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ABSTRACT
Objectives Fairness is a core concept meant to grapple 
with different forms of discrimination and bias that emerge 
with advances in Artificial Intelligence (eg, machine 
learning, ML). Yet, claims to fairness in ML discourses 
are often vague and contradictory. The response to 
these issues within the scientific community has been 
technocratic. Studies either measure (mathematically) 
competing definitions of fairness, and/or recommend 
a range of governance tools (eg, fairness checklists or 
guiding principles). To advance efforts to operationalise 
fairness in medicine, we synthesised a broad range of 
literature.
Methods We conducted an environmental scan of 
English language literature on fairness from 1960- July 31, 
2021. Electronic databases Medline, PubMed and Google 
Scholar were searched, supplemented by additional 
hand searches. Data from 213 selected publications 
were analysed using rapid framework analysis. Search 
and analysis were completed in two rounds: to explore 
previously identified issues (a priori), as well as those 
emerging from the analysis (de novo).
Results Our synthesis identified ‘Three Pillars for 
Fairness’: transparency, impartiality and inclusion. We 
draw on these insights to propose a multidimensional 
conceptual framework to guide empirical research on the 
operationalisation of fairness in healthcare.
Discussion We apply the conceptual framework 
generated by our synthesis to risk assessment in 
psychiatry as a case study. We argue that any claim to 
fairness must reflect critical assessment and ongoing 
social and political deliberation around these three pillars 
with a range of stakeholders, including patients.
Conclusion We conclude by outlining areas for further 
research that would bolster ongoing commitments to 
fairness and health equity in healthcare.

INTRODUCTION
Automated- decision- making systems in medi-
cine (often machine- learning or ML- based) 
represent an emergent medical and techno-
logical innovation we call ‘Predictive Care’. 
Predictive care combines Big Data (on whole 
populations) and Small Data (on single 
people) to facilitate proactive, precise, and 
personalised health interventions. It is widely 
viewed as the ML tool with the most promise 

to solve some of the most complex and intrac-
table problems in healthcare.1 However, 
according to recent scholarship on algo-
rithmic injustice, there is growing evidence 
to suggest that ML tools amplify existing 
inequities, such as racial bias, often because 
they are trained on biased datasets.2–5 There-
fore, implementation in clinical contexts is 
concerning because predictive care systems 
have the potential to discriminate against 
people based on sociodemographic char-
acteristics such as age, sex or race.6 These 
concerns have led to explosive growth in 
‘fairness- aware ML,’ a new field that aims to 
design fair algorithmic systems1 by detecting 
and eliminating bias.7 8

In ML discourses, the notion of fairness 
appeared briefly in the late 1960s as a short-
hand for a range of procedural and statis-
tical methods designed to track and measure 
different forms of discrimination.9–11 Rediscov-
ered recently12 most current approaches to fair-
ness are technocratic.13 Studies either approach 
fairness as a set of (mathematical) techniques,14 
and/or recommend a set of governance proce-
dures that can be used to mitigate against any 
unintended harms (eg, fairness checklists or 
guiding principles).15 However, it remains 
unclear how exactly current approaches to 
fairness map onto established ethical frame-
works.7 16–19 For example, the narrow defini-
tion of fairness in ML discourses does not fully 
engage with fairness as an idiom, or a mode of 
expression used to resolve public debates and 
emotional tensions that emerge alongside 
questions about what it means to build a good 
and just society.20–23 Nor do these techniques 
or procedures fully address debates about 
who should/will benefit the most from these 
advances and why.19 24–33 Finally, it remains 
unclear how or which notions of fairness might 
be used to advance health equity.34 However, 
without conceptual clarity, attempts to opera-
tionalise fairness will be spurious.
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To advance efforts to operationalise fairness in medi-
cine, we synthesised a broad range of literature on fair-
ness in medical algorithms. The results of our synthesis 
identified three pillars of fairness: transparency, impar-
tiality and inclusion. We draw on these insights to propose 
a multidimensional conceptual framework to guide 
empirical research on the operationalisation of fairness 
in healthcare. We conclude by applying these three pillars 
to a case use scenario, drawing on examples from psychi-
atry. Although predictive care systems are not yet widely 
employed in psychiatry,35 models to predict suicide,36 
psychiatric readmission,37 and inpatient violence are in 
high demand.38 39 However, the performance of these 
models are often limited; for instance, most individuals 
identified with ML as being at high risk do not become 
violent,40 introducing a strong potential for bias in false 
positive predictions for certain groups. Although the 
future implementation of predictive care models is moti-
vated by the provision of safer and more efficient care, 
biased predictions can perpetuate health inequities. Thus, 
predictive care in psychiatry offers a timely example for 
illustrating the value of our three pillars in advancing the 
operationalisation of fairness in healthcare. Our overall 
aim is to invite discussion and spur innovative solutions.

METHODOLOGY: WHAT’S FAIR?
The planning phase of this research included a medical 
anthropologist (LS) and a computational neuroscien-
tist (SLH). We noted that there are few scholarly works 
devoted exclusively to understanding what it means to be 
fair or unfair (for exceptions41–43). We hypothesised that 
this may be because fairness is what sociolinguists call a 
‘strategically deployable shifter’.44 The meaning of any 
shifter depends on how the concept is used, by whom and 
in what context. Shifters are identifiable because they are 
often used by both critics and their intended targets. For 
example, developers of a predictive care model can claim 
it is “fair” because it pairs most patients with appropriate 
interventions. Detractors can claim it is ‘unfair’ because 
most patients paired with inappropriate interventions 
belong to protected groups, or a category of people 
protected by law, policy or similar authority.45 46 There-
fore, our research question for this review was: how do 
different disciplines define and operationalise fairness in 
relation to ML in healthcare?

Many health systems are poised to implement the use 
of Big Data and ML in medicine. Yet, few studies exist 
that describe the outcome or impact of predictive care 
tools on the diagnosis, treatment and lived experience of 
illness. Therefore, we chose an environmental scan over a 
systematic review so we could survey, document and inter-
pret commonly cited dimensions of fairness related to the 
use of ML in healthcare in a timely manner.47 It is particu-
larly useful in contexts where data acquisition is necessary 
to identify emerging trends in a rapidly evolving research 
field.48 Our aim was to foster the responsible interpreta-
tion and use of knowledge derived from advances in ML 

and to ensure that policy uptake is relevant and benefi-
cial for all (see online supplemental appendix 1 for more 
details).

RESULTS
Our synthesis of the literature identified three dimensions 
related to fairness: transparency, impartiality, and inclu-
sion. Each of these dimensions had intertwined attributes 
(see figure 1). The majority of the literature examined 
one or two of these pillars in relation to ML in health-
care, while few reported on all three. Rather than report 
raw numbers, we have indicated the degree to which 
each dimension of fairness is considered by a discipline 
(table 1). While not assessing the quality of the studies 
we extracted, this approach highlights current gaps in 
the fairness and ML literature. For example, computa-
tional scientists were preoccupied with ‘bias’ and ‘bias 
detection’ (eg, provenance), social scientists with trans-
parency and accountability, whereas clinicians were most 
concerned with implementation (table 1).

Three pillars for fairness and health equity
Although the literature we reviewed details a range of 
dimensions related to fairness, there is no single concep-
tual framework that integrates all of them. This article 
aims to address this gap through developing a conceptual 
framework for fairness we call ‘Three Pillars for Fairness 
and Health Equity’ (see table 2). Below we describe each 
of these pillars in turn and pay specific attention to the 
relationship between medical algorithms, predictive care 
and health equity.

Transparency
Transparency was cited as a key dimension of fair-
ness with three intertwined attributes: interpretability, 
explainability and accountability.49–52 Each encompasses 

Figure 1 Three pillars of fairness.
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methods designed to see, understand and hold complex 
algorithmic systems accountable. These attributes emerge 
from the fact that the inner workings of most algorithmic 
systems are invisible to all but the ‘highest priests in 
their domain: mathematicians and computer scientists,’ 
often making their verdicts, even when harmful, beyond 
dispute or appeal (O’Neil 2016:3).33 53 54 Thus, transpar-
ency requires that the actions of scientists are easy to 
assess,55–57 ensuring that stakeholders can decide whether 
they support the intentions, indications for use, and goals 
of any algorithmic system.58 59 However, the opacity of 
algorithmic systems requires that we revisit our expecta-
tions for transparency in predictive care. For example, 
novel approaches in ML, such as enhancing feature repre-
sentations with latent embeddings or applying neural 
networks, can improve our ability to predict important 
health outcomes,60 but they also make models less trans-
parent. Thus, there is a need to establish the degree to 
which we must be able to interpret and explain model 
results to clinicians, patients, and families. Crucially, the 
ability to see inside a system should not be conflated with 
the ability to govern it.50 61

Interpretability and explainability
In the literature we reviewed, interpretability and explain-
ability are often used interchangeably.49 However, inter-
pretability most often refers to procedures and statistical 
techniques primarily used by scientists, to test, validate, 
and replicate findings.62 In ML, this involves evalua-
tion metrics (eg, accuracy, sensitivity, specificity), which 
can be used to compare performance across protected 
groups.12 34 However, a predictive care model achieving 
similar performance across samples or settings is inter-
pretable but not necessarily fair. If a predictive care model 
is biased against a sociodemographic group, this bias 
may carry over or be amplified in a different setting or 
sample.63–66 Moreover, as described by the ‘impossibility 
theorem,’ not all fairness criteria can be satisfied at the 
same time.6 16 67 For example, a predictive care model can 
achieve high accuracy (and therefore be interpretable 
and statistically fair) but can still be discriminatory.68 69

This limitation of interpretability may be addressed 
by explainability, which in part involves understanding 
how model features contribute to prediction. Various 
technical tools and procedures exist to address concerns 

Table 1 Key dimension of fairness in the literature review by discipline (n=213)

Research field Fairness dimension Specific attribute
Volume of articles by 
specific attributes

Computational sciences
(n=68)

Transparency
 

Impartiality
 

Inclusion

Interpretability/explainability
Accountability
Provenance
Implementation
Completeness
Patient and family engagement

+ + +
+
+ + + +
+
+ + +
+

Medicine
(n=43)

Transparency
 

Impartiality
 

Inclusion

Interpretability/explainability
Accountability
Provenance
Implementation
Completeness
Patient and family engagement

+
+ + +
+ +
+ + + +
+ + +
+ +

Social sciences
(n=73)

Transparency
 

Impartiality
 

Inclusion

Interpretability/explainability
Accountability
Provenance
Implementation
Completeness
Patient and family engagement

+ + +
+ + + +
+ + +
+ + +
+ + +
+ +

Interdisciplinary research teams
(n=29)

Transparency
 

Impartiality
 

Inclusion

Interpretability/explainability
Accountability
Provenance
Implementation
Completeness
Patient and family engagement

+ +
+ +
+ + +
+ + + +
+ +
+

++++The majority of the literature reviewed in this field.
+++Several peer reviewed articles (five or more).
++A small number of peer reviewed articles (less than five).
+Little or no known literature (two or less).
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about the so- called ‘black box problem’ of algorithmic 
systems, such as techniques to identify how models weigh 
features.70 71 In the context of fairness however, explain-
ability is only useful if highly- weighted features point to 
sociodemographic biases in model performance. For 
example, it may be possible to identify potential sources of 
bias in a predictive care model by examining whether the 
nature or availability of important features differ between 
sociodemographic groups. Moreover, in the literature 
we reviewed, explainability was also often used to draw 
attention to the social and communicative processes that 
surround predictive care tools. For example, these studies 
emphasised that fairness was not just about conveying 
accurate and unbiased information, but also about 

communicating the purpose, relevance and limitations of 
an algorithmic systems.72–74

Even if explainability is possible, it may not yield desir-
able outcomes.75 76 According to emerging evidence, 
many clinicians are susceptible to following incorrect 
diagnostic advice.77 This effect is more pronounced when 
ML- based advice is paired with explanations of features 
contributing to prediction,78 suggesting that explain-
ability can adversely impact clinical decision making.79 
Further, the ability to interpret and explain how a model 
works is not sufficient to mitigate harms. Recent studies 
of vaccine hesitancy and resistance to ebola campaigns 
emphasise that trust in public health interventions is 
often undermined by power differentials between patients 

Table 2 Three pillars for fairness

Fairness pillar Source of unfairness Challenge: Attribute Key questions

Transparency: A range 
of methods designed 
to see, understand 
and hold complex 
algorithmic systems 
accountable in a timely 
fashion.

‘Like Gods, these 
mathematical models 
were opaque, their 
workings invisible to 
all but the highest 
priests in their domain: 
mathematicians and 
computer scientists’ 
(O’Neil: 3)

How can we foster 
democratic and 
sustained debate 
on the role of AI/
ML in healthcare 
with a range of 
stakeholders, including 
patients experiencing 
complex and serious 
mental illness and/or 
addiction?

Interpretable Are biases from predictive care 
models carried over across 
samples and settings?

Explainable Which model features are 
contributing to bias and what kinds 
of assumptions do they amplify? 
How does an understanding of 
these features by stakeholders 
impact clinical care?

Accountable How does predictive care impact 
stakeholders (patients, families, 
nurses, social workers)? What 
governance structures are in place 
to ensure fair development and 
deployment? Who is responsible 
for identifying and reporting 
potential harms?

Impartiality: Health 
care should be 
free from unfair 
bias and systemic 
discrimination.

‘AI can help reduce 
bias, but it can also 
bake in and scale bias’ 
(Silberg and Manyika:2)

How are complex
social realities
transformed into
algorithmic systems,
and what kinds of
normative assumptions
drive these processes?

Provenance Do predictive care model features 
reflect socio- economic and 
political inequities? Might these 
features contribute to biased 
performance?

Implementation What harms might result 
from the implementation of 
predictive care models? Do they 
disproportionately affect certain 
groups?

Inclusion: The process 
of improving the 
ability, opportunity, 
and dignity of people, 
disadvantaged on the 
basis of their identity, 
to access health 
services, receive 
compassionate care 
and achieve equitable 
treatment outcomes.

‘Randomised trials 
estimate average 
treatment effects for 
a trial population, but 
participants in clinical 
trials often aren’t 
representative of the 
patient popuation that 
ultimately receives the 
treatment’ (Chen: 167).

How can we ensure 
that the benefits of 
advances in clinical 
AI accrue to the 
most structurally 
disadvantaged?

Completeness Is information required to detect 
bias missing? Is there sufficient 
data to evaluate predictive care 
models for intersectional bias? 
Are marginalised groups involved 
in the collection and use of their 
data?

Patient 
and Family 
Engagement

Have stakeholders been 
involved in the development and 
implementation of predictive care? 
Do patients perceive models as 
being fair or positively impacting 
their care?

ML, machine learning.
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and clinicians.5 80–83 Although little is known about how 
patients engage with predictive care in clinical contexts,84 
sustained dialogue and shared decision- making between 
stakeholders that takes their concerns, desires and lived 
experiences seriously is critical.79 85–88 Thus, there is an 
urgent need to develop engaging, effective and user- 
friendly explanations of predictive care models for clini-
cians, patients, their caregivers and the general public.89 90 
Explainability, therefore, must encompass both technical 
and social processes of translating the purpose, relevance 
and limitations of algorithmic systems to these various 
stakeholders, and providing targeted guidance on their 
use (eg, to complement clinical intuition, inform and 
negotiate care).

Accountability
Interpretability and explainability are described as prereq-
uisites for the third transparency attribute: accountability. 
Accountability refers to governance structures, proce-
dures, and tools used to evaluate and hold algorithmic 
systems accountable in a timely manner. Since predictive 
care often impacts acutely ill, marginalised or vulnerable 
groups, accountability cannot rest on the agency of a 
single person to assert their right to fair and equitable 
care.91 92 In other words, we cannot expect those impacted 
by predictive care (patients, families, nurses, social 
workers) to be the ones to hold it accountable. From a 
fairness perspective, downloading the responsibility to 
those primarily impacted—and potentially harmed—by 
the technology is also ethically worrisome as it places a 
disproportionate burden on these groups to mobilise 
change. Rather, the governance structures that measure 
and track algorithmic systems must operate at multiple 
scales and be monitored continuously.93–96 These struc-
tures should ensure that the development and implemen-
tation of predictive care is responsible and responsive to 
the needs and perspectives of various stakeholders.88

Impartiality
‘We shape our tools, and thereafter, our tools shape us’.97

One of the most cited dimensions of fairness is that 
individuals should be free from unfair bias and systemic 
discrimination.53 In medicine, both human and non- 
human actors gather, integrate and curate datasets to 
support care. As part of this process, (data scientists) 
aspire to collect unbiased data, but critics point out that 
data are not inherently fair, objective or impartial.19 
Rather, data reflect widespread biases and historical 
patterns of exclusion and inequality persisting in society 
at large,98 99 which often extend to data on which predic-
tive care models are trained. On the other hand, it is well 
documented that medical practices without algorithmic 
systems are far from impartial. Rather arbitrary and idio-
syncratic practices in medicine frequently intersect with 
harmful sexist, racist and classist assumptions about 
patients.100 101 From this perspective, algorithmic systems 
may be more fair because ‘biased algorithms are easier to 
fix than biased people.’102–104

At first glance, it might seem like computational scien-
tists and their critics have reached the same conclusion: 
that poor quality and biased data are likely to perpet-
uate harm. In the computational sciences, there is a 
growing assumption that encoding more data about a 
dataset’s origins (metadata) and circumstances (context) 
surrounding its creation will resolve these issues.1 105–111 
However, as Seaver (2017:1105) and others argue, 
‘context is the kind of thing that cannot be modelled’ 
since ‘contexts are not containers, but… relational prop-
erties occasioned through activity.’112 Rather than side 
with either perspective, we see this divergence as a vital 
opportunity for collaboration between computational 
and social scientists.113 114 Thus, our conceptualisation 
of fairness includes two crucial attributes of impartiality 
that warrant further attention: a dataset’s origins very 
broadly defined—or it’s ‘provenance’ and its end- use—or 
‘implementation’.

Provenance
The view that encoding metadata will resolve issues of fairness 
maintains that with enough technical rigour, biases can be 
separated from the data, defined, contained and managed.115 
Unfortunately, containing or removing bias from training 
data may not be possible, because biased features are often 
linked with other features in ways that are not apparent.105 116 
Furthermore, this bias is maintained by social, technical 
and political systems which persist despite efforts to redress 
model bias with technical means.19 30 Accordingly, evidence 
suggests that interdisciplinary or ‘hybrid’ teams support 
fairness- aware ML.117 Domain experts, such as clinicians, 
social scientists or patient advocacy groups, have enhanced 
understandings of context situated bias,114 116 118 support 
the curation of salient axes of difference,119 and improve 
topic modelling and natural language processing models 
by aiding social bias detection.120–122 For example, ‘compu-
tational ethnography’ is an approach to fairness- aware ML 
that emphasises the importance of a holistic understanding 
of any given dataset.123 124 In sum, provenance requires more 
than a bias assessment that measures predictive accuracy 
across protected groups. In particular, far less attention has 
been paid to how complex social realities are transformed 
into algorithmic systems and the normative assumptions that 
drive these processes.125–127 For example, rather than define 
‘fairness’ as a fixed attribute, the literature we reviewed 
emphasised that it is a value- laden social and political deter-
mination made by individuals or groups of people within 
specific contexts. A broader sociotechnical approach to 
provenance will further support the identification of margin-
alised subgroups, facilitate meaningful analysis and support 
fairness- aware predictive care.

Implementation
Implementation refers to integrating a predictive care 
model into a clinical setting. The limited evidence 
available suggests that it is incredibly difficult to repli-
cate the power of a predictive algorithm in real- world 
settings.128–130 Significantly, potential uses of algorithmic 
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systems in medicine are limitless. From a clinical perspec-
tive, these systems can personalise and optimise care.131 132 
From a health systems perspective, they can be useful tools 
to support the fair allocation of limited resources.51 133 
However, the integration of any algorithmic system into 
most clinical settings will require new workflows, which 
may challenge established hierarchies between doctors 
and nurses129 134 and redefine what makes a ‘good’ clini-
cian.133 135–139 To fully understand the benefits or harms 
that could arise within algorithmic systems, it is equally 
important to consider at the outset of any project how it 
will be used, by whom, and to what end. Fair implemen-
tation foregrounds the clinical context where predictive 
care models are deployed.140

Inclusion
The final dimension of fairness we identified is inclusion. 
Among data scientists, inclusion often refers to both the 
representativeness of the dataset and its relative complete-
ness (eg, how many features are filled in adequately). 
In other words, ‘high- quality’ data is accurate, precise, 
and collected from sufficiently large and representative 
samples.141–143 This approach is concerned with ensuring 
that any benefits and harms derived from advances in 
predictive care accrue equally/equitably across sociode-
mographic groups. Others argue that this approach is 
an ‘illusion’144 and highlight the importance of building 
inclusive data infrastructures that prevent the misuse 
and commodification of marginalised peoples’ data 
by supporting patient and family engagement.145–148 
Combined, these attributes have the potential to hold 
systems accountable, prevent unintended harms, and 
support the design and use of robust and fair algorithmic 
systems that advance health equity.

Completeness
Fairness- aware ML requires access to sociodemographic 
data. Unfortunately, data required to measure inequities 
is often absent and collected inconsistently.118 149–153 Addi-
tional legal and social constraints limit access to sensitive 
sociodemographic data.154 In Canada, for example, the 
collection of race/ethnicity data in healthcare settings 
has been restricted due to a range of historical and socio- 
political forces. For example, Thompson155 illustrates 
how the Holocaust in the Second World War shook the 
foundations of the biological construction of race, which 
raised serious questions about the ethics of collecting 
this data.155 156 Significantly, limited sample sizes among 
marginalised groups pose a significant problem for predic-
tive care as outputs will be biased towards the majority 
group.157–159 In addition, most current approaches to 
operationalising fairness focus only on legally protected 
categories, such as race or legal gender.160 Yet, sexual 
orientation, gender identity and disability are prototyp-
ical instances of unobserved characteristics, because 
they are frequently unrecorded but also fundamentally 
unmeasureable.161 162

Finally, these challenges are further amplified by the 
fact that intersectionality—overlapping systems of disad-
vantage related to intersecting social categories like race 
or gender—is critical for understanding health outcomes 
in relation to marginalised identities.163–167 Unfortu-
nately, intersectional analyses are often limited by data 
availability; features contributing to intersectional bias 
may not be measured or the sizes of intersectional groups 
may be insufficient to generate meaningful performance 
metrics.168 At the same time, opacity (the ability to remain 
unseen by an algorithm) may have political and social 
value for groups under surveillance (eg, undocumented 
or criminalised youth).169 Therefore, while completeness 
entails inclusivity, inclusion should always be precipitated 
by dialogue and collaboration.

Patient and family engagement
As we chart the course for predictive care, we must centre 
the needs and lived experiences of those most likely to 
be impacted by ML.31 At present, there is much spec-
ulation about how predictive care might enhance or 
disrupt clinical care work, or the range of therapeutic 
procedures, processes and outcomes oriented towards 
‘health and healing’ in medicine170 171 and ‘recovery’ in 
psychiatry.129 134 172 173 However, the research to date has 
minimally addressed how patients engage with predictive 
care. According to some studies, patients are interested 
in contributing to the design of these technologies and 
having control over the use of their data.174 Knowledge 
about patient engagement more broadly may be used to 
inform future work in this space. In particular, fair inclu-
sion entails much more than diversifying our sampling 
frames. We must diversify our perspectives and ask those 
most impacted how predictive care (and their conse-
quences) are experienced.

DISCUSSION
In online supplemental appendix 2, we apply our concep-
tual framework to consider an urgent issue of fairness in 
one area of predictive care: risk assessment in inpatient 
psychiatric settings.38 39 Preventing and managing violence 
or aggression in mental healthcare is an ongoing chal-
lenge, with negative impacts on both patients and staff. 
Consequently, there are ongoing efforts to predict which 
inpatients may be at risk.38 Over the past several decades, 
various features have emerged as predictors of this risk.175 
ML- based models trained on patient characteristics, 
structured assessments and clinical notes have achieved 
reasonable performance in predicting violence or aggres-
sion.38 40 176 While these models achieve good overall 
accuracy in distinguishing between individuals who may 
or may not become violent or aggressive, they show poor 
performance in identifying the small subset of individ-
uals who will actually exhibit this behaviour. According 
to one study for example, only 23% of people assigned as 
high risk became violent,40 suggesting that many high- risk 
individuals are ‘false positives’. Nevertheless, no studies 

https://dx.doi.org/10.1136/bmjhci-2021-100459
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to date have explored whether groups defined by certain 
features are more likely to have this outcome, despite a 
strong potential for bias in this domain. In anticipation 
of further development and implementation of ML- based 
risk assessment, we demonstrate the value of employing 
our multidimensional framework as a heuristic tool to 
facilitate thoughtful and sustained dialogue on different 
dimensions of fairness in predictive care. In table 3, we 
summarise considerations related to ML- based prediction 
of inpatient risk for each fairness attribute. For a detailed 
discussion of these points, see online supplemental 
appendix 2.

CONCLUSION
Our literature synthesis demonstrates that scholars and 
computational scientists alike must broaden their notions 
of fairness to examine normative assumptions about what 
it means to build a just society and who decides what is 

fair. Further, the operationalisation of fairness requires 
going beyond developing rigorous data processing proce-
dures or deploying sophisticated techniques to detect, 
mitigate and eliminate bias in ML. Predictions can be fair 
(eg, accurate) and still amplify inequities.14 68 A multi-
dimensional framework for fairness entails sustained 
dialogue with a range of stakeholders in the careful 
weighing of competing claims to fairness. It also involves 
proactively designing ML tools with and for marginalised 
and underserved communities.5 34 177 Thus, fairness is not 
an outcome of rigorous and thoughtful research, but the 
social and political process required to advance health 
equity.

Critically, medical algorithms are neither ‘fair’ nor 
‘unfair;’ fairness is not a binary classifier. We have used 
our conceptual framework of fairness as a heuristic tool to 
surface normative values embedded into our algorithmic 
systems to ensure that the opportunities presented by 

Table 3 The three fairness pillars, their attributes and relation to ML- based prediction of inpatient violence in psychiatric 
settings

Pillar Attribute Relation to predictive care

Transparency Interpretability ML models achieve high accuracy in predicting violent behaviour in psychiatric 
settings.38 If these models achieve similar performance in new settings, they would 
be considered interpretable. However, if models are biased (ie, generating more false 
positives for inpatients defined by certain features), interpretability would be maintained 
even if biases carried forward to new samples.63

Explainability ML models are often trained on structured risk assessment scores.38 Scores may 
be biased against certain groups (eg, recent immigrants due to language barriers or 
cultural miscommunications), leading to biased models. Pairing predictions with feature 
explanations can lead clinicians to over- rely on ML models,78 which can exacerbate 
adverse impacts when models are biased.

Accountability ML models have been trained on actigraphy features to predict aggression in 
patients with dementia.178 However, patients should not be expected to advocate for 
themselves if models seem biased or are not generalisable, given their particularly 
vulnerable status.

Impartiality Provenance Prior conviction and a diagnosis of schizophrenia are predictors of violence.38 179 
Training models on these features could lead to certain groups being disproportionately 
classified as high- risk (eg, black men, due to residing in more policed areas,180 or being 
more likely misdiagnosed with schizophrenia181. Since these features are linked to other 
predictors, removing them does not remove model bias, nor does it address the social 
and political realities contributing to bias in the training data.111 182

Implementation ML modelling of violence risk is in part motivated by a desire to allocate staff resources 
to high- risk patients, but staff- patient interactions are known antecedents to violent 
behaviours.183 Most patients classified as high- risk do not become violent;40 however, 
pre- emptive interventions involving interactions with staff could precipitate violent 
behaviours.

Inclusion Completeness A focus on legally protected categories may disregard biases related to unobserved 
characteristics (eg, sexual orientation or disability). Individuals with invisible or 
undiagnosed disabilities (eg, autism spectrum disorder) may display behaviours 
interpreted as precursors to violence or aggression.184–186 Additional marginalised 
groups might emerge when intersectional identities are taken into account.

Patient 
and family 
engagement

Collaboration in decision making during admission and maximising choice are 
important values for patients in settings where autonomy is limited.187–189 Patients may 
prioritise other aspects of care not captured by ML (eg, the caring relationships built 
with staff and peers, as compared with therapeutic interventions).190

ML, machine learning.

https://dx.doi.org/10.1136/bmjhci-2021-100459
https://dx.doi.org/10.1136/bmjhci-2021-100459
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predictive care promote health equity. Current efforts 
to operationalise fairness have not strengthened our 
ability to safeguard against the possibility that predictive 
care tools might ‘scale up’ health inequities, nor have 
they provided the means to redress these imbalances 
once found. Designing fairness- aware predictive care 
systems requires sociotechnical approaches; interdisci-
plinary, collaborative and patient- centred research that 
foregrounds power dynamics and clinical contexts will 
promote health equity. Further, rather than ‘de- bias’ or 
validate algorithms after they have been constructed, we 
need to pay more attention to how data are collected, 
what kinds of data make up larger datasets, and how data 
are interpreted and instrumentalised within algorithmic 
systems.
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