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Abstract

The basal ganglia support learning to exploit decisions that have yielded positive outcomes in the 

past. In contrast, limited evidence implicates the prefrontal cortex for making strategic exploratory 

decisions when the magnitude of potential outcomes is unknown. Here we examine neurogenetic 

contributions to individual differences in these distinct aspects of motivated human behavior, 

employing a temporal decision making task and computational analysis. We show that genes 

controlling striatal dopamine function (DARPP-32 and DRD2) are associated with exploitative 

learning to incrementally adjust response times as a function of positive and negative decision 

outcomes. In contrast, a gene primarily controlling prefrontal dopamine function (COMT) is 

associated with a particular type of “directed exploration”, in which exploratory decisions are 

made in proportion to Bayesian uncertainty about whether other choices might produce outcomes 

that are better than the status quo. Quantitative model fits reveal that genetic factors modulate 

independent parameters of a reinforcement learning system.

Individuals differ in their choices and neural responses when confronted with decision 

uncertainty [1, 2]. Some people are motivated by having achieved desirable outcomes and 

are driven to work harder to attain even better ones, whereas others are primarily motivated 

to avoid negative outcomes [3]. However, often one doesn't know which outcomes should 

be considered positive until they compare them to those obtained from other decision 

strategies (e.g., do you choose to return to the same fail-safe sushi restaurant, or to try a new 

one because it might be even better? ). This classic problem of whether to sample other 

options or maintain the current strategy for maximizing reward is known as the exploration/

exploitation dilemma [4, 5, 6, 7]. Here we examine neurogenetic contributions to 

exploitative and exploratory behavior.

In part, individual differences in personality variables are thought to reflect different 

parameters within the dopaminergic motivational system [8]. Dopaminergic genetic 
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components that alter function in the striatum (and indirectly, its interactions with frontal 

cortex; [9]) differentiate between individuals who are more adept at learning from positive 

versus negative decision outcomes, via modulation of striatum and its interactions with 

frontal cortex [9, 10, 11]. Specifically, a functional polymorphism within the PPP1R1B gene 

coding for DARPP-32 [9] is predictive of “Go learning” to reproduce behaviors that yield 

positive outcomes [10]. DARPP-32 is a protein highly concentrated in the striatum, is 

phosphorylated by D1 receptor stimulation, and is required for striatal D1-receptor mediated 

synaptic plasticity and behavioral reward learning [12, 13, 14]. While DARPP-32 is also 

present in D2-containing neurons, D2 receptor stimulation de-phosphorylates DARPP-32 

and does not mediate its effects on reward learning [13]. Conversely, polymorphisms within 

the DRD2 gene predictive of striatal D2 receptor density are associated with “NoGo 

learning” to avoid behaviors that yield negative outcomes [10, 11]. These findings converge 

with the notion that dopamine plays a key role in reinforcement learning [15], and in 

particular, that dopamine acts in the striatum to support learning from positive and negative 

outcomes via D1 and D2 receptors in separate neuronal striatonigral and striatopallidal 

populations [16, 17]. They also converge with rodent data showing that the transition to 

exploitative behavior is associated with the development of highly stabilized striatal firing 

patterns [18].

Whereas the role of striatal dopamine in reinforcement exploitation is relatively well 

established, the neurobiological correlates of exploration are far less developed. 

Computational considerations suggest that an adaptive heuristic is to explore in proportion 

to one's uncertainty about the consequent outcomes [4, 6, 19, 7]. Such computations might 

depend on neuromodulation within the prefrontal cortex (PFC) [7]. Functional neuroimaging 

evidence implicates anterior and orbital PFC in computations of uncertainty [20, 2], and in 

making exploratory decisions in a reinforcement learning environment [6]. Further, models 

and experimental data suggest that orbital PFC represents reward magnitudes, required to 

compute the expected value of decisions, especially over delays [21, 22, 6, 23]. At the 

genetic level, a gene coding for catechol-O-methyltransferase (COMT), substantially affects 

PFC dopamine levels, and in turn, PFC-dependent cognitive function [24]. COMT is an 

enzyme that breaks down dopamine, with the val allele associated with greater enzymatic 

efficacy and therefore lower PFC dopamine levels. It plays a comparatively minor role in 

striatum, due to its relatively sparse expression, and the presence of potent dopamine 

transporters and autoreceptors [25, 26, 24, 27].

We assessed these motivational components, including exploitation, exploration, and 

probability vs. magnitude learning, within a single “temporal utility integration task” [28]. 

We hypothesized that DARPP-32 and DRD2 genes, as markers of individual differences in 

striatal dopaminergic function, would be predictive of response time adaptation to maximize 

rewards. In contrast, we hypothesized that the COMT gene, as a proxy for prefrontal 

dopaminergic function, would be predictive of uncertainty-based exploration and enhanced 

representation of reward magnitudes.
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Results

Temporal Integration of Expected Value

Participants observed a clock arm which completed a revolution over 5 seconds, and could 

stop the clock with a key press in an attempt to win points. Rewards were delivered with a 

probability and magnitude that varied as a function of response time (RT, Figure 1). The 

functions were designed such that the expected value (EV; probability*magnitude) 

increased, decreased, or remained constant (IEV, DEV, or CEV) with increasing response 

times (Figure 1). Thus in the DEV condition, faster RTs yield more points on average, such 

that performance benefits from “Go learning” to produce further speeded RTs. In contrast, 

fast RTs in the IEV condition yield below average outcomes, such that performance benefits 

from “NoGo learning” to produce adaptively slower responding. The CEV condition was 

included for a within-subject baseline RT measure for comparison with IEV and DEV. 

Because all RTs are equivalently rewarding in the CEV condition, participants’ RT in this 

condition controls for individual differences in overall motor responding. Given this 

baseline, an ability to adaptively integrate expected value would be indicated by relatively 

faster responding in the DEV condition and slower responding in the IEV condition. 

Dopaminergic manipulations in Parkinson's patients have opposite effects on these 

measures, likely via modulation of striatal dopamine [28].

We also included a fourth condition (constant expected value - reverse, CEVR) in which 

reward probability increased while magnitude decreased. This condition serves two 

purposes: First, because both CEV and CEVR have equal expected values across time, any 

difference in RT in these two conditions can be attributed to a participants’ potential bias to 

learn more about reward probability than about magnitude or vice-versa. Second, CEVR 

provides another measure of avoidance learning. That is, despite the constant expected 

value, a bias to learn from negative outcomes will produce slowed responses due to their 

high probability of occurrence at early response times.

Overall, participants exhibited robust learning (Figure 2a; see Figure S5 for RTs for each 

genotype). Compared to the baseline CEV condition, RTs in the IEV condition were 

significantly slower (F(1,67) = 28.5, p < 0.0001), whereas those in the DEV condition were 

significantly faster (F(1,67) = 6.7 , p = 0.01).

There were no effects of any gene on baseline RTs in the CEV condition, or on overall 

response time (all p's > 0.25). Nevertheless, within-subject RT modulations due to reward 

structure were predictably altered by striatal genotype (Figure 3). DARPP-32 T/T carriers 

showed enhanced “Go learning”, with faster RTs in the last block of DEV condition 

(F[1,64] = 4.4, p = 0.039), and, marginally, relative to CEV (DEVdiff; F[1,64] = 3.1, p = 

0.08, an effect that was significant across all trials; p < 0.05). There was no DARPP-32 

effect on “NoGo learning” (IEV RT's, or IEVdiff; p's > 0.8). Conversely, DRD2 T/T carriers, 

who have the highest striatal D2 receptor density [29, 10], showed marginally slower RTs in 

IEV, indicative of enhanced NoGo learning (F[1,66] = 3.3, p = 0.07 for both IEV and 

IEVdiff), with no effect on Go learning (p's > 0.3). Modeling results reported below, together 

with CEVR performance, more strongly support the conclusion that DARPP-32 and DRD2 

genes modulate learning to speed and slow RTs from positive and negative outcomes. 
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Finally, there was no effect of COMT on any of these measures (p's > 0.35). This 

constellation of genetic effects converge with those found previously [10], but extend them 

to a completely different task context, dependent measure, and sample. Moreover, these 

same response time adaptations due to reward structure are sensitive to dopaminergic 

manipulation in Parkinson's disease [28].

Further analysis revealed genetic contributions to learning from probability relative to 

magnitude of reinforcement, as assessed by comparing RTs in the CEVR condition (alone 

and relative to CEV; p = 0.02, Supplement). Specifically, those with enhanced D2 function 

showed significantly greater sensitivity to frequent negative outcomes in CEVR, again 

consistent with enhanced NoGo learning. There was also some evidence for COMT met 

allele carriers to be more sensitive to reward magnitudes (Figure S1).

Trial-to-Trial RT adaptation: Exploration?

Although on average participants incrementally changed response times dependent on 

reward structure, single subject data revealed large RT swings from one trial to the next 

(Figure ). These swings did not reflect adaptive changes following rewards or lack thereof 

[28]. Instead, preliminary analyses indicated that RT swings simply reflected a regression to 

the mean, whereby faster than average responses were more likely to be followed by 

relatively slower responses and vice-versa (p < 0.0001; Supplement). As will be clear, 

however, these RT swings reflect more than just a statistical necessity, and likely represent 

participants’ tendency to explore the space of responses to determine the reward structure. 

We investigate this effect in the mathematical reinforcement learning (RL) model developed 

below.

Computational Model

We previously simulated performance in this task using an a priori neural network model of 

the basal ganglia [28]. The model simulates interactive neural dynamics among 

corticostriatal circuits and accounts for various effects of dopaminergic manipulation on 

action selection and reinforcement learning [16, 30, 31, 32]. Simulated dopamine (DA) 

medications induce speeded RTs in the DEV condition as a result of D1-dependent Go 

learning in striatonigral cells. However, the same increased DA release impedes the ability 

to slow down in IEV, due to excessive D2 receptor stimulation on striatopallidal cells, and 

concomitant impairments in NoGo learning. Simulated DA depletion produces the opposite 

result: less speeding in DEV but better slowing in IEV and CEVR, mirroring Parkinson's 

patients’ performance in the task [28].

Here we develop an abstract mathematical model designed to quantitatively fit individual 

participants’ response times on a trial-to-trial basis. The purpose of this modeling is 

threefold: (i) to demonstrate the core computational principles by which the more complex 

neural model captures the incremental RT changes as a function of reward prediction error; 

(ii) to augment the model to capture strategic exploratory behavior as a function of reward 

uncertainty; and (iii) to determine whether best-fitting model parameters for both 

exploitative and exploratory decisions are predictably modulated as a function of genotype 

[10].
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The point of departure for the model is the central assumption common with virtually all 

reinforcement models, namely that participants develop an expected value V(t) for the 

reward they expect to gain in a given trial t. This value is updated as a function of each 

reward experience using a simple delta rule:

where α is a learning rate that modifies the extent to which values are updated from one trial 

to the next, and δ is the reward prediction error reported by DA neurons [33, 15], which is 

simply the reward outcome minus the prior expected value:

This value integration is posited to be computed by brain areas upstream of dopamine 

neurons comprising the “critic”, which learns as a function of prediction errors to faithfully 

represent expected value [5, 34, 35]. Our model further shares the assumption that these 

same prediction error signals train the “actor” in striatum [34]. This process can occur in at 

least two ways. First, we model a simple, likely implicit process, whereby accumulated 

positive prediction errors translate into approach-related speeded responses (“Go learning”), 

whereas accumulated negative prediction errors produce relative avoidance and slowed 

responses (“NoGo learning”) [28, 32]. These processes are posited to rely on D1 and D2 

receptor mechanisms in separate populations of striatonigral and striatopallidal cells [16, 28, 

32, 36]. Because of these differential learning mechanisms, we use different learning rates 

and for each:

where αG controls D1-dependent speeding from positive prediction errors (δ+) and αN 

controls D2-dependent slowing from negative prediction errors (δ−), for action a and clock-

face state s. On each trial RTs were predicted to speed/slow according to differences 

between current Go and NoGo values.

In addition to this implicit process capturing putative striatal contributions to approach/

avoidance, we also model a more strategic process in which participants separately track of 

reward structure for different (“fast” and “slow”) responses (Supplement). With these action 

representations, participants need only adapt RTs in proportion to the difference between 

their expected reward values. This would allow, for example, participants to delay 

responding when slow RTs yield larger rewards on average (as in IEV), or to speed up if 

they don't. We model this process using Bayesian integration, assuming subjects represent 

the prior distributions of reward prediction errors separately for fast and slow responses, and 

update them as a function of experience via Bayes’ rule:
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where θ reflects the parameters governing the belief distribution about the reward prediction 

errors for each response, and δ1...δn are the prediction errors observed thus far (on trials 1 to 

n). Simply stated, Bayes’ rule implies that the degree to which each outcome modifies 

participants’ beliefs about obtainable rewards depends on their prior experience and, given 

this prior, the likelihood that the outcome would occur. As experience is gathered, the means 

of the posterior distributions accurately represent reward structure in each condition (Figure 

6).

We considered that participants either track the probability of a reward prediction error (i.e., 

the probability that a dopamine burst occurs), using beta distributions Beta(η,β), or the 

magnitude of expected rewards, represented by Normal distributions N(μ, σ2). We focus 

here on the beta distribution implementation, which provided a better fit to the behavioral 

data. Nevertheless all genetic results presented below held when using Normal distributions 

and a Kalman filter (Supplement). In either case, RTs were predicted to adapt in proportion 

to the difference between the best estimates of reward structure for fast and slow responses, 

i.e., the following term was added to the RT prediction: ρ[σslow(s,t) – σfast(s,t)], where ρ is a 

free parameter.

We also modeled other parameters that contribute to RT in this task, including simple 

baseline response speed (irrespective of reward), captured by free parameter K, 

autocorrelation between the current and previous RT (λ) regardless of reward, and a 

tendency to adapt RTs toward the single largest reward experienced thus far (“going for 

gold”, parameter ν). Finally, we posited that exploratory strategies would contribute to 

participants’ RT adjustments, as participants sampled the outcomes available to determine 

which response is most adaptive. This process is modeled as a dynamic Explore process 

depending on Bayesian uncertainty, elaborated further below, and hypothesized to rely on 

prefrontal-dependent processes. The complete RT update is thus as follows:

For each subject, a single set of best fitting parameters was derived across all conditions. 

The model captures the qualitative pattern of results, with predicted RT changing as a 

function of reward structure (Figure 2b; see Figure S6 for model fits for each genotype). 

Positive prediction errors are most prevalent for early responses in DEV, and accordingly 

model RTs are fastest in this condition. Negative prediction errors are most prevalent in IEV 

and CEVR, leading to slowed model responses.

We hypothesized that these relative learning rate parameters for determining exploitative 

responses would be modulated by striatal genotype. Indeed, DARPP-32 T/T carriers, who 

should have increased striatal D1-dependent learning [10, 13, 14] had relatively larger αG 

than αN than did C carriers, suggesting relatively greater sensitivity to positive than negative 

prediction errors (Figure 5; F(1,65) = 4.0, p = 0.05). Conversely, DRD2 T/T carriers, with 

relatively greater D2 receptor density [29], showed relatively greater learning from negative 
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prediction errors (F(1,66) = 5.3, p = 0.02). Relative learning rates were not modulated by 

COMT genotype (p > 0.2), and other than the Explore parameter, no other parameters 

differed as a function of any genotype (all p's > 0.2).

Uncertainty-Based Exploration

The above model provides an account of incremental RT changes as a function of reward 

prediction error, and provides evidence for the mechanisms posited to mediate these effects 

in neural networks [28]. Nevertheless, inspection of individual subject data reveals more 

complex dynamics than those observed in the averaged data (Figure 4). These plots show 

RTs across trials for an arbitrary single participant, along with model Go and NoGo terms. 

Asymptotically, the participant converges on a faster RT in DEV, and slower RT in IEV, 

relative to CEV. However, at the more fine-grained scale, there are often large RT swings 

from one trial to the next which are not captured by model learning mechanisms.

We hypothesized that these RT swings are rational, in that they might reflect exploratory 

strategies to gather statistics of reward structure. Several solutions have been proposed to 

manage the exploration/exploitation tradeoff. If performance is unsatisfactory over extended 

periods, stochastic noise can simply be added to behavioral outputs, promoting random 

exploratory choices [7]. Alternatively, exploration can be strategically directed toward 

particular choices in proportion to the amount of information that would be gained, 

regardless of past performance [4, 37, 38, 6]. Our model embodies the assumption that 

exploratory decisions occur in proportion to the participant's relative uncertainty about 

whether responses other than those currently being exploited might yield better outcomes. 

This assumption builds on prior modeling in which exploration is encouraged by adding an 

“uncertainty bonus” to the value of decision options having uncertain outcomes [4, 37, 38, 

6]. Here we posit that exploration occurs in proportion to uncertainty about the probability 

that the explored option will yield a positive reward prediction error (or, in alternative 

models, uncertainty about the expected value of such rewards or reward prediction errors; 

Supplement). The Bayesian framework for integrating reward statistics provides a natural 

index of uncertainty: the standard deviations of the prior distributions [39], which decrease 

after sampling a given action (albeit at a slower rate for more variable outcomes).

Initially, distributions representing belief about reward structure for each response category 

are wide, reflecting maximum uncertainty (Figure 6). As experience with each option is 

gathered, the distributions evolve to reflect the underlying reward structures, such that the 

mean belief is higher for fast responses in DEV and for slow responses in IEV. Moreover, 

the standard deviations, and hence uncertainties, decrease with experience. This process is 

analogous to estimating the odds of a coin flip resulting in heads or tails, with uncertainty 

about those odds decreasing with the number of observations. With these distributions, the 

relative uncertainties for fast and slow responses in a given trial can be used as a rational 

heuristic to drive exploration. In particular, the Explore term of the model is computed as 

follows:
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where ε is a free parameter that scales exploration in proportion to relative uncertainty and 

σδ|s,a=Slow, σδ|s,a=Fast are the standard deviations quantifying uncertainty about reward 

prediction error likelihood given slow and fast responses, respectively. Thus, with 

sufficiently high ε, RT swings are predicted to occur in the direction of greater uncertainty 

about the likelihood that outcomes might be better than the status quo.

Overall, including this uncertainty-based exploration term provided a better fit to trial-by-

trial choice than the base model without exploration (and penalizing the fit for the additional 

parameters; see Supplement). Although the model cannot deterministically predict RT 

swings (which reflect the output of multiple interacting processes, including those sensitive 

to previous reinforcement), there is nevertheless a reliable positive correlation between the 

model's uncertainty-based exploratory predictions and participants’ actual RT swings from 

on trial to the next (r(4214) = 0.31, p < 0.0001; Figure 7 and Figure S3).

Moreover, this relationship was particularly evident for COMT met allele carriers (Figure 

S3), supporting a role for PFC neuromodulatory control over exploration as a function of 

decision uncertainty. The ε parameter that scales exploration in proportion to uncertainty 

was significantly higher among met allele carriers (Figure 5; F(1,67) = 8.2, p = 0.006). 

Further, there was a monotonic gene-dose effect, with ε values largest in met/met 

participants, intermediate in val/met, and smallest in val/val carriers (Figure 7b; F[1,67] = 

9.5, p = 0.003). No such effects on ε were observed for DARPP-32 or DRD2 genotypes (p's 

> 0.5).

Importantly, the COMT exploration effects appear to be specific to uncertainty. First, overall 

RT variability (in terms of standard deviation) did not differ as a function of genotype (p > 

0.2). Second, a number of foil models attempting to account for RT swings without recourse 

to uncertainty confirmed that only the uncertainty-based exploration parameter can account 

for COMT effects (Supplement). For example, we included a “reverse-momentum” 

parameter γ, which predicted RT swings to counter a string of progressively speeded or 

slowed responses, regardless of uncertainty. While this model provided a reasonable fit to 

RT swings overall, the uncertainty model was superior only in COMT met allele carriers 

(Supplement). We also included a “lose-switch” parameter κ, which predicted RTs to adjust 

from fast to slow or vice-versa following a negative prediction error. Notably, there were 

COMT gene-dose effects not only on raw ε values but also their relative weighting 

compared to either γ or κ (p's < 0.004; Figure 7c,d). This result implies that the contribution 

of COMT to RT swings is specific to uncertainty.

Discussion

Individuals differ substantially in their motivational drives. The present findings 

demonstrate three distinct aspects of value-based decision making associated with 

independent genetic factors (see summary Figure 5). These genes modulate specific aspects 

of dopaminergic function in brain areas thought to support exploration and exploitation [10, 

6, 7, 18]. Behaviorally, exploitative choices were manifest by RT differences between 

conditions in which rewards could on average be maximized by responding earlier (DEV) or 

later (IEV) in the trial, compared to baseline (CEV) conditions. Modeling showed that 
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striatal genetic effects are accounted for by individual differences in learning rates from 

positive and negative prediction errors and their coupling with response speeding and 

slowing. This result is non-trivial: striatal genes could have affected exploitation by 

modulating the extent to which RTs are adjusted as a function of mean reward value 

estimates (i.e., the ρ parameter). Similarly, while trial-to-trial RT swings are readily 

viewable in single subject data (Figure 4), the specific components due to uncertainty-based 

exploration, and individual differences therein, were only extracted with the computational 

analysis.

Our observation that DARPP-32 and DRD2 modulate reinforcement learning in the temporal 

decision making domain is consistent with similar genetic effects in choice paradigms [10], 

and with data from Parkinson's patients on and off medication in this same task [28]. Recent 

rodent studies show direct support for the model's dual D1 and D2 mechanisms of synaptic 

plasticity [17, 16].

The present human genetic data provide support for the mechanisms posited in models of 

striatal dopamine, in which accumulated reward prediction errors over multiple trials 

produce speeded responses, whereas negative prediction errors slow responses [28, 40]. Our 

assumption that DARPP-32 genetic effects reflect striatal D1-receptor mediated “Go 

learning” is supported by evidence that the DARPP-32 protein is highly concentrated in the 

striatum [12] and is critical for D1- but not D2-dependent synaptic plasticity and behavioral 

reward learning [13, 14]. These data also converge with effects of pharmacological 

manipulation of striatal D1 receptors on appetitive approach and response speeding to obtain 

rewards in monkeys and rats [36, 41].

Similarly, our assumption that DRD2 genetic effects reflect primarily striatal D2-receptor 

mediated learning is supported by evidence that T/T homozygotes exhibit enhanced striatal 

D2 receptor density [29, 42]. Theoretically, striatal D2 receptors are thought to be necessary 

for learning in striatopallidal neurons when DA levels are low [16], as is the case during 

negative prediction errors [43, 44, 45], or as a result of Parkinson's disease [30, 28]. Indeed, 

synaptic potentiation in striatopallidal neurons is elevated under conditions of DA depletion 

[17]. Conversely, rats with reduced striatal D2 receptor density [46] are less sensitive to 

aversive outcomes, persisting to take addictive drugs even when followed by shocks [47].

Perhaps less clear is the precise neurobiological mechanism by which COMT modulates 

uncertainty-based exploration. Indeed, the mechanisms of exploration are understudied 

compared to those of exploitation. Nevertheless, neuroimaging studies reveal that in non-

reinforcement learning contexts, anterior prefrontal cortical regions reflect Bayesian 

uncertainty [20], and that this same region is activated when participants make exploratory 

decisions in a RL environment [6]. Our findings provide the first evidence for exploratory 

decisions that occur in proportion to uncertainty about whether other responses might 

produce better outcomes than the status quo. This exploration strategy is strongly motivated 

by prior theoretical work [38, 6, 7], and appears to be highly dependent on prefrontal genetic 

function. Furthermore, our originally reported COMT effects on trial-to-trial “lose-shift” 

behavior in choice paradigms [10] might be more parsimoniously explained by uncertainty-

based exploratory mechanisms. Indeed, in that study, met carriers exhibited greater 
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propensity to shift only in the initial trials of the task when reward structure is most 

uncertain. Thus, these exploratory strategies may be viewed as an attempt to minimize 

uncertainty.

In contrast to the multiple extant neural models of exploitation, a dearth of models have 

investigated how neuronal populations can learn to represent quantities of uncertainty as a 

function of experience. Nevertheless, the sorts of Bayesian probability distributions required 

for the uncertainty computations used here are naturally coded in populations of spiking 

neurons [48, 49]. Thus future research should examine how such representations can be 

learned, and whether prefrontal DA supports the uncertainty computations per se, the active 

maintenance of relative uncertainties over time, or simply the final decision to over-ride 

exploitative strategies in order to explore when uncertainty is sufficiently high.

Methods

Sample

We tested 73 healthy participants recruited from the University of Arizona undergraduate 

psychology subject pool and who provided informed written consent. Two subjects declined 

genetic sampling, and are excluded from analysis. Failed genetic assays eliminated a further 

two COMT samples, two DRD2 samples, and three DARPP-32 samples. The remaining 69 

subjects (46 female) had a mean age of 19 (SE = .2), and comprised 48 Caucasians, 14 

Hispanics, 2 Asians, 1 African-American, and 4 subjects who categorized themselves as 

“Other”. The breakdown of COMT genotypes was 19:43:7 (val/val:val/met:met/met). The 

breakdown of DRD2 genotypes was 31:38 (C carriers:T/T). The breakdown of DARPP-32 

genotypes was 38:29 (T/T:C carriers; note that in our prior report the T/T genotype was 

incorrectly referred to as A/A, and C carriers as G carriers, due to mislabeling the base-pair 

complement [10]. Thus the T/T subjects here reflect the same genotype previously 

associated with enhanced Go learning). Genetic effects were independent: there was no 

association between the distribution of any polymorphism and any other (e.g., DRD2 

genotype was not predictive of COMT genotype, etc; Fisher's exact test, p > 0.3). All 

genotypes were in Hardy-Weinberg equilibrium (p's > 0.1), with the exception of COMT 

([1] = 5.6, p < .05). This deviation is likely due to heterogeneity in the population; when 

analyzing Caucasians alone, Hardy-Weinberg equilibrium was not violated (p> 0.1).

Genotyping

Genotyping procedures were carried out in the Molecular Psychiatry Laboratory at the 

University of Arizona. DNA samples were extracted from saliva samples using Oragene 

DNA Collection Kits (DNAGenotek). Genomic DNA was amplified using standard 

polymerase chain reaction (PCR) protocols.

Dopamine- and adenosine-3’,5’-monophosphate (cAMP)-regulating phosphoprotein SNP 
(DARPP-32, rs907094)

Genomic DNA was amplified for the DARPP-32 (also called PPP1R1B) SNP using standard 

PCR protocol. Amplification of the 404 bp region was carried out using the sense primers 

DD-F 5’- GCATTGCTGAGTCTCACCTGCAGTCT- and anti-sense primers DD-R 3’5’-
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ATTGGGAGAGGGACTGAGCCAAGGATGG-3’ in a reaction volume of 25 μl consisting 

of 2.5 ng of DNA, .25 mM dNTP's, .25 μM sense and anti-sense primers, 1X QIAGEN PCR 

buffer and 1.5 U Taq DNA polymerase (QIAGEN). Thermocycling conditions consisted of 

an initial denaturation step of 95 °C for 5 min, followed by 35 cycles of 94 °C for 30 s, 72 

°C for 60 s, and 72°C for 60 s, with a final extension step of 72 °C for 10 min. PCR products 

were sequenced using the ABI 3730XL DNA Analyzer ® (Applied Biosystems) and 

visualized using Chromas Vs. 2.13 (Technelysium).

COMT rs4680—Genomic DNA was amplified for the Comt4680 polymorphism using 

standard PCR protocol. Amplification of the 109 bp region was carried out using the sense 

primers Comt-F 5’-TCTCCACCTGTGCTCACCTC-3 ’ and anti-sense primers Comt-R 5 ’-

GATGACCCTGGTGATAGTGG -3’ in a reaction volume of 25 μl consisting of 2.5 ng of 

DNA, 0.25 mM dNTP's, 0.25 μM sense and anti-sense primers, 1X QIAGEN PCR buffer 

and 1 U Taq DNA polymerase (QIAGEN). Thermocycling conditions consisted of an initial 

denaturation step of 95 °C for 5 min, followed by 35 cycles of 95 °C for 15 s, 54 °C for 20 s, 

and 72 °C for 30 s, with a final extension step of 72 °C for 5 min. The restriction enzyme 

Nla III (5 U New England Biolabs) was added to a 20 μl aliquot of the PCR product and 

digested for 2 hours at 37 °C. 5 μl of the digested PCR product was added to 4 μl of Orange 

G DNA loading buffer and loaded onto a 3% agarose gel. Images were captured via the Gel 

Doc XR System (BioRad, USA).

DRD2 rs6277—Optimization of tetra-primer ARMS PCR for the detection of the DRD2 

polymorphism was performed empirically using primers designed by original software 

developed by the founders of the tetra-primer ARMS PCR method and available on the 

website: http://cedar.genetics.soton.ac.uk/public_html/primer1.html with a Tm optimized to 

72°C and a GC content of 48.7%.

Genomic DNA was amplified for the DRD2 polymorphism using tetra-primer ARMS PCR 

protocol as described [50]. Amplification of the total 295 bp region was carried out using the 

outer sense primers DRD2-F 5’- ACGGCTCATGGTCTTGAGGGAGGTCCGG- 3’ and 

outer anti-sense primers DRD-R 5’-CCAGAGCCCTCTGCCTCTGGTGCAGGAG -3’ as 

well as inner sense primers DRD-Fi 5’- ATTCTTCTCTGGTTTGGCGGGGCTGGCA -3’ 

and inner anti sense primers 5’-CGTCCCACCACGGTCTCCACAGCACTACC -3’in a 

reaction volume of 25 μl consisting of 2.5 ng of DNA, 0.25 mM dNTP's, 0.025 μM outer 

sense and anti sense primers, 0.25 μM inner sense and anti-sense primers, 1X QIAGEN PCR 

buffer and 2 U Taq DNA polymerase (QIAGEN). Thermocycling conditions consisted of an 

initial denaturation step of 95 °C for 5 min, followed by 35 cycles of 94 °C for 30 s, 72 °C 

for 60 s, and 72 °C for 60 s, with a final extension step of 72 °C for 10 min. Five microliters 

of the PCR product was added to 4 μl of Orange G DNA loading buffer and loaded onto a 

3% agarose gel and run in 0.5TAE buffer for 20 min at 72 V. The gels were pre-stained with 

GelStar® Nucleic Acid Gel Stain and images were captured via the Gel Doc XR System 

(BioRad, USA).

Genotyping for DRD2 was carried in triplicate, and identification of each individual allele 

was conducted by three independent observers with 100% agreement.
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Ethnicity

Because there was some heterogeneity in the sample (14 subjects were Hispanic) it is critical 

to establish whether genetic effects are not to due occult stratification. To this end we 

reanalyzed the data omitting the 14 Hispanics and found very similar patterns of results for 

each genotype. Similar results also were found when omitting all non-Caucasians. We also 

reanalyzed all the data and included an additional factor into the general linear model 

according to whether subjects were Hispanic or not. In this analysis, all genetic effects 

remained significant and there was no effect of ethnicity, nor an interaction between 

ethnicity and genotype (p's > 0.25). Again, similar findings were included if the factor coded 

whether subjects were Caucasian or not. Finally, Hardy Weinberg equilibrium data were 

also analyzed when excluding Hispanic and other non-Caucasians, and all genotype 

frequencies did not deviate from equilibrium.

Task Methods

Task instructions were as follows:

“You will see a clock face. Its arm will make a full turn over the course of 5 seconds. Press 

the ‘spacebar’ key to win points before the arm makes a full turn. Try to win as many points 

as you can!

“Sometimes you will win lots of points and sometimes you will win less. The time at which 

you respond affects in some way the number of points that you can win. If you don't respond 

by the end of the clock cycle, you will not win any points.

“Hint: Try to respond at different times along the clock cycle in order to learn how to make 

the most points. Note: The length of the experiment is constant and is not affected by when 

you respond.” This hint was meant to prevent participants from responding quickly simply 

to leave the experiment early, and in an attempt to equate reward rate (i.e., rewards per 

second) across conditions. In addition, earlier responses were associated with longer inter-

trial intervals so that this was roughly the case. However, because subjects may be averse to 

waiting through long inter-trial intervals, and because we also wished to reduce the 

predictability of the onset of the next trial's clock face stimulus we set the inter-trial interval 

to (5000-RT)/2. Thus, faster responses were associated with longer wait times, but the onset 

of each trial was temporally unpredictable.

The order of condition (CEV, DEV, IEV, CEVR) was counterbalanced across participants. 

A rest break was given between each of the conditions (after every 50 trials). Subjects were 

instructed at the beginning of each condition to respond at different times in order to try to 

win the most points, but were not told about the different rules (e.g., IEV, DEV). Each 

condition was also associated with a different color clock face to facilitate encoding that 

they were in a new context, with the assignment of condition to color counterbalanced. 

Participants completed 50 trials of one condition before proceeding to the next, for a total of 

200 trials.
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To prevent participants’ from explicitly memorizing a particular value of reward feedback 

for a given response time, we also added a small amount of random uniform noise (+/− 5 

points) to the reward magnitudes on each trial.

Analysis

General linear models were used for all statistical analysis. COMT gene dose effects were 

tested by entering the number of met alleles expressed by each subject as a continuous 

variable. Behavioral analyses, except where indicated, examined RTs in the last quarter (12 

trials) of each condition, by which time participants were likely to have learned the reward 

structure of the particular clock face [28] . (While it is possible to compute learning from the 

first to last quarter of each condition, some participants learned to discriminate reward 

structure even in the first quarter, minimizing the difference across quarters. We therefore 

focus analyses on the last quarter in which performance is expected to stabilize. Further, the 

model-based analyses converge with those derived from these behavioral measures without 

confining analysis to any part of the learning curve.) In some analyses the degrees of 

freedom are one less than they should be because there was a computer crash for one subject 

who did not complete all conditions.

Model Methods

In all models, we used the Simplex method with multiple starting points to derive best fitting 

parameters for each individual participant that minimized the sum of squared error (SSE) 

between predicted and actual RTs across all trials. A single set of parameters was derived 

for each subject providing the best fit across all task conditions. Data were smoothed with a 

5 trial moving average for fitting of sequential time series responses, although similar results 

were produced without such smoothing, just with larger overall SSE's for all models. Model 

fits were evaluated with Akaike's Information Criterion, which penalizes model fits for 

models with additional parameters:

where k is the number of parameters, n is the number of data points to be fit, and SSE is the 

sum of squared error between the model predictions and actual response times across all 

trials for each subject. The model with the lowest AIC value is determined to be the best fit.

Exploit Model

There are several ways in which RTs might be modeled in this task. Our first aim was to 

derive a simple model to approximate the mechanisms embodied within our a priori neural 

network model of the basal ganglia, which predicted the double dissociation between RTs in 

the DEV and IEV conditions dependent on dopaminergic medication status in Parkinson's 

disease [28]. Because that model is complex and involves multiple interacting brain areas, 

we sought to capture its core computations in abstract form, and to then fit free parameters 

of this reduced model to individual subject data, which in turn can be linked to striatal 

dopaminergic genes. A similar procedure was used in a choice rather than response time task 

[10].
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We model the incremental RT changes in the different conditions via separate Go and NoGo 

parameters that learn from positive and negative prediction errors and serve to speed and 

slow RTs, respectively. These parameters correspond to D1 and D2-dependent learning in 

striatonigral and striatopallidal neurons. The terms “Go” and “NoGo” are shorthand 

descriptions of the functions of the two pathways in the neural model, whereby Go and 

NoGo activity separately report the learned probability that a given action in the current 

state would produce a positive and negative outcome, respectively. In choice paradigms, the 

probability that an action is taken is proportional to the relative (Go – NoGo) activity for 

that action, as compared to all other actions. Here, as far as the striatum is concerned in the 

model, there is only one action (“hit the spacebar”), and the relative (Go – NoGo) activity 

simply determines the speed at which that action is executed.

Positive and negative prediction errors are computed relative to current expected value V, 

which are then used to update V estimates for subsequent trials, and also to train the Go and 

NoGo striatal values. This scheme is reminiscent of “actor-critic” reinforcement learning 

models [5, 34], where the critic is the V system, the prediction errors of which are reflected 

in phasic dopaminergic signals, and the actor comprises Go and NoGo striatal neuronal 

populations [16, 28].

The expected value V was initialized to 0 at the beginning of the task. The final V value at 

the end of each condition was carried over to the beginning of the next, on the assumption 

that any rewards obtained at the beginning of a condition are compared relative to their best 

estimate of expected value in the task at large (e.g., 50 points might be interpreted as a 

positive prediction error if in the last block they had on average obtained 20 points, but 

would be a negative prediction error if their previous average point value was 100). Go and 

NoGo values were initialized to 0 and accumulated as a function of reward prediction errors 

for each state (clock face). [Although the Go and NoGo terms accumulate monotonically as 

a function of experience, in the neural model Go synapses are weakened following negative 

prediction errors and NoGo synapses are strengthened, preventing these values from 

saturating. Here the contributions of Go and NoGo terms were small enough for this to not 

be necessary; however adding a decay term to Go/NoGo values to prevent increases without 

bound did not change the basic pattern of results.] Finally, due to model degeneracy, α was 

held constant and was set to 0.1 to allow integration of history, allowing other Go/NoGo 

learning parameters to vary freely. This same critic learning rate was used in the neural 

network implementation [28].

Bayesian integration of expected value—The Go and NoGo learning mechanisms 

capture a relatively automatic process in which the striatum speeds/slows responses after 

positive/negative prediction errors, independent of the RTs that produced those 

reinforcements. This mechanism may result from the architecture of the basal ganglia, which 

supports approach and avoidance behavior for positive and negative outcomes. This 

mechanism is also adaptive in the current task if participants’ initial responses are faster than 

the midpoint (as was typically the case), in which case positive prediction errors 

predominate in DEV and negative prediction errors predominate in IEV, leading to speeding 

and slowing respectively. The improved behavioral fit (including penalty for additional 

parameters) provided by including these mechanisms suggests that these tendencies capture 
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some of the variance in this task. However, note that these mechanisms are not necessarily 

adaptive in all cases: for example, slow responses that produce positive prediction errors 

(e.g., in IEV) would lead to subsequent speeding according to this mechanism.

We posited that in addition to Go/NoGo learning, subjects would attempt to explicitly keep 

track of the rewards experienced for different responses and then produce those responses 

that had been rewarded most. It is unrealistic to assume that participants track reward 

structure for all possible response times. Instead, we employed a simplifying (and perhaps 

more plausible) assumption that participants simply track reward structure for responses 

categorized as “fast” or “slow”. Given that the reward functions are monotonic (and 

assuming subjects believe this to be the case), one only needs to track rewards separately for 

fast and slow responses to determine which has the highest expected value, and to respond 

faster or slower in proportion to the difference in these values.

We thus categorized each response depending on whether it was faster or slower than the 

participants local mean RTavg , which was itself tracked with the delta rule:

(This choice for tracking average RT was not critical; all results are similar even if simply 

defining fast and slow according to the first and second halves of the clock. However using 

an adaptive local mean RT is more general, and may prove useful if the reward functions are 

non-monotonic.)

We represented participants’ beliefs about reward structure for these two response categories 

in Bayesian terms, assuming participants represent not only a single value of each response 

but rather a distribution of such values, and crucially, the uncertainty about them [39]. In 

particular, we posited that participants would track the estimated likelihood of obtaining a 

positive reward prediction error for each response, or the magnitude of such prediction 

errors, as a function of past set of dopamine bursts reported by midbrain dopamine neurons. 

Any probability distribution in the exponential family of distributions can be represented in 

a population of spiking neurons [48, 49], so a priori it is not clear whether it is more 

plausible for participants to track simply the probability of a dopamine burst occurring at all, 

or to instead represent the magnitude of the typical prediction error. Model fits to data were 

clearly superior for probability simulations, which we focus on here; nevertheless, as 

reported below, all genetic findings hold when modeling reward magnitudes (or reward 

prediction error magnitudes), with a Kalman filter.

We represented the likelihood of reward prediction errors for each state s and fast or slow 

action a as beta distributions Beta(ηs,a,βs,a) (see below). The probability of a reward 

prediction error can be represented as a binomial process , and the beta distribution is the 

conjugate prior to the binomial distribution. This implies that the application of Bayes rule 

to update the prior distribution results in a posterior distribution that is itself also a beta 

distribution with new parameters. [Strictly speaking, a binomial process assumes that each 

observation is independent. This assumption is violated in the case of reward prediction 

errors because a given reward value may be interpreted as a positive or negative prediction 
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error depending on prior reinforcement context. The beta distribution is nevertheless a 

simplifying assumption that provided a substantial improvement to behavioral fit. 

Furthermore, we also modeled a version in which we track the probability of obtaining a 

non-zero reward, rather than a reward prediction error. In this model, we also binarized 

responses such that “fast” and “slow” responses were categorized according to those that 

were in the first and second halves of the clock. In this case, each observation is indeed 

independent, and all core results continued to hold.]

The probability density function of the beta distribution is as follows:

where the integral in the denominator is the beta function B(η,β) and is a normalization 

factor that ensures that the area under the density function is always 1. The defining 

parameters of the posterior distribution for each state s are calculated after each outcome 

using Bayes’ rule:

Explore Model

Due to the conjugate prior relationship between binomial and beta distributions, this update 

is trivial without having to directly compute Bayes’ equation above. The η and β parameters 

are updated for each state/action by simply incrementing the prior η and β hyperparameters 

after each instance of a positive or negative prediction error, respectively (see Figure S4 for 

trajectories of hyperparameters for a single subject.)

The participant can then compare the means of each posterior distribution and adjust RTs so 

as to increase the probability of obtaining a reward prediction error. The mean of the beta 

distribution is simply μ = η / (η + β). Thus this component of the exploitation model predicts 

that subjects adjust RTs according to ρ[μslow(s,t) – μfast(s,t)], where ρ is a free parameter 

scaling the degree to which participants utilize these mean estimates in adapting their RTs.

In addition to the Go/NoGo learning and Bayesian integration mechanisms, model fits to 

data were also substantially improved by a mechanism in which participants adapted RTs 

toward that which had produced the single largest reward thus far (“going for gold”), 

regardless of the reward probability. This tendency was captured by free parameter ν, and 

was not associated with any genotype (nor was it required for the core results of the paper to 

Frank et al. Page 16

Nat Neurosci. Author manuscript; available in PMC 2011 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hold, but may be useful for future studies of the neural and genetic mechanisms of this 

behavior). We modeled this by keeping track of the RT that yielded rewards that were at 

least one standard deviation greater than all rewards observed thus far in the block, and 

adapting all subsequent RTs toward this value. Further, participants’ response on one trial 

may be heavily influenced by that of the previous trial, independent of value. Accordingly 

we introduce a parameter λ to capture individual differences in this influence of previous 

responses.

Thus the full RT model is as follows:

The computations of the final Explore term is discussed next.

One of the central advantages of the Bayesian framework is that it provides an estimate not 

only of the “best guess” (the mean, or expected value μ of the beta distribution), but also the 

uncertainty about that mean, quantified by the standard deviation σ of that distribution. We 

attempted to predict RT swings from one trial to the next, hypothesizing that RT swings 

reflect exploration when participants are uncertain about whether they might obtain better 

outcomes. The standard deviation of the beta distributions for each state (clock-face) can be 

computed analytically in each trial as a measure of uncertainty:

The model Explore term was applied on each trial as a function of the relative differences in 

uncertainty about the likelihood of reward prediction errors given fast and slow responses:

In this way exploratory-based RT swings are predicted to occur in the direction of greater 

uncertainty (thereby acting to reduce this uncertainty). Note that for trials immediately 

following an exploratory RT swing, as it stands this implementation would roughly double-

count exploration, because the λ parameter already reflects autocorrelation between the 

previous and current RT (where in this case the previous trial was an exploratory swing). To 

mitigate against this double-counting, we set the Explore term to 0 in trials immediately 

following an exploratory RT swing (defined as a change in RT that was in the same 

direction predicted by the uncertainty Explore term). The results were not sensitive to this 

particular implementation, however. [For example, similar findings were found without 

resetting Explore to 0, but instead including a parameter into the RT estimate that reflects 

the effects of previous RT swings from trial n-2 to n-1 (in addition to λ which accounts for 

the raw RT in trial n-1). This additional parameter was negative, such that a large RT swing 
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in trial n-1 was predictive of a swing in the opposite direction in trial n. In this model, 

without resetting Explore, all genetic findings remained significant, including the COMT 

gene-dose Explore effect; p=.01.]

A number of models of RT swings were compared in an effort to determine whether COMT 

effects were specific to uncertainty.

Sutton (1990) Exploration Bonus—In this model, exploration is increasingly 

encouraged for options that had not been explored for several trials. Specifically, exploration 

is predicted to increase with the square-root of the number of trials since making that choice, 

scaled by free parameter ζ:

“Lose-Switch” model—In this model, RT swings are predicted to occur after negative 

prediction errors, such that participants switch to a slower response if the previous response 

was fast and vice-versa. The degree of adaptation was scaled by free parameter κ.

“Regression to the mean” model—Here responses are predicted to speed/slow as a 

function of whether the previous response was faster or slower than the local mean, 

regardless of the outcome. The degree of adaptation was scaled by free parameter ξ.

where RT'(s,t) is the new RT prediction including regression to the mean.

“Reverse-momentum” model—This model attempts to capture periodic changes in RT 

whereby subjects reverse the direction of their responses if they had progressively sped up 

or slowed down over the last number of trials. The degree of RT adjustment was predicted to 

linearly increase with the number of preceding responses that had been progressively 

speeded/slowed, and scaled by a free parameter γ. Further, this RT reversal was only 

predicted to occur if the number of progressively speeded/slowed responses exceeded a 

minimum threshold θ, also a free parameter (this parameter allows for variability in the 

period of RT swings and was required for the good fits described below).
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Model comparison results are presented in the supplement.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task conditions: decreasing expected value (DEV), constant expected value (CEV), 

increasing expected value (IEV), and constant expected value - reverse (CEVR). The x axis 

corresponds to the time after onset of the clock stimulus at which the response is made. The 

functions are designed such that the expected value at the beginning in DEV is equal to that 

at the end in IEV so that at optimal performance, subjects should obtain the same average 

reward in both IEV and DEV. Faster responses were accompanied by longer inter-trial 

intervals so that reward-rate is roughly equalized across conditions. a) Example clock-face 

stimulus. Each trial ended when the subject made a response or otherwise when the 5 s 

duration elapsed. The number of points won on the current trial was displayed. b) 
Probability of reward occurring as a function of response time; c) Reward magnitude 

(contingent on probability in b); d) Expected value across trials for each time point. Note 

that CEV and CEVR have the same EV.
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Figure 2. 
Response times as a function of trial number, smoothed (with weighted linear least squares 

fit) over a 10 trial window, in a) all 69 participants, b) computational model.
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Figure 3. 
Relative within-subjects biases to speed RTs in DEV relative to CEV (DEVdiff = CEV – 

DEV) and to slow RTs in IEV (IEVdiff IEV = IEV – CEV). Values represent mean (standard 

error) in the last quarter of trials in each condition. a) DARPP-32 gene, b) DRD2 gene, c) 
COMT gene.
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Figure 4. 
Trial-to-trial RT adjustments in a single subject in a) CEV, b) CEVR, c) DEV, and d) IEV. 

Model Go and NoGo terms (magnified by 4x) accumulate as a function of positive and 

negative prediction errors. Go dominates over NoGo in DEV and the reverse in IEV, but 

these incremental changes do not capture trial-by-trial dynamics. For this subject, = 0.63 and 

= 0.74 (ms/point).
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Figure 5. 
Genetic effects on reinforcement model parameters. DARPP-32 T/T carriers showed 

relatively greater learning rates from gains than losses (αGN = αG – αN) compared to C 

carriers. DRD2 T/T carriers showed the opposite pattern. The COMT gene did not affect 

learning rates, but met carriers had significantly higher uncertainty-based explore parameter 

(ε) values (which are divided by 104 to be displayed on the same scale) than did val/val 

participants. Error bars reflect standard error.
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Figure 6. 
Evolution of action-value distributions. a), b) Beta probability density distributions 

representing the belief about the likelihood of reward prediction errors following fast and 

slow responses, averaged across all subjects’ data. The x axis is the probability of a positive 

prediction error and the y-axis represents the belief in each probability, with the mean value 

μ representing the best guess. Dotted lines reflect distributions after a single trial; dashed 

lines after 25 trials; solid lines, after 50 trials. (See supplemental animation #1 for dynamic 

changes in these distributions across all trials for a single subject). Differences between the 

μfast and μslow were used to adjust RTs to maximize reward likelihood. The standard 

deviation σ was taken as an index of uncertainty. Exploration was predicted to modulate RT 

in direction of greater uncertainty about whether outcomes might be better than the status 

quo. c), d) Trajectory of means and standard deviations for a single subject in DEV and IEV 

conditions. Uncertainties σ decrease with experience. Corresponding Beta hyperparameters 

η, β are shown in the supplement.
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Figure 7. 
COMT gene predicts directed exploration toward uncertain responses. a) RT swings (change 

in RT from the previous trial) in a single met/met subject in the CEV condition, and the 

corresponding model uncertainty-based Explore term (amplified to be on the same RT 

scale). See supplemental animation #2 for this subject's evolution of beta distributions in 

CEV. b) COMT gene-dose effect on the uncertainty-based exploration parameter ε. Gene-

dose effects were also observed when comparing relative contributions of ε compared with 

c) a reverse-momentum parameter γ, and d) a lose-switch parameter κ. Relative Z-scores are 

plotted here due to comparison of parameters scaling quantities of different magnitudes. 

Error bars reflect standard error.
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