart is presented in Fig. 2:
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Figure 1.   ABO design methodology flowchart.
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Figure 2.   ABO algorithm.
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Please note that in Fig. 2, wk represents the /waaa/call. This call mobilizes the herd to move on (explore) with 
particular reference to buffalo k. The mk  represents the /maaa/ call to exploit. Similarly, w′

k,  the call for more 
exploration; m′

k , a represents need for more exploitation; lp1 and lp2 , the learning parameters; and  �  a random 
number which takes any value between 0 and 1 depending on the problem being solved: the higher the value, 
the more the exploitation and less of exploration and vice-versa.

ABO mathematical description.  The ABO starts by randomly initializing the buffalo population within 
the search space. Next the buffalo’s exploitation capacities are evaluated using Eq. (1). The outcome of this evalu-
ation is crucial in determining the next move of the buffalos in their search for fruitful grazing locations. The 
result of democratic Eq. (1) is fed into the exploration Eq. (2) [see Eq. (2) below] to determine whether the buf-
falos will remain in the same location or migrate to another location. If the bg (the buffalo with the best position 
in relation to the global optimum) is updating, the algorithm verifies if the stopping criteria has been reached. If 
yes, it terminates the run and outputs the location of the best buffalo as the output. If the stopping criterion has 
not been reached, the algorithm returns to step 2 to reassess the buffalos’ exploitation values.

The controlling equation that propels the entire buffalo herd to relocate to other locations, probably more 
rewarding than the present location is:

Equation 1 which is the exploration equation has three parts: the memory part ( mk
′ ) that reminds the buf-

falos that they have relocated to a new location from the previous location (mk ); the second part which signals 
the cooperative behaviour of the buffalos, (lp1

(

bg − wk

)

) and the third part ( lp2
(

bpk − wk

)

 ) represents the 
buffalos capacity for excellent communication among the entire herd. Note that this decision is influenced by 
the learning parameter lp1.

The last part of Eq. (1): ( lp2
(

bpk − wk

)

, underscores the exceptional intelligence of these animals. They can 
tell their previous best productive location in comparison with their present location. This knowledge enables the 
buffalos to retrace their steps to the best previous rewarding location whenever they stray away into a starving 
location. Also, note that the buffalo’s exceptional intelligence with regards to the previous best rewarding loca-
tion vis-à-vis their present location is influenced by the learning parameter lp2. As can be observed, the entire 
Eq. (1) highlights the buffalos’ ability to harness the collective intelligence, excellent memory capacity cum regular 
communication of the herd in making informed decisions in their search for solutions41.

Again, it can be observed that the algorithm subtracts the dimensional element wk from the maximum vec-
tor and then multiplies this by the learning parameters ( lp1, lp2 ) usually between 0 and 1. The right values of the 
learning parameters ( lp1, lp2 ) are obtainable through parameter tuning process. Please note also that a higher 
value of lp1 biases the search towards global search while the higher the value of lp2 , the local search. The sum 
of these products is then added to the exploitation memory part of the equation ( mk ) for the given dimension 
( xory ) to determine the actual fitness of the buffalos. Equation 2 basically, propels the buffalos to a new location 
following the outcome of Eq. (1).

From Eq. (2), it can be seen that the movement of the buffalos is a function of the /waaa/ calls ( wk ) and the 
/maaa/ (mk) calls of the buffalos being moderated by exploration driver � which takes a value between 0 and 1. 
The higher the value of the � , the less exploration and vice-versa. The ABO can be visualized thus:

In Fig. 3, the movement of buffalo k , therefore, from wk  (the present exploration location), to other locations 
has to be influenced by other factors such as the mk , the exploitation location and appropriate adjustment of its 
position in relation to the herd’s best (bg− wk) as well as its personal best ( bpk − wk) with the covert bias of 
the learning parameters.

ABO for global optimization problems
In modern scientific investigations, scientists encounter problems that are multimodal with diverse objective 
functions and having different channels, hyperplanes, valleys, peaks etc. Ability to provide solutions to such 
global optimization problems distinguishes an effective and efficient optimization algorithm from the rest42. In 

(1)m′

k = mk + lp1
(

bg − wk

)

+ lp2
(

bpk − wk

)

(2)wk
′
=

(wk +mk)

�
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our attempt to unravel the search potentials of the ABO, it is necessary to simulate ABO search procedure in a 
two-dimensional search space but first, let us examine the ABO solution steps.

ABO steps for solving global optimization problems. 

1:	 Initialize the buffalos randomly within the search space
2:	 State the controlling ABO learning parameters: lp1 and lp2
3:	 Using Eq. (1), verify the herd exploitation state noting each buffalo’s bp and the bg for the entire herd
4:	 Using Eq. (2), determine the location of the buffalos
5:	 Check if the bg is updating. Yes, go to Step 6, else return to Step 2
6:	 Verify stopping criteria. Reached, go to Step 7, else go to Step 3
7:	 Output the best result.

ABO on a two‑dimensional space.  At this juncture, let us attempt the demonstration of ABO on a two-
dimensional search space. For this exercise, we initialize buffalo k to location 7, 9; buffalo l  to 11, 15 and buffalo 
j, 4, 15 (see Fig. 4). Again, we assume the global optimum point is 41.5, 75. In the first iteration, we place lp1 as 
0.6, lp2 as 0.5, � is a random number [0, 1]. It is important to observe that the lower the value of � , the more the 
exploration and vice-versa. For the sake of convenience, let � assume values between 0.5 and 0.9 (see Fig. 1).

Iteration 1 (for bk):
bp =each buffalo’s starting points,
bg =11,15(bj), picked randomly

mk
′
= mk + lp1(bg − wk)+ lp2(bp.k − wk)

mk1

bp.k

wk
wk

mk

wk1

bpk
-wk

bg-w
k

bg

mk

Figure 3.   ABO visualization.
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Figure 4.   Starting locations.
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At this point, the present exploitation values of buffalo k, represented by m′

k is (9.4, 12.6). Next, let us apply 
these new exploitation fitness dimensions to our buffalo location using exploration decision Eq. (2)

Also, please note that the present location of buffalo k , represented by w′

k is (32.8, 43.2). Plot these new values 
into our graph (see Fig. 5):

Let us now see the performance of the ABO for buffalo l  at the first iteration.
Iteration 1 (for bj):
bp = each buffalo’s starting points, bg = 11,15(bj ), picked randomly

m′

k(x)=7+ 0.6(11−7)+ 0.5 ∗ (7− 7)

= 7+ 0.6(4)+ 0.5(0)

= 7+ 2.4+ 0

m′

k(x) = 9.4

m′

k = mk + lp1
(

bg−wk

)

+ lp2
(

bp.k− wk

)

m′

k

(

y
)

= 9+ 0.6(15− 9)+ 0.5(9− 9)

= 9+ 0.6(6)+ 0.5(0)

= 9+ 3.6+ 0

m′

k(y) = 12.6

hence, m′

k = (9.4, 12.6).

w′

k =
(wk +mk)

�

w′

k(x) =
(7+ 9.4)

0.5

= 32.8

w′

k(y) =
(9+ 12.6)

0.5

= 43.2

hence, w′

k = (32.8, 43.2)

bj(1), 13.56, 40.67
bk(1), 32.8, 43.2

bl(1), .22. 25, 37.5

bk(2), 20.89, 28, 

bj(2), 6.96, 5.58

bl(2),41.5, 75. 
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Figure 5.   1st Iteration.
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At this point, the present exploitation values of buffalo j , represented by new mj is (8.2, 21.6). Next, let us apply 
these new exploitation fitness dimensions to our buffalo location using exploration decision Eq. (2)

The new location of buffalo bj is (13.56, 40.67) as shown in Fig. 5.
Iteration 1 (for bl):
bp = each buffalo’s starting points, bg =11, 15(bj ), picked randomly

At this point, the present exploitation values of buffalo l  , represented by new m1l is (6.8, 15). Next, let us apply 
these new exploitation fitness dimensions to our buffalo location using exploration decision Eq. (2)

m′

j = mj + lp1
(

bg−wj

)

+ lp2
(

bp.j− wj

)

m′

j(x) = 4+ 0.6(11−4)+ 0.5 ∗ (4− 4)

= 4+ 0.6(7)+ 0.5(0)

= 4+ 4.2+ 0

m′

j(x) = 8.2

m′

j = mj + lp1
(

bg−wj

)

+ lp2
(

bp.j− wj

)

m′

j

(

y
)

= 15+ 0.6(15− 4)+ 0.5(15− 15)

= 15+ 0.6(11)+ 0.5(0)

= 15+ 6.6+ 0

m′

j

(

y
)

= 2.16 new mj = (8.2, 21.6).

w′

j(x) =

(

wj + mj

)

�

w′

j(x) =
(4+ 8.2)

0.9

= 13.56

w′

j

(

y
)

=
(15+ 21.6)

0.9

= 40.67 new wj = (13.56, 40.67)

m′

l = mj + lp1
(

bg − wl

)

+ lp2
(

bp.l− wl

)

m′

l(x) = 11+ 0.6(4− 11)+ 0.5 ∗ (11− 11)

= 11+ 0.6(−7)+ 0.5(0)

= 11+−4.2+ 0

m′

l(x) = 6.8

m′

l = mj + lp1
(

bg−wl

)

+ lp2
(

bp.l− wl

)

m′

l

(

y
)

= 15+ 0.6(15− 15)+ 0.5(15− 15)

= 15+ 0.6(0)+ 0.5(0)

= 15+ 0+ 0

m′

l

(

y
)

= 15 new m1 = (6.8, 15).

w′

l(x) =
(wl + ml)

�

w′

l(x) =
(11+ 6.8)

0.8

= 22.25
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Now, buffalo bl is in location 22.25, 37.5 (see Fig. 5).
Iteration 2 (for bk):
We shall use the dimensions obtained from the first iteration to update our algorithm using Eq. (1). It should 

be observed that the algorithm updates bg value from iteration to iteration. Let us randomly take the bk as the 
bg and the individual buffalo’s newest locations as their bp . This is in appreciation of their performances at the 
first iteration and in line with the ABO’s strategy to avoid stagnation. For iteration2, therefore, the bg is 8.9, 15.

bp = each buffalo’s previous points, bg = 32.8,43.2 ( bk(1) ), picked randomly

Applying the new exploitation fitness dimensions to our buffalo location using exploitation decision Eq. (2)

Next, we plot this present location of our buffalo into our graph shows that the buffalo is migrating towards 
our global maximum. (see Fig. 6):

Iteration 2 (for bj):
bp = each buffalo’s previous points, bg = 32.8,43.2 ( bk(1) ), picked randomly

w′

l

(

y
)

=
(15+ 15)

0.8

= 37.5 new w1 = (22.25, 37.5)

m′′

k = m′

k + lp1
(

bg−w′

k

)

+ lp2
(

bp.k− w′

k

)

m′′

k(x) = 9.4+ 0.6(32.8− 32.8)+ 0.5(32.8− 32.8)

= 9.4+ 0.6(0)+ 0.5(0)

= 9.4+ 0+ 0

= 9.4

m′′

k(y) = 12.6+ 0.6(43.2− 43.2)+ 0.5(43.2− 43.2)

= 12.6+ 0.6(0)+ 0.5(0)

= 12.6+ 0+ 0

= 12.6

m′′

k = (9.4, 12.6).

w′′

k(x) =
(wk + mk)

�

w′′

k(x) =
(9.4+ 9.4)

0.9

= 20.89

w′′

k

(

y
)

=
(12.6+ 12.6)

0.9

= 28

w′′

k

(

y
)

= (20.89, 28) So new wk′′ = (20.89, 28).

m′′

j = mj′ + lp1
(

bg−wj

)

+ lp2
(

bp.j− wj

)

m′′

j (x) = 8.2+ 0.6(32.8−13.56)+ 0.5 ∗ (6.1−13.56)

= 8.2+ 0.6(19.24)+ 0.5(−7.46)

= 8.2+ 11.54+−3.73

m′′

j (x) = 16.01

m′′

j = mj′ + lp1
(

bg−wj

)

+ lp2
(

bp.j− wj

)

m′′

j

(

y
)

= 21.6+ 0.6(43.2− 40.67)+ 0.5(18.3− 40.67)

= 21.6+ 0.6(2.53)+ 0.5(−22.37)

= 21.6+ 1.38+−11.19

= 11.79

m′′

j

(

y
)

= new mj = (16.01, 11.79).
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Plotting the present mj values (16.01, 11.79) to Eq. (2):

Now bj has moved to 36.96, 65.58 (Fig. 5).
Iteration 2 (for bl):
bp = each buffalo’s starting points, bg = 32.8,43.2 ( bk(1) ), picked randomly

Applying the present values of  ml (7.47, 20.67) to Eq. (2):

w′′

j =

(

wj +mj

)

�

w′′(x) =
(13.56+ 16.01)

0.8

= 36.96

w′′

j

(

y
)

=
(40.67+ 11.79)

0.8

= 65.58 wj = (36.96, 65.58)

m′′

l = ml′ + lp1
(

bg−wl

)

+ lp2
(

bp.l− wj

)

m′′

l (x) = 6.8+−0.6(32.8−22.25)+ 0.5 ∗ (11−22.25)

= 6.8+ 0.6(10.55)+ 0.5(−11.25)

= 6.8+ 6.3+−5.63

m′′

l (x) = 7.47

m′′

l = ml′ + lp1
(

bg−wl

)

+ lp2
(

bp.l− wj

)

m′′

l

(

y
)

= 15+ 0.6(43.2− 15)+ 0.5(15− 37.5)

= 15+ 0.6(28.2)+ 0.5(−22.5)

= 15+ 16.92+−11.25

m′′

l

(

y
)

= 20.67 new ml = (7.47, 20.67).

bj(1), 13.56, 40.67
bk(1), 32.8, 43.243 
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Figure 6.   2nd Iteration.
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At this point, the ABO verifies the exit criterion and discovers that this has been met since its assignment is 
to obtain the optimum result which is (41.5, 75).

Implementation of the ABO and the CS
In this section, the popular benchmark Rosenbrock function is implemented using ABO and Cuckoo Search on 
a PC, 4 GB RAM, Intel Duo Core i7 370 CPU @ 3.40 GHz, 3.40GH running Windows 10 using MATLAB 2012b.
The ABO parameters used in the experiments are lp1 = 0.7; lp2 = 0.5. For the CS, the parameters are: step = u./
abs (v). ^ (1/beta); step size = 0.01* step; u = rand (size (s)) * sigma; pa = 0.5; v = rand (size(s)). Each specific 
experimental was executed five times.

The aim of the experimental evaluations is to unravel the effect of the number of buffalos/nests and the 
iterations in obtaining good results with the objective of performing a comparative performance evaluation 
of both algorithms. The choice of Cuckoo Search is borne out of the fact that Cuckoo Search, in addition to 
being a recently developed metaheuristic, has so far proven to be very efficient and effective in solving several 
optimization problems. Some of the successful application areas of the Cuckoo Search includes job scheduling, 
flow shop scheduling, travelling salesman’s problems, image processing, speech recognition, global optimization 
problems etc43.

The evaluation metrics used in the comparative performance analysis in this study are the algorithms effi-
ciency and effectiveness. Effectiveness as used in this study refers to the capacity of the algorithms to algorithms 
to obtain the optimal results while algorithm efficiency refers to the algorithms capacity to obtain results using 
the most optimized resources44,45.

Cuckoo search.  Cuckoo Search (CS) algorithm was designed by X. Yang and S. Deb. The algorithm is a 
mathematical simulation of the irresponsible behaviour of cuckoo birds brooding over their eggs until such eggs 
are hatched46. The CS pseudocode47 and flowchart48 is presented in Fig. 7:

CS starts its search by initializing, randomly, cuckoo bird nests. Next using Eq. (3), it evaluates the fitness 
of each nest.

Once it obtains the cuckoo nest with the best fitness, it records same and compares it with the next best nest 
fitness in the subsequent iterations. In each iteration, the CS algorithm verifies the stopping criteria. Once the 
algorithm reaches the stopping criteria, the algorithm outputs the best fitness as the answer to the optimization 
problem being solved.

The dataset for the Global optimization problems are obtained from the benchmark continuous global opti-
mization test problems49. Rosenbrock function is one of functions designed by Kenneth Dejong for his Ph.D. 

w′′

l =
(wl +ml)

�

w′′

l (x) =
(22.25+ 6.8)

0.7

= 41.5

w′′

l

(

y
)

=
(37.5+ 15)

0.7

= 75 new wl = (41.5, 75)

(3)Xij(t+ 1) = Xij(t )+ αLevy(�)
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Thesis in 1975. The others functions include Dejong 5 (Shekel foxhole), Sphere, Quartic and Step functions. 
Over time it has become very popular among researchers for testing optimization algorithms. Note that the 
benchmark Rosenbrock function is50:

and the optimum solution is:

Comparative performance evaluation of ABO and cuckoo search.  The experimental outcome 
when 10 buffalos/nests are executed with varying buffalo and nests population deployed to the search space 
is presented in Table 1. The choice of 10 buffalos/nest was informed by the recommendation of the designer of 
Cuckoo Search that the algorithms works better when a population of between 15 and 40 nests are used51. The 
experimental outcome is presented in Table 1.

The simulation results in Table 1 indicate that the best average outcome of the ABO (2.9357 e−06 at an average 
of 2.273 s) was obtained at 5000 iterations when searching with 10 buffalos. It is interesting, however, to note 
that a single best performance 2.503 e−07 which is the best individual result was obtained when 10 buffalos are 
deployed using different iterations (10, 100, 1000, 5000 and 10,000). This is a mark of the algorithm’s random-
ness: a mark of good algorithms50.

In this Table, it is remarkable that the average output derived from using 10,000 iterations (3.7547 e−05 ) is 
inferior to deploying just 5000 iterations (2.9357 e−06 ). This result is interesting because in an earlier study on the 
Genetic Algorithm, it was observed that the use of a larger population/iteration leads to better results52. In the 
light of the findings of this study, it may be safe to say that the assertion of the earlier study could be algorithm-
specific or problem-specific.

In terms of the comparative results, the ABO was discovered to be a better starter. For instance at 10 itera-
tions, the ABO has a better result of 0.0426 compared to CS’s 0.5634. Similarly, the ABO was faster at this point 
with 0.021 than the CS’s 0.031.

(4)f (x) =

d−1
∑

i=1

[

(

100xi − x2i
)2

+ (xi − 1)2
]

(5)f (x) = 0

Figure 7.   CS pseudocode.
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However, in terms of obtaining the optimal or near optimal results, the tide changed from the 100 iterations, 
On the average, the CS, had better good results right from 100 iterations all through the 10,000 iterations but at 
a very inferior time when compared to the results obtained by the ABO. Right from when both algorithms were 
executed with just 100 iterations, the results of the CS were superior to those of the ABO. The average result of 
the CS at 100 iterations was 5.0611 e−13 as opposed to ABO’s 0.0527. This trend continues to 10,000 when the 
CS obtained the optimal solution of 0.

Based on the findings of Table 1, it is necessary to investigate the performance of ABO and CS when a 
population of 50 search agents are deployed. This is the focus of the second set of experiments whose outcome 
is presented in Table 2.

The simulation outcome of Table 2 follows the trend of Table 1. CS, generally, had better results than ABO 
but ABO has again proven to be a faster algorithm. A major contribution of this study is the discovery that the 
CS obtained better output at 5000 iterations when 10 nests were deployed (2.4697 e−320 ) than when 50 nests 
(4.9646 e−165 ). At 10,000 iterations using 10 nests, the CS converged at the optimum result (average: 0) but was 
unable to do same when 50 nests were used at the same 10,000 iterations (average: 5.3958 e−272 ). Also one won-
ders why the need of as much as 10,000 iterations using 50 nests when the result of 10 nests with 5000 iterations 
could do a better job.

A closer look at the CS performance at just 1000 iterations shows that the algorithm performed better using 
just 10 nests at an average of 4.4527 e−78 than when searching with 50 nests (average: 2.2048 e−55 ). The finding 
here is, again, a deviation from the view that the more the iterations cum population, the better the result. When 
searching with 50 buffalos, the ABO had a better result at 5000 iterations with an average outcome of 2.7808 
e−06 than at 10,000 iterations with an average of 4.1005 e−06 . Aside these few exceptions, the other results follow 
the general trend that the more the population cum iterations, the more likely, the chance of a better result53.

In terms of the speed of execution, the experimental outcome in Table 2 is consistent with earlier findings that 
the deployment of more populations and more iterations may likely lead to more processing time but with better 
results54. The slow speed whenever more iterations and more populations are deployed is because the algorithm’s 
convergence gets slower as a result of more evaluations arising from such a situation.

Table 1.   Simulation output with 10 buffalos/nests with different iterations.

Iterations

ABO CS

fmin Average Time (s) Average time (s) fmin Average Time (s) Average Time (s)

10

0.0359

0.0426

0.022

0.021

2.3080

0.5634

0.040

0.031

0.0580 0.021 0.0013 0.031

0.0028 0.022 0.0329 0.033

0.1025 0.021 0.4738 0.034

0.0137 0.019 0.0012 0.018

100

0.0018

0.0527

0.030

0.0542

3.9731 e−13

5.0611 e−13

0.172

0.163

0.0018 0.059 9.8137 e−14 0.162

0.0031 0.060 4.4142 e−12 0.154

0.0308 0.059 1.5596 e−13 0.170

0.2259 0.063 5.5449 e−15 0.157

1000

0.0011

0.0077

0.468

0.4650

4.6147 e−85

4.4527 e−78

1.565

1.5874

0.0004208 0.455 1.0024 e−83 1.556

0.00065974 0.472 4.2801 e−78 1.563

0.0124 0.464 4.2170 e−69 1.600

0.0241 0.466 8.1493 e−75 1.653

5000

2.503 e−07

2.9357 e−06

2.293

2.273

0

2.4697 e−320

8.118

7.9480

1.0443 e−04 2.291 3.0304 e−318 8.086

1.4071 e−06 2.277 4.3782 e−318 7.867

6.6688 e−06 2.247 0 7.848

3.0553 e−05 2.258 4.9407 e−324 7.821

10,000

1.8499 e−05

3.7547 e−05

4.640

4.488

0

0

15.372

15.761

3.5446 e−05 4.497 0 15.586

2.8062 e−05 4.421 0 15.683

6.9589 e−05 4.422 0 15.979

3.6141 e−05 4.458 0 16.183
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Comparative performance of ABO and flower pollination algorithm
Flower Pollination Algorithm (FPA) which was designed by X.S. Yang has been very exceptional in obtaining 
good results when applied to solve optimization problems. The algorithm inspired by the normal pollination of 
natural flowers through self-pollination (biotic pollination) by water or wind or cross pollination (abiotic pol-
lination) by other animals uses levy flight to arrive at solutions. In FPA self-pollination represents global search 
and cross pollination, local search. In either the local or global search, there exists a strict regulation by a switch 
search mechanism with a probability p ∈ [0, 1]. Global pollination is modelled by the following process:

xi
t is the pollen i or solution vector xi at iteration t. gbest is the globally best solution. The parameter L is a step 

size, and is drawn from a Lévy distribution.

(6)xt+1
i = xti + L

(

xti−gbest
)

Table 2.   Simulation output with 50 buffalos/nests with different iterations.

Iterations

ABO CS

fmin Average Time (s) Average time (s) fmin Average Time (s) Average time (s)

10

0.0101

0.0357

0.063

0.051

0.1048

1.0334

0.071

0.0784

0.0518 0.052 1.1899 0.068

0.091 0.051 0.0314 0.068

0.013 0.037 2.9252 0.068

0.0127 0.052 0.9157 0.117

100

0.0126

0.0058

0.229

0.228

4.1464 e−14

3.8376 e−15

0.172

0.163

0.0013 0.225 6.8572 e−14 0.162

0.0044 0.229 2.6223 e−16 0.154

0.0036 0.230 2.7811 e−15 0.170

0.0069 0.227 2.7811 e−16 0.157

1000

6.1493 e−05

4.4423 e−04

1.981

2.032

1.3143 e−54

2.2048 e−55

6.231

6.310

6.1548 e−05 1.986 5.4190 e−56 6.257

3.4435 e−04 2.056 1.6071 e−56 6.364

2.8068 e−04 2.052 1.0727 e−55 6.384

3.6573 e−05 2.083 1.6111 e−54 6.313

5000

4.1663 e−06

2.7808 e−06

4.526

8.761

6.8572 e−161

4.9646 e−165

26.775

30.042

1.9063 e−07 9.830 2.6223 e−169 25.366

2.7224 e−05 9.737 2.7811 e−165 31.439

1.6645 e−05 10.012 7.3016 e−165 32.744

3.4444 e−06 9.702 5.2609 e−167 33.884

10,000

7.8032 e−06

4.1005 e−06

20.117

20.237

2.0759 e−269

5.3958 e−272

67.500

68.441

5.9999 e−07 20.734 6.5280 e−272 68.044

2.0300 e−07 19.853 8.5684 e−271 68.585

1.0420 e−06 20.138 8.2255 e−269 70.631

3.6275 e−05 20.341 1.5813 e−279 67.447
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Table 3 below presents the comparative performance evaluation of the ABO and FPA.
FPA pseudo code of FPA is presented:10.
In solving the complex Shekel Foxhole function that has 25 local minima and a global minimum, many 

algorithms struggle, but not FPA and ABO. Clearly, these two algorithms have been very competitive. Both 
algorithms used a population of 10 buffalos/flowers in their search which usually produces good results2,3,29,47. 
This population produced very good results as can be seen in Table 3. Please note that global minimum of the 
Shekel Foxhole function is55:

From Table 3, it can be seen that the ABO arrived at the global optimum at iteration 1000. In the same vein, 
FPA best result at iteration1000 was 0.9982 which is also a good result. ABO’s average after five runs at iteration 
5000 was 0.9981 to FPA’s 0.9984. It is obvious that the ABO has a slight advantage over the FPA in algorithm effec-
tiveness. In terms of efficiency, FPA clearly performed better right from the beginning to the end. For instance 
while it took the ABO an average of 54.972 s to make five runs at 5000, the FPA only took 11.176. For emphasis, 
note that algorithm effectiveness is the capacity of algorithms to arrive at the global optimum but efficiency refers 
to the algorithm’s capacity to minimize the use of computer resources. Since the amount of time spent to arrive 
at a solution correlates with use of computer resources, the amount of time taken to arrive at a solution dictates 
the length of time that the computer resources are engaged: the shorter the time, the better44.

In all, from the foregoing analysis, since algorithm’s performance is judged primarily by its efficiency and 
effectiveness, in view of the competitive results posted by the ABO so far, the algorithm can be deemed a worthy 
inclusion to the body of swarm optimization algorithms in literature.

Conclusion
This paper explains the algorithmic flow and data generation procedure of the African Buffalo Optimization 
algorithm. First, using very simple language as much as possible cum basic mathematical description with 
detailed examples, this paper explains the workings of the ABO in a manual setting. In the second part (see 
“Implementation of the ABO and the CS” and “Comparative performance of ABO and flower pollination algo-
rithm”), a MATLAB implementation of the ABO CS and the FPA were done to solve the benchmark Rosenbrock 
and Shekel Foxhole functions with particular emphasis on the effect of the search population and the number 
of iterations in obtaining good results. After a number of experimental evaluations, the study agrees, that to a 
large extent, the more the number of iterations cum population, the more likely the chance of a better outcome.

However, it must be observed that the more the population cum number of iterations, the more execution 
time taken to arrive at a solution. This is because the more the population cum iterations, the more the evalua-
tions, therefore, leading to slower convergence54. It is our sincere belief that with this detailed explanation cum 
data description of the ABO, the research community will explore the search capacity of this novel algorithm in 
solving different types of optimization problems in science and engineering applications bearing in mind that so 
far swarm optimization algorithms have been applied to so many real life problems. Some of the potential real 
life application areas of the African Buffalo Optimization algorithm include such as parameter estimations56, 
nonlinear system identification57 learning of the weights of neural networks58 and many others..

Threats to validity.  While we celebrate the good and competitive results of the algorithms used in this 
study, it is worthy of note, however, that good results could be a function of the machine used in the study, the 
programming language used for coding and implementation as well as technical expertise of the programmer. 

(7)x∗ = 0.9980



15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17319  | https://doi.org/10.1038/s41598-022-22242-9

www.nature.com/scientificreports/

Another factor that could be a threat to the validity of results could be the choice of benchmark test cases. Those 
algorithms perform very well in the chosen benchmark cases may not be a guarantee that they will do the same 
in other benchmarks. Moreover, the choice of the algorithms used in this particular study could be a threat: 
while acknowledging that the algorithms used in this study performed well against one another, they may not 
do the same when compared with other algorithms. Nevertheless, that these threats to the validity of the claims 
made in this study are highlighted, does not, in any way, contradict the findings/results obtained. For further 
study, it is recommended that performance of these algorithms be applied to a different dataset such as the CEC 
recent functions as well as similar datasets.
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