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Whole-genome re-sequencing 
association study for direct genetic 
effects and social genetic effects of 
six growth traits in Large White pigs
Pingxian Wu1, Kai Wang1, Qiang Yang1, Jie Zhou1, Dejuan Chen1, Yihui Liu3, Jideng Ma1, 
Qianzi Tang1, Long Jin1, Weihang Xiao1, Pinger Lou4, Anan Jiang1, Yanzhi Jiang2, Li Zhu1, 
Mingzhou Li1, Xuewei Li1 & Guoqing Tang1

Socially affected traits are affected by direct genetic effects (DGE) and social genetic effects (SGE). 
DGE and SGE of an individual directly quantify the genetic influence of its own phenotypes and the 
phenotypes of other individuals, respectively. In the current study, a total of 3,276 Large White pigs 
from different pens were used, and each pen contained 10 piglets. DGE and SGE were estimated for six 
socially affected traits, and then a GWAS was conducted to identify SNPs associated with DGE and SGE. 
Based on the whole-genome re-sequencing, 40 Large White pigs were genotyped and 10,501,384 high 
quality SNPs were retained for single-locus and multi-locus GWAS. For single-locus GWAS, a total of 54 
SNPs associated with DGE and 33 SNPs with SGE exceeded the threshold (P < 5.00E-07) were detected 
for six growth traits. Of these, 22 SNPs with pleiotropic effects were shared by DGE and SGE. For multi-
locus GWAS, a total of 72 and 110 putative QTNs were detected for DGE and SGE, respectively. Of 
these, 5 SNPs with pleiotropic effects were shared by DGE and SGE. It is noteworthy that 2 SNPs (SSC8: 
16438396 for DGE and SSC17: 9697454 for SGE) were detected in single-locus and multi-locus GWAS. 
Furthermore, 15 positional candidate genes shared by SGE and DGE were identified because of their 
roles in behaviour, health and disease. Identification of genetic variants and candidate genes for DGE 
and SGE for socially affected traits will provide a new insight to understand the genetic architecture of 
socially affected traits in pigs.

Social interactions between individuals are plentiful, which could contribute to pig’s growth and welfare1–4. Social 
cooperation among pigs (such as group behaviour) would result in positive effects, whereas the competition (such 
as tail biting) may result in negative effects. Considering the social interaction in the genetic evaluation model, 
the phenotypic value should be decomposed into a direct effect due to its own characteristic and a social effect 
originating from others5. Both effects can be further decomposed into a heritable component and a non-heritable 
component. The heritable component of the social effect its called the social genetic effect (SGE)6,7. Griffing et al. 
(1967) first reported that the social effects among group individuals distinctly affected the selection processes in 
a group selection5. Amelie Baud et al. (2017) reported that the social genetic effect explained up to 29% of pheno-
typic variance for health and disease traits in mice, that showed the contribution of the social genetic effect was 
more than the direct genetic effect (explained 21% of phenotypic variance) in some cases8. However, the classical 
quantitative genetic model ignored the SGE among group members in the past several decades. In that case, the 
genetic variance for the socially affected trait would be incorrectly estimated due to the ignorance of SGE5,8.

Previous studies have been demonstrated that the SGE plays an important role in genetic evaluation4 and that 
their genetic parameters for important traits were estimated in pigs4,5,9. For average daily gain (ADG), the genetic 
correlation between direct genetic effect and social effect was low to moderate (0.24) in pigs10. The model ignored 
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the pen effects and showed that the heritability of SGE was approximately were about 0.00311 and 0.000712 for 
ADG. The reported social heritabilities were 0.007, 0.001, and 0.003 for body weight, carcass backfat depth, and 
carcass lean meat content in heavy pigs13, respectively. Moreover, Rostellato et al. (2015) reported that the social 
genetic effect contributed largely to total genetic variance for the carcass traits (ranging from 33.2% to 35%) in 
pigs13. Canario et al. (2017) showed that the heritability of SGE was 0.001 to 0.004 for pig growth rate and its 
genetic correlations among direct and SGE were −0.28 to 0.12 in a Swedish pig population3.

In general, the pigs were grouped into different pens, and the social effects among members strongly affected 
pig productive performance. In pigs, the estimation of the social genetic effect was mainly focused on ADG14, feed 
intake, backfat and muscle depth7. Several models that considered different fixed factors were built to estimate 
SGE. The animal model was first extended to SGE in Japanese quail15. This model incorporated the competi-
tive effects in classical BLUP (best linear unbiased prediction), and substantially resulted in an extra selection 
response. Muir16 and Bijma et al.17,18 presented a full model that simultaneously contained both direct genetic 
effects and social genetic effects. They estimated SGEs for growth traits and found that SGE contributed the main 
part of genetic variance in growth rate and feed intake in pigs. In summary, the previous studies on SGE mainly 
focused on the development of an evaluation model and the estimation of genetic parameters. The genetic archi-
tecture and causal pathway for SGE are still unknown.

Pig growth traits are affected by direct genetic effects (DGE) and SGE. To investigate the genetic architecture of DGE 
and SGE, this study conducted a GWAS for DGE and SGE of six growth traits using the whole-genome re-sequenced 
data from the Large White pig population. The purpose of this study was to estimate the DGE and SGE for six socially 
affected traits, and reveal the genomic variation and candidate genes for DGE and SGE of six growth traits in pigs.

Results
Summary of estimated DGE and SGE.  Using this full model Y = Xb + ZDaD + ZSaS + Wl + Vg + e (see 
Materials and Methods), the DGE and SGE were estimated for each socially affected trait in Large White pigs. 
Table S1 listed the describe statistics about the DGE and SGE for these six traits. The DGE and SGE contained 
residual effects of 40 genotyped pigs were separately used to conduct GWAS. Variance components were pre-
sented in Table 1 for six socially affected traits.

The single-locus GWAS results using GEMMA.  For DGE.  A single marker test was performed to iden-
tify SNPs associated with DGE of 6 growth traits. The Table 2 and Fig. 1 show the GWAS results for DGE of 6 
growth traits. And Q-Q plots are shown in Supplementary Fig. 1. A total of 54 SNPs and 20 genes were detected 
for DGE in this study.

At the genome-wide threshold (P < 5 × 10−8), 1 SNP was associated with dgeADG (Fig. 1A) and 1 with 
dgeB100 (Fig. 1C). For dgeADG, the genome-wide significant chromosome region was located in SSC14: 98.69–
98.73 Mb. The top SNP (SSC14: 98711408 bp, P = 2.05 × 10−8) was located in the PRKG1 gene. For dgeB100, the 
most significant chromosome region was located in SSC6: 39.75–39.79 Mb, and the top SNP (SSC6: 39767887 bp, 
P = 1.49 × 10−8) was located in POP4 and the PLEKHF1 gene.

At the suggestive threshold (P < 5 × 10−7), 9 SNPs were associated with dgeADG, 19 with dgeD100, 6 with 
dgeB100, 2 with dgeADFI, 4 with dgeFCR, and 12 with dgeRFI (Table 2). Of these, 5 top SNPs (including SSC17: 
65146021 bp for dgeADG (Fig. 1A); SSC2: 14306048 bp, SSC4: 15405575 bp and SSC7: 124864925 bp for dgeD100 
(Fig. 2B); SSC3: 129695008 bp for dgeRFI (Fig. 1F)) were also interesting, since the P-value of these SNPs were 
closed to genome-wide threshold. In the region of SSC2: 14.29–14.33 Mb, the top SNP (SSC2: 14306048 bp, 
P = 5.99 × 10−8) was located in LOC110259270 gene for dgeD100. In addition, a clear peak was observed within 
the region SS16: 23.20–23.23 Mb for dgeD100, however, no candidate gene was identified in this region.

For SGE.  To explore the potential genetic variants associated with SGE, a whole-genome re-sequencing asso-
ciation study was conducted for SGE of 6 growth traits. All of the Manhattan plots are shown in Fig. 1 and the 
Q-Q plots are shown in Supplementary Fig. 2. At the genome-wide threshold (P < 5 × 10−8), 4 identified SNPs 

Trait ADG D100 B100 ADFI FCR RFI

σA
2 1173.85 ± 142.25 252.56 ± 33.27 131.63 ± 18.96 15311.26 ± 2217.03 42.93 ± 4.56 12476.73 ± 2187.07

σAdge
2 1107.79 ± 147.13 212.63 ± 36.36 126.75 ± 27.78 14157.21 ± 3115.23 44.23 ± 8.74 11577.72 ± 2973.81

σAsge
2 49.10 ± 9.26 8.36 ± 2.78 4.87 ± 1.56 109.09 ± 43.33 0.08 ± 0.03 97.23 ± 17.98

σP
2 5335.67 ± 114.31 631.40 ± 43.26 292.49 ± 17.28 38278.14 ± 1156.69 138.47 ± 9.87 25993.18 ± 894.27

h2 0.22 ± 0.01 0.40 ± 0.02 0.45 ± 0.03 0.40 ± 0.02 0.31 ± 0.01 0.48 ± 0.03

σTBV
2 5587.34 ± 716.79 103.59 ± 13.31 598.62 ± 48.79 39423.18 ± 3883.17 101.11 ± 8.84 32734.68 ± 3101.25

σTP
2 27235.32 ± 1173.24 2243.46 ± 178.65 1387.33 ± 91.12 68527.17 ± 2796.35 307.61 ± 4.97 33449.05 ± 1357.95

T2 0.22 ± 0.04 0.46 ± 0.06 0.43 ± 0.05 0.58 ± 0.09 0.33 ± 0.04 0.98 ± 0.17

rADS
0.23 ± 0.11 0.58 ± 0.17 0.15 ± 0.09 0.35 ± 0.16 0.23 ± 0.10 0.70 ± 0.23

Table 1.  The variance components (±standard errors) for six socially affected traits in Large White pigs. σA
2, 

additive genetic variance; σAdge
2 , genetic variance of direct genetic effects; σAsge

2 , genetic variance of social genetic 
effects; σP

2, phenotypic variance; h2, classical heritability ( σ σ=h /A P
2 2 2); σTBV

2 , total heritable variance; σT
2
P
, total 

phenotypic variance; T2, total heritability ( σ σ=T /TBV T
2 2 2

P
); rADS

, correlation between direct and social genetic 
effects.
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were associated with SGE of days to 100 kg (sgeD100), 7 with sgeRFI. At the lenient threshold (P < 5 × 10−7) for 
suggestive associations, 1 SNP was associated with SGE of average daily gain (sgeADG), 14 with sgeD100, 2 with 
sgeADFI, 4 with sgeFCR, and 1 with sgeRFI, but no association was found for sgeB100 (Table 3 and Fig. 2).

For sgeADG, only one suggestive SNP (P = 3.80 × 10−7) was distributed on SSC14 (Table 3 and Fig. 2A). One 
candidate gene (PRKG1) was found for sgeADG within the ±20 kb region of the top SNP (SSC14: 98711408 bp).

The results of sgeD100 are shown in Table 3 and Fig. 2B. The most significant locus with 4 consecutive SNPs 
was identified on SSC7, and the P-value of the top SNP (SSC7: 124864925 bp) was 1.03 × 10−8. Furthermore, a 
total of 14 suggestive significant SNPs (P < 5 × 10−7) for sgeD100 was characterized on SSC2, SSC3, SSC4, SSC8, 
SSC9, SSC16 and SSC17. On SSC2, the SNP (SSC2: 14306048 bp) was located within the region of the uncharac-
terized gene (LOC110259270). Two genes (GAR1, and CFI) near the SNP (SSC8: 112431517 bp, P = 3.41 × 10−7) 
were found for sgeD100.

A total of 2 suggestive significant SNPs (P < 5 × 10−7) on SSC8 and SSC14 were detected for sgeADFI 
(Table 3 and Fig. 2D). In these two significant chromosome regions (SSC8: 88.65–88.69 Mb and SSC14: 116.10–
116.14 Mb), two genes (SLC7A11, SORCS3) were found.

For sgeFCR, a total of 4 associations reached the suggestive significant threshold (P < 5 × 10−7) on SSC1 and 
SSC6 (Table 3 and Fig. 2E). In the significant chromosome region (SSC1: 57.25–57.29 Mb), the top SNP (SSC3: 
57267261, P = 2.83 × 10−7) was located in the GABRR2 gene.

A total of 8 SNPs were found on SSC1 and SSC16 for sgeRFI (Table 3 and Fig. 2F). Two SNPs located on SSC1 
and five SNPs located on SSC16 were found to reach the genome-wide significance threshold (P < 5 × 10−8). The 
top SNPs (SSC16: 43805766) with the lowest P-value of 3.72 × 10−9 showed the strongest association effect in the 

Trait Chr
Range of SNP 
(Mb)

Number of 
SNP Position (bp) n_miss Allele MAF Candidate gene P-value

dgeADG 1 10.18–10.22 1 10204975 1 G/C 0.308 ARID1B 4.50E-07

dgeADG 9 45.89–45.93 4 45909385 1 A/C 0.321 ARCN1/PHLDB1 3.29E-07

dgeADG 14 98.69–98.73 1 98711408 0 A/G 0.188 PRKG1 2.05E-08

dgeADG 17 65.13–65.17 4 65146021 0 A/G 0.325 7.59E-08

dgeD100 2 14.29–14.33 1 14306048 0 G/A 0.450 LOC110259270 5.99E-08

dgeD100 2 130.93–130.97 1 130953920 3 C/T 0.149 3.60E-07

dgeD100 3 15.37–15.41 2 15390061 2 G/A 0.276 1.47E-07

dgeD100 3 114.26–114.30 2 114283746 0 C/A 0.350 2.66E-07

dgeD100 4 15.39–15.43 2 15405575 0 C/T 0.450 6.40E-08

dgeD100 7 124.84–124.88 4 124864925 0 A/G 0.250 5.76E-08

dgeD100 9 14.94–10.98 1 14961639 0 A/G 0.138 3.87E-07

dgeD100 16 23.20–23.23 6 23209418 0 C/T 0.100 3.05E-07

dgeB100 2 65.69–65.73 1 65708604 0 T/A 0.150 CACNA1A/RF00001 1.78E-07

dgeB100 3 116.98–117.02 1 116995212 4 A/C 0.111 1.04E-07

dgeB100 6 39.75–39.79 1 39767887 0 G/A 0.188 POP4/PLEKHF1 1.49E-08

dgeB100 8 16.42–16.46 1 16438396 2 G/A 0.474 2.23E-07

dgeB100 11 25.86–25.90 1 25881988 0 C/G 0.375 ELF1 1.08E-07

dgeB100 16 7.73–7.77 1 7746260 0 T/C 0.113 4.61E-07

dgeB100 18 7.78–7.82 1 7803229 1 C/T 0.103 MGAM2/RF00026 1.59E-07

dgeADFI 6 6.49–6.53 1 6509038 2 T/A 0.145 PLCG2 4.98E-07

dgeADFI 7 133.19–133.23 1 133206730 0 T/A 0.275 3.78E-07

dgeFCR 1 57.25–57.29 2 57267261 0 G/C 0.125 GABRR2 1.76E-07

dgeFCR 1 309.02–309.06 1 309043978 0 G/C 0.175 3.32E-07

dgeFCR 2 43.99–44.03 1 44010935 0 G/C 0.362 INSC 2.62E-07

dgeRFI 1 312.93–312.97 2 312947811 0 T/C 0.350 INVS/TEX10 1.57E-07

dgeRFI 1 242.02–242.06 1 242043203 0 C/T 0.125 4.53E-07

dgeRFI 3 48.62–48.66 2 48636349 0 T/C 0.388 ST6GAL2 2.99E-07

dgeRFI 3 129.68–129.72 1 129695008 0 C/T 0.263 6.01E-08

dgeRFI 4 114.56–114.60 1 114582555 0 A/T 0.113 3.64E-07

dgeRFI 6 150.80–150.84 1 150817328 0 G/A 0.275 NFIA 3.27E-07

dgeRFI 7 129.72–129.76 1 129741749 0 A/G 0.125 2.74E-07

dgeRFI 8 44.17–44.21 1 44189335 0 C/T 0.312 3.00E-07

dgeRFI 13 60.23–60.27 1 60251748 0 C/A 0.163 2.77E-07

dgeRFI 16 43.79–43.83 1 43805766 0 C/T 0.212 ADAMTS6 1.38E-07

Table 2.  The identified SNPs reached the threshold (P < 5.00 × 10−7) for DGE of growth traits in Large White 
pigs. Chr, Chromosome; Range, Range of significant chromosome region; Number of SNP, Number of SNP 
involved; Position, Position of top SNP; n_miss, number of missing values of the SNP; Alleles, Alleles of top 
SNP; MAF, Minor allele frequency; Candidate Gene, Gene found in the range.
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region of 43.79–43.83 Mb. In the significant region of SSC16: 43.79–43.83 Mb, five consecutive SNPs and one 
promising candidate gene (ADAMTS6) were identified for sgeRFI. The second top SNP (SSC1: 312947811) with a 
low P-value of 1.18 × 10−8 was found in the region of 312.93–312.97 Mb. In addition, one candidate gene (LPAR1) 
related to disease and healthy were found for sgeRFI in the chromosome regions of SSC1: 251.97–252.01 Mb.

A total of 15 significant SNPs were shared by DGE and SGE that were distributed on SSC1, SSC2, SSC3, 
SSC4, SSC7, SSC9, SSC14 and SSC16 (Table 4). In the region of SSC14: 98.69–98.73 Mb, the top SNP (SSC14: 
98711408 bp) was located in the PRKG1 gene for dgeADG and sgeADG. In the region of SSC2: 14.29–14.33 Mb, 
the top SNP (SSC2: 14306048 bp) was located in the LOC110259270 gene, and in the region of SSC8:112.41–
112.45 Mb, the top SNP (SSC8: 112431517 bp) was located in GAR1 and the CFI gene for dgeD100 and sgeD100, 
respectively.

The multi-locus GWAS results using FarmCPU.  The summary of GWAS results using the FarmCPU 
approach is listed in Tables S2 and S3. In total, the current study identified 51 and 101 SNPs for DGE and SGE, 
respectively. For DGE, 4 SNPs were associated with dgeB100, 45 with dgeD100 and 2 with dgeFCR (Table S2), 
respectively. For SGE, 3 SNPs were associated with sgeADG, 63 with sgeB100, 18 with sgeD100, 7 with sgeADFI, 
5 with sgeFCR and 4 with sgeRFI (Table S3), respectively. Among these SNPs, a total of 7 SNPs were shared 
by dgeD100 and sgeD100 (Table 4). Additionally, three candidate genes were found at 20 kb around these top 
SNPs for dgeD100 and sgeD100. Among theme, two genes, NR3C2 and PKD2, were separately located in SSC8: 
80.56–80.60 Mb and 131.00–131.04 Mb. One gene, LYPLAL1, was located in the region of SSC10: 8.96–9.00 Mb.

The multi-locus GWAS results using FASTmrEMMA.  The final results of the FASTmrEMMA method 
are shown in Tables S4 and S5. For DGE, 16, 18 and 12 putative QTNs were detected for dgeADFI, dgeB100 and 
dgeD100 (Table S4), respectively. Of these, a QTN SSC8: 16438396 bp located in the region 16.42–16.46 Mb was 
detected by single-locus GWAS and multi-locus GWAS for dgeB100. This QTN explained 33.19% of the pheno-
typic variance and included −3.30 QTN effect. For SGE, 19, 15, 14, 5, 15 and 8 putative QTNs were identified for 
sgeRFI, sgeFCR, sgeD100, sgeB100, sgeADG and sgeADFI (Table S5), respectively. In the region of SSC17: 9.68–
9.72 Mb, a QTN located on SSC17: 9697454 bp was identified by single-locus GWAS and multi-locus GWAS for 
sgeD100. This QTN with 6.04 QTN effect explained 14.30% of the phenotypic variance. Furthermore, a total of 5 
putative QTNs were shared by SGE and DGE of each trait (Table 4). For the ADFI, B100 and D100 trait, the QTN 
SSC10: 11015344 was shared by DGE and SGE. Four QTNs including SSC4: 140729546 bp, SSC8: 33116699 bp, 
SSC11: 15329359 bp and SSC13: 21796761 bp, were detected in both dgeD100 and sgeD100.

Figure 1.  Manhattan plots of genome-wide association analysis results associated to DGE for six growth traits 
using GEMMA software. The threshold for genome-wide and suggestive significance was set at P = 5.00 × 10−8 
and P = 5.00 × 10−7, respectively.
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Figure 2.  Manhattan plots of genome-wide association analysis results associated to SGE for six growth traits 
using GEMMA software. The threshold for genome-wide and suggestive significance was set at P = 5.00 × 10−8 
and P = 5.00 × 10−7, respectively.

Trait Chr
Range of SNP 
(Mb)

Number of 
SNP Position (bp) n_miss Allele MAF Candidate gene P-value

sgeADG 14 98.69–98.73 1 98711408 0 A/G 0.188 PRKG1 3.80E-07

sgeD100 2 14.29–14.33 1 14306048 0 G/A 0.450 LOC110259270 1.38E-07

sgeD100 3 15.37–15.41 2 15390061 2 G/A 0.276 2.38E-07

sgeD100 4 15.39–15.43 2 15405575 0 C/T 0.450 5.35E-08

sgeD100 7 124.84–124.88 4 124864925 0 T/C 0.250 1.03E-08

sgeD100 8 112.41–112.45 1 112431517 2 A/G 0.263 GAR1/CFI 3.41E-07

sgeD100 9 14.94–14.98 1 14961639 0 A/G 0.138 4.21E-07

sgeD100 16 23.17–23.21 1 23192567 0 A/G 0.100 4.93E-07

sgeD100 16 23.19–23.23 5 23209532 0 G/A 0.100 4.93E-07

sgeD100 17 9.68–9.72 1 9697454 2 G/A 0.434 2.96E-07

sgeADFI 8 88.65–88.69 1 88672493 0 A/G 0.100 SLC7A11 2.42E-07

sgeADFI 14 116.10–116.14 1 116122434 0 G/C 0.250 SORCS3 3.80E-07

sgeFCR 1 57.25–57.29 2 57267261 0 G/C 0.125 GABRR2 2.83E-07

sgeFCR 6 29.60–29.64 1 29619511 0 A/C 0.212 2.38E-07

sgeFCR 6 153.48–153.52 1 153495956 0 T/C 0.287 4.75E-07

sgeRFI 1 312.93–312.97 2 312947811 0 G/A 0.350 1.18E-08

sgeRFI 1 251.97–252.01 1 251994772 0 T/G 0.200 LPAR1 3.99E-07

sgeRFI 16 43.79–43.83 5 43805766 0 C/T 0.212 ADAMTS6 3.72E-09

Table 3.  The identified SNPs reached the threshold (P < 5.00 × 10−7) for SGE of growth traits in Large White 
pigs. Chr, Chromosome; Range, Range of significant chromosome region; Number of SNP, Number of SNP 
involved; Position, Position of top SNP; n_miss, number of missing values of the SNP; Alleles, Alleles of top 
SNP; MAF, Minor allele frequency; Candidate Gene, Gene found in the range.
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Interestingly common loci in the three methods.  This study performed a GWAS for DGE and SGE using the 
GEMMA, FarmCPU and FASTmrEMMA methods. Interestingly, two identified SNPs were validated in three 
methods (Table 5). One SNP (SSC8: 16438396 bp) was associated with dgeB100. One SNP (SSC17: 9697454 bp) 
was associated with sgeD100.

Discussion
The estimation of genetic effect.  Many studies have reported that the social genetic effect are wide-
spread in hens19, mice20, and pigs7. However, at present, very few GWAS for SGE are conducted in pigs because 
the genetic parameters of SGE are difficult to measure. In past several decades, the heritability of social effects 
were estimated to be very low in pigs11,21,22 using the common REML method. Therefore, social effects were often 
ignored in past pig breeding. Instead of common heritability of social effects, the ratio between total heritable 
variance and phenotypic variance was used as a measure of the importance of SGE. On that basis, the social effect 
was found to contribute the heritable variance in growth rate and feed intake23. This study used the full model 
(including DGE and SGE) described by Bergsma et al.23 to estimate DGE and SGE of six growth traits. In this 
model, on one hand, the fixed effects contained sex, tested year and month, the random litter effect and the ran-
dom group effect were corrected. On the other hand, additional 3236 phenotypic records for ADG, D100, B100, 
ADFI, FCR and RFI and pedigree information were added into mixed model equations, which improved the 
prediction accuracy of DGE and SGE for these traits.

The genetic architecture for SGE.  Currently, the genomic information has increased the understanding 
of complex traits, but the majority of studies have focused only on the DGE of studied traits. Published studies 
demonstrated that ignoring SGE may severely bias estimates of DGE, and the genetic basis of SGE may be different 
from the genetic basis of DGE8. If SGE contributes to the studied traits, the study of genetic architecture should 
simultaneously consider DGE and SGE for socially-affected traits. However, few studies have focused on the genetic 
architecture of SGE. This study simultaneously quantified the SGE and DGE, and performed GWAS to reveal the 

Trait Chr Range of SNP (Mb) Number of SNP Position (bp) Candidate gene Method

ADG 14 98.69–98.73 1 98711408 PRKG1 GEMMA

D100 2 14.29–14.33 1 14306048 LOC110259270 GEMMA

D100 3 15.37–15.41 2 15390061 GEMMA

D100 4 15.39–15.43 2 15405575 GEMMA

D100 7 124.84–124.88 4 124864925 GEMMA

D100 9 14.94–14.98 1 14961639 GEMMA

D100 4 131.07–131.11 1 131093320 FarmCPU

D100 8 131.00–131.04 1 131023998 FarmCPU

D100 8 14.25–14.29 1 14272400 FarmCPU

D100 8 80.56–80.60 1 80584807 FarmCPU

D100 8 44.40–44.44 1 44423309 FarmCPU

D100 10 8.96–9.00 1 8978457 FarmCPU

D100 10 11.26–11.30 1 11277917 FarmCPU

FCR 1 57.25–57.29 2 57267261 GABRR2 GEMMA

RFI 1 312.93–312.97 1 312947811 GEMMA

RFI 16 43.79–43.83 1 43805766 ADAMTS6 GEMMA

ADFI 10 11.00–11.04 1 11015344 FASTmrEMMA

B100 10 11.00–11.04 1 11015344 FASTmrEMMA

D100 4 140.71–140.75 1 140729546 FASTmrEMMA

D100 8 33.10–33.14 1 33116699 SLC30A9 FASTmrEMMA

D100 10 11.00–11.04 1 11015344 FASTmrEMMA

D100 11 15.31–15.35 1 15329359 FOXO1 FASTmrEMMA

D100 13 217.95–217.99 1 217967861 FASTmrEMMA

Table 4.  The identified SNPs were shared by SGE and DGE of growth traits in Large White pigs. Chr, 
Chromosome; Range, Range of significant chromosome region; Number of SNP, Number of SNP involved; 
Position, Position of top SNP; Candidate Gene, Gene found in the range.

Trait Chr Position
Range of 
SNP (Mb) MAF

P-value

GEMMA FarmCPU FASTmrEMMA

dgeB100 8 16438396 16.42–16.46 0.474 2.96E-07 1.02E-07 1.02E-06

sgeD100 17 9697454 9.68–9.72 0.434 2.23E-07 2.36 E-08 3.50E-07

Table 5.  The SNPs validated by three methods. Chr, Chromosome; Range, Range of significant chromosome 
region; Position, Position of top SNP; MAF, Minor allele frequency.
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genetic architecture of DGE and SGE for six growth traits in Large White pigs. Based on the Illumina PorcineSNP60 
v2 BeadChip panel, Hong et al.24 identified several genomic regions and candidate genes associated with SGE for 
ADG in Landrace pigs. In their study, the individual ADG and the average ADG of unrelated pen-mates were 
directly used as DGE and SGE, respectively. In our study, the SGE and DGE were estimated for six growth traits, 
using the full animal model. Then, (1) pseudo phenotype values including DGE and residual effects were used to 
perform GWAS for DGE of six growth traits; and (2) for SGE of six growth traits, pseudo phenotype values including 
SGE and residual effects were used to perform a GWAS. Using these pseudo phenotype values, this study revealed 
the genetic architecture of DGE and SGE for six growth traits in Large White pigs. This study detected 151 and 205 
SNPs for DGE and SGE, respectively. These results did not confirm the results with Hong et al.24. In the present 
study, the power of QTL detection could be limited by the low estimated heritability of SGE and the small population 
size in this study. Furthermore the assessment of SGE was different between our study and the previous study24. In a 
previous study, the average ADG of unrelated pen mates was used to detect genetic variants of SGE. However, in our 
study, the full model Y = Xb + ZDaD + ZSaS + Wl + Vg + e (see Materials and Methods) were used to estimate the 
SGE of each trait, and then the estimated SGE wasused to perform GWAS for SGE of each trait. Our study offered a 
new insight and effective method for the genetic architecture of socially affected traits in pigs.

Comparing the single-locus and multi-locus GWAS.  To minimize the number of false positives and 
obtain credible results, the SNPs with MAF > 0.1 were used to perform single-locus and multi-locus GWAS 
using GEMMA25, FarmCPU26 and FASTmrEMMA27,28 software. Due to the multiple tests, the single-locus GWAS 
required Bonferroni correction29. However, the quantitative traits are controlled by numerous polygenes with large 
or minor effects, and the Bonferroni correction is overly conservative to identify important loci and may result in 
false negative results27 for complex traits. Recently, some multi-locus GWAS were proposed to detect significant 
SNPs for complex traits30,31. The significant threshold of the multi-locus GWAS is less stringent than single-locus 
GWAS. Because of the multi-locus and shrinkage natures of this method, a less stringent selection criterion is used 
in the multi-locus GWAS31. Although the multi-locus GWAS used a less stringent criterion, the study used simu-
lated and real data to demonstrated that the multi-locus GWAS using the FASTmrEMMA model is more powerful 
and has less bias of QTN effect estimation than other methods31,32. The FASTmrEMMA method with high power, 
low false-positive rate and low computing time in QTN detection were used to perform multi-locus GWAS. Using 
GEMMA, 54 and 33 SNPs reached the threshold of 5.00 × 10−7 for DGE and SGE, respectively. Using FarmCPU, 51 
and 101 SNPs reached the threshold of 5.00 × 10−7 for DGE and SGE, respectively. For FASTmrEMMA, a total of 46 
and 71 putative QTNs were detected for DGE and SGE, respectively. Clearly, different methods provided different 
results. However, all these results show that numerous identified SNPs are associated with pleiotropic effects for mul-
tiple socially affected traits. Importantly, two SNPs were detected in three methods. Among them, one SNP (SSC8: 
16438396 bp) was located in the region 16.42–16.46 Mb for dgeB100. In this region, four reported QTLs were asso-
ciated with the B100 trait in pigs33,34. One SNP (SSC17: 9697454 bp) was detected in the region of 9.68–9.72 Mb for 
sgeD100. A previous study reported that numerous QTLs were associated with body weight35, behaviour36, immune 
capacity37 and disease38 in pigs. This SNP may contribute to weight, behaviour, immune and disease traits, and 
further affect socially affected traits. Thus this study suggested that the SNP SSC17: 9697454 bp was an informative 
causal locus for SGE in socially affected traits.

The promising candidate genes identified by GWAS.  To investigate the genomic features that con-
tribute to SGE and DGE in pigs, 40 Large White pigs were re-sequenced and 6 socially affected traits were stud-
ied. Based on the whole-genome re-sequencing data, this GWAS revealed the genetic architecture for 6 socially 
affected traits. The previous study only reported a total of 5 QTLs related to socially affected traits in pigs39. 
To date, no genes with their biological functions were reported to associate with SGE in animals. Thus, it is 
essential to reveal the candidate genes and understand the genetic architecture of DGE and SGE for future pig 
breeding programmes. In the current study, using a GWAS study, many candidate genes associated with DGE 
and SGE were found. A total of 20 genes for DGE and 9 genes for SGE were found using single-locus GWAS. 
A total of 42 and 54 genes were found for DGE and SGE using multi-locus GWAS, respectively. All of these 
genes were first reported to be associated with SGE in pigs. Additionally, a total of 15 candidate genes associated 
with pleiotropism for socially affected traits. Among them, 4 genes for single-locus GWAS (including PRKG1, 
uncharacterized LOC110259270, GABRR2 and ADAMTS6 genes) and 11 genes for multi-locus GWAS (including 
SLC26A2, HMGXB3, SPTB, PLEKHG3, SLC30A9, NRSN2, FOXO1, LYPLAL1, NR3C2, PKD2 and TRIB3 genes) 
were shared by DGE and SGE, which may imply the pleiotropism of these shared genes for socially affected traits 
in pigs. These candidate genes were play a role in behaviour, disease and health.

The PRKG1 gene is a protein coding gene that acts as a key mediator of the cyclic guanosine monophosphate 
(cGMP) signalling pathway and plays an important role in the cellular signal transduction process. In platelets, 
hippocampal neurons, smooth muscle and cerebellar Purkinje cells, the PRKG1 gene was found to be strongly 
expressed40,41. This gene is known to be associated with behaviour41, circadian rhythms42, sleep42, learning42 and 
memory41. In humans, the PRKG1 plays an important role in stress response related traits43.

SORCS3 is an orphan receptor of the VPS10P domain receptor family, a group of sorting and signalling recep-
tors central to many pathways in the control of neuronal viability and function. SORCS3 plays an important role 
in the nervous system. This gene was associated with behavioural activities in mice44.

On the region of SSC1: 57.25–57.29 Mb, GABRR2 was found to be associated with dgeFCR and sgeFCR in pigs. 
GABRR2 is a protein coding gene that encodes a receptor for gamma-aminobutyric acid (GABA). The GABA receptor 
regulates the neurotransmitter in the brain45, and plays an important role in the behavioral stress response and physi-
ology in animals and humans45–48. In mice, the GABA was associated with the aggressiveness and sociability towards 
conspecifics47. The performance and physical condition were affected by GABA in heat-stressed Roman hens49.
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The strongest association (SSC16: 43805766, P = 4.85 × 10−9) was located in a disintegrin and metallopro-
teinase with thrombospondin motifs 6 (ADAMTS6). The ADAMTS6 gene is a member of the ADAMTS protein 
family and is regulated by the cytokine TNF-alpha50. The functions of this gene were still not clearly elucidated 
and mainly reported about aetiology and played a role in the turnover of the extracellular matrix51. ADAMTS6 
was expressed differently in each tissue, but the accurate function and the substrates of ADAMTS6 protein were 
not clearly demonstrated by a previous study. In past decades, numerous association studies have found the 
ADAMTS6 gene to be associated with complex traits in humans. Inguinal hernias52 and central corneal thickness 
and keratoconus53 were both identified ADAMTS6 in a GWAS, which suggested that the ADAMTS6 gene would 
affected the collagen homoeostasis in tissues and disorders and lung function. A previous study also suggested 
that this gene was related to osteosarcoma54. Some studies also demonstrated that the ADAMTS6 gene was signif-
icantly upregulated in cancer cells and stromal cells55. Importantly, this gene affected the intelligence and growth 
development, and the balanced translocation disruption of the ADAMTS6 gene was resulted in short stature 
and intellectual disability56. Given previous studies, ADAMTS6 gene was associated with growth and disease in 
biological organisms. The ADAMTS6 gene was first identified to associate with the sgeRFI. The sgeRFI was not 
only affected the feed efficiency, but also affected the growth and health of livestock. Considering the pleiotropic 
effect of this gene, the ADAMTS6 gene with a potential effect on socially affected traits would be identified as a 
prominent candidate gene.

In summary, numerous SNPs and genes were identified for DGE and SGE of six traits using single-locus and 
multi-locus GWAS in Large White pigs. These findings were particularly interesting to better understand the 
genetic and physiologic mechanisms of both DGE and SGE. Although, a limited number of individuals were used 
in this study, this study provided a new insight to investigate socially affected traits. Further study using a large 
population size should contribute to validating the genetic mechanisms for socially affected traits in pigs.

Materials and Methods
Ethics statement.  All experimental procedures were performed in accordance with the Institutional Review 
Board (IRB14044) and the Institutional Animal Care and Use Committee of the Sichuan Agricultural University 
under permit number DKY-B20140302.

Animals and Trait Recorded.  The phenotypic data was collected in 2017, including ADG, days to 100 kg 
(D100), backfat thickness to 100 kg (B100), average daily feed intake (ADFI), residual feed intake (RFI) and feed 
conversion ratio (FCR). Initially, the tested pigs were selected between 120 and 130 day of age, with the body 
weight (BW) about 60 kg. Then a total of 40 Large White pigs from 4 pens were used for this research, containing 
27 female and 13 male pigs, and each pen contained 10 piglets homogenous in body weight and age in this study. 
In this test, these pigs were grouped in the standard commercial pens, which were fed ad libitum by an automatic 
feeder (The feed intake recording equipment of OSBOREN). The test began at about 65 kg (BW1) and the ended 
at about 110 kg (BW2) in the feeding trial.

During the test period, we measured the phenotype data every ten days, and calculated the average value in 
finally. The ADG, ADFI and FCR were directly calculated from the collected data. The D100 and B100 were cal-
culated as below (Kennedy and Chesnais, unpublished data):

= −
−

= × .

= × . .

= ×

=
.

. + . × −

=
.

. + . × −
.

D test days test weight
CF

CF test weight
test days

male

CF test weight
test days

female

B test backfat thickness BFT CF

CF
test weight

male

CF
test weight

female

100 100 ;

1 826040 ( );

1 714645 ( )

100 ( ) ;
12 402

12 402 0 106530 ( 100)
( );

13 706
13 706 0 119624 ( 100)

( )

where CF is the correction coefficient in pig breeding program. Furthermore, the RFI was computed according to 
the formula (neglecting the lean meat content and dressing percentage)57:

= − . − . − .RFI ADFI ADG BFT AMW1 41 2 83 110 9 ;

The average metabolic body weight (AMW) was calculated for each individual using the following classical 
formula58:

= − . × − .. .AMW BW BW BW BW( )/[1 6 ( )]2
1 6

1
1 6

2 1

Calculate the DGE and SGE.  For a socially affected traits, the phenotypic value of an individual can be 
denoted using following model5,16:
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where Pi is the phenotypic value of individual i, AD,i is the direct breeding value of individual i, ED,i is the direct 
non-genetic effect of individual i, AS,j is the social breeding value of the group member j, ES,j is the social 
non-genetic effect of the group mate j, and the n is the group size. The ED,i and ∑ ≠
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To investigate the direct and social genetic effects, the following full model was built for each trait in this study.

= + + + + +Z a Z a Wl Vg eY Xb (1)D D S S

where Y is the vector of phenotypic observations; b is the vector of fixed effects, including sex, tested year and 
month; aD is a vector of DGE; aS is a vector of SGE; l is vector of random litter effects; g is vector of random group 
effects; e is random residual vector; X, ZD, ZS, W and V are incidence matrix of b, aD, aS, l and g, respectively. The 
variance-covariance matrix of aD and aS is denoted as:

σ σ
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where A is additive genetic correlation matrix; σA
2

d
, σA

2
ds

 and σA
2

s
 are genetic variance and covariance between direct 

effects and social effects. At the ith row of ZS, the group members of individual i were set to 1 and the others were set 
to 0. For improving the estimation accuracy of DGE and SGE, other 3,236 phenotypic records about ADG, D100, 
B100, ADFI, FCR and RFI that were obtained from previous performance test also were added into this analysis. 
These traits were analyzed using the average information restricted maximum likelihood (AI-REML) algorithm by 
DMU software59. Supplementary Table 1 lists the describe statistics about the DGE and SGE for these six traits.

Genotyping.  The pig’s ear tissue was collected from Large White pigs and stored in 75% alcohol. The genomic 
DNA was extracted by the standard phenol/chloroform method. The Nanodrop-2000 spectrophotometer was 
used to control the quality of genomic DNA. To obtain nucleotide polymorphism information, a total of 40 Large 
White pigs were re-sequenced using the Illumina HiSeq PE150 platform, then about 2,000 Gb sequence data was 
obtained in total. The average sequencing depth of these samples were close to 20×. All the sequence reads were 
filtered for data quality and mapped to the Sscrofa11.1 reference sequence using BWA software60. The mapped 
reads were realigned by GATK software61. A total of 21,104,245 variants were identified using GATK software61. 
In order to minimize the number of false positives in this limited population size, the SNP with MAF > 0.1 were 
retained for further analysis. Thus, the nucleotide variants were filter based on the quality requirement with minor 
allele frequency (MAF > 0.1), Missing rate (Miss < 0.1), Hardy-Weinberg equilibrium (HWE < 1.0 × 10−6), and 
read depth (dp > 6) using VCFtools 4.262. Then, the SNPs on the sex chromosome and scaffolds were removed. 
After the quality control, a total of 10,501,384 SNPs across 18 autosomes were analyzed for association study.

Single-locus association analysis.  The genome-wide efficient mixed-model analysis (GEMMA)25 with a 
univariate liner mixed model were used to perform the single-locus association for DGE and SGE. The analysis 
models was written as follows:

= + +y Xm Wa e

where y is a vector of DGE or SGE contained residual effects from previous model (1), X is the incidence matrix 
of SNP effects, m is the vector of SNP effects, W is the incidence matrix of residual polygene effects, a is the vector 
of residual polygene effects, e is the random residual vector. Notably, where y is a vector that phenotype value was 
corrected by fixed effect, DGE (for SGE), SGE (for DGE), random litter and random group effects.

Recently, several statistical methods have been contributed to determine the significance threshold, such as 
Bonferroni correction63, False discovery rate64, and Sidak correction method65. In published literatures, the tradi-
tional Bonferroni correction method was routinely adopted, but this threshold was not absolute. When identified 
SNPs exceeded the accepted genome-wide statistical significance threshold P < 1.0 × 10−8, the GWAS results are 
most reliable66,67. The identified associations (5.00 × 10−8 < P ≤ 5.00 × 10−7) also could be replicated from sub-
sequent studies28. The proper significant threshold is various due to different populations, different traits, and 
different genotypic data68–70. Furthermore, the Bonferroni correction is too conservative due to the ignorance of 
linkages between SNPs, especially for the sequencing data where many adjacent SNPs are highly linked. In the 
sequencing data, the number of markers used in the Bonferroni correction should be more relevant to the num-
ber of segments of chromosome. Thus, the whole-genome significance threshold 5.00 × 10−8 was established71,72 
and the suggestive significant threshold was set at 5.00 × 10−7 in this study73.

Multi-locus association analysis.  The multi-locus association analysis were performed by FarmCPU26 
and the fast multi-locus random-SNP-effect EMMA (FASTmrEMMA)31,74. FarmCPU iteratively used fixed effect 
model and random effect model. Using the FASTmrEMMA, this study performed a GWAS for DGE and SGE for 
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six traits in pigs. In this multi-locus GWAS, the random-SNP-effect and multi-locus model methods were used to 
improve the power and decrease the false-positive rate. At the first stage, the putative quantitative trait nucleotides 
(QTNs) with P ≤ 0.005 were selected for further analysis. Then the selected putative QTNs were analyzed using a 
multi-locus model for true QTN detection.

Selecting candidate genes.  The bioinformatics databases BioMart (http://www.ensembl.org/) and NCBI 
(https://www.ncbi.nlm.nih.gov/) were implemented to screen the candidate genes located the significant loci. 
Only the genes located at the region of ±20 kb around the significant SNPs were considered in this study.

Data Availability
The authors affirm that all of the data necessary for confirming the conclusions made within this article are 
contained within the article. The dataset used in this study is available from the corresponding author upon rea-
sonable request.
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