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A B S T R A C T

DNA methylations, such as 5-methylcytosine (5mC), are crucial in biological processes, and aberrant methyla-
tions are strongly linked to various human diseases. Genomic 5mC is not randomly distributed but exhibits a 
strong association with genomic sequences. Thus, various computational methods were developed to predict 
5mC status based on DNA sequences. These methods generated promising achievements and overcome the 
limitations of experimental approaches. However, few studies have comprehensively investigated the de-
pendency of 5mC on genomic sequences, and most existing methods focus on specific genomic regions. In this 
work, we introduce Deep5mC, a deep learning transformer-based method designed to predict 5mC methylations. 
Deep5mC leverages long-range dependencies within genomic sequences to estimate the probability of cytosine 
methylations. Through cross-chromosome evaluation, Deep5mC achieves Matthew’s correlation coefficient over 
0.86 and F1-score over 0.93, substantially outperforming state-of-the-art methods. Deep5mC not only confirms 
the influence of long-range sequence context on 5mC prediction but also paves the way for further studying 5mC- 
sequence dependency across species and in human diseases.

1. Introduction

DNA methylations play an indispensable role in various biological 
functions [1]. The most common form of DNA methylations in mammals 
is 5-methylcytosine (5mC). Other types of methylations, such as 
N6-methyladenine (6 mA) and 4-methylcytosine (4mC), are found in 
various organisms, while 5-carboxylcytosine (5caC) and 5-hydroxyme-
thylcytosine (5hmC) are less prevalent in humans [2]. These epige-
netic methylations are paramount for silencing genes [3], safeguarding 
against the activity of repetitive elements [4], maintaining genomic 
stability during mitosis [5], and imprinting genes based on their 
parental origin [6]. Abnormal alterations in DNA methylations have 
been found to precipitate a myriad of diseases, such as autoimmune 
rheumatic diseases and various forms of cancers [7,8], often exhibiting 
irregularities at gene promoters and regulatory regions [9,10]. Conse-
quently, the identification of methylations is critical for a comprehen-
sive understanding of the multifaceted roles of DNA methylations in 
human disorders.

Several high-throughput sequencing techniques have been 

developed to detect genome-wide 5mC, including bisulfite sequencing 
[11], oxidative bisulfite sequencing [12], PacBio single-molecule real--
time (SMRT) sequencing [13], and Oxford nanopore sequencing [14]. 
However, these methods are often expensive and time-consuming. Thus, 
there is a pressing need for developing efficient computational methods 
to identify 5mC sites. These methods can offer a more cost-effective and 
rapid alternative for comprehensive analysis of DNA methylations, 
thereby advancing insights into epigenetic regulation and its health 
implications.

These computational methods can be categorized into three groups. 
The first group includes Methylator [15], MethCGI [16], and 
iDNA-Methyl [17], which used classical machine learning algorithms, 
such as support vector machines (SVM) [18], to predict methylations. 
These methods typically used short DNA sequences as input and were 
trained on small datasets. For example, iDNA-Methyl used hand-crafted 
features with 20 bp sequences, while Methylator was tested with DNA 
sequences of varying lengths (ranging from 9 bp to 89 bp) and trained 
using 39 bp sequences. MethCGI used longer DNA sequences (400 bp) as 
input but still relied on manually designed features. The second group of 
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prediction methods were designed to identify cell-type specific meth-
ylations, such as iPromoter-5mC [19] and BiLSTM-5mC [20]. These 
methods used hand-crafted features extracted from 41 bp DNA se-
quences to train deep learning models on single-cell-type datasets to 
improve specificity. The third group, including 5mC_Pred [21], 
iDNA-ABF [22], BERT6mA [23] and DeepCpG [24], leveraged language 
models to extract high-level features for classification. While these 
studies have produced promising results, a comprehensive investigation 
of 5mC dependency on genomic sequences remains limited, and most 
methods focus on specific regions, such as promoters or cancer-related 
methylated sites, and their trained models are generally unavailable 
(except for iPromoter-5mC and 5mC_Pred).

In this study, we introduce Deep5mC, a novel deep learning method 
designed to identify 5mC methylation sites in DNA sequences using a 
transformer framework [25]. Deep5mC predicts 5mC status based on 
DNA sequences. Through cross-chromosome assessment, Deep5mC 
significantly outperforms existing methods, demonstrating that the 
occurrence of 5mC is closely linked to genomic sequences. Deep5mC can 
further be extended to comprehensively study the 5mC-sequence de-
pendency across different species and conditions, including human 
diseases. Deep5mC is publicly available at https://github.com/qgenla 
b/Deep5mC.

2. Materials and methods

2.1. Datasets

The 5mC datasets for model training and testing were downloaded 
from the NIH roadmap epigenomics consortium [26]. These datasets are 
comprised of 5mC methylations across 37 distinct human epigenomes, 
covering chromosomes 1–22, X, Y, and M. As one of the most compre-
hensive collections of human epigenomes for primary cells and tissues, 
this dataset provides a robust foundation for studying DNA methylation 
patterns.

This methylation data was generated using whole genome bisulfite 
sequencing (WGBS) and consists of methylation percentages (ranging 
from 0 to 1) for CpG sites within these epigenomes. We preprocessed this 
data using the steps elucidated in Fig. 1. First, methylation sites were 
filtered out if they had low coverage (≤ 3) or were from chromosomes X, 
Y, or M, because these chromosomes have vastly different methylation 
characteristics from chromosomes 1–22 [27–29]. Second, the arithmetic 
mean of methylation percentages was computed for each methylation 
site across epigenomes, after excluding the highest and lowest values to 
mitigate the influence of outliers. The standard deviation of methylation 
percentages was calculated, and sites with a standard deviation > 0.1 

were discarded to ensure methylation consistency across epigenomes. 
Following this filtering, 34,577,332 positive methylation sites and 4987, 
695 negative sites were retained. Fourth, we extracted a subsequence of 
2561 bp centered each filtered site in the human reference genome, i.e, 
genome reference consortium human build 37 (GRCh37 or hg19). These 
subsequences served as input for transformers to learn sequence-based 
context information.

2.2. Deep learning framework

Our deep learning algorithm, named Deep5mC, is a transformer 
framework as illustrated in Fig. 2. Given an input DNA sequence, 
Deep5mC uses several steps listed below to predict methylation status: 
(1) a feature extractor transforms input sequences into one-hot encoding 
vectors incorporating position embedding and token embedding, (2) a 
transformer component generates representation vectors for each posi-
tion using a transformer framework, and (3) two fully connected layers 
output prediction of a target position.

2.2.1. Feature generation
An input sequence contains low-level features of nucleotides, which 

were progressively combined to generate high-level features using a 
transformer model. To do so, an input sequence was converted to a 
vector through token embedding and position embedding.

Token embedding: In an input sequence, each nucleotide A, C, T, G 
and N (for unknown nucleotides) were denoted as a one-hot vector. In 
addition, [CLS], [SEP] and [PAD] tokens were included to mark the start 
and end of sequences as well as sequence padding, respectively. [CLS] 
and [SEP] are necessary for position embedding in transformers, while 
[PAD] ensures DNA sequences with varying lengths have the same 
number of embeddings: [PAD] is usually added to the encoding of 
shorter sequences so that all sequences have the same length of input in 
transformers. An example for sequence encoding is shown in Fig. 2.

Position embedding: To capture long-range dependencies in DNA 
sequences, Deep5mC employed position embedding. There are two 
types of position embedding: absolute position embedding and relative 
position embedding [30]. Deep5mC uses relative position embedding 
[30] because the distance between two bases is more critical than their 
absolute positions, and relative position embedding efficiently captures 
relative position representations or distances between nucleotides 
within sequences. Huang et al. [31] introduced a memory-efficient 
method of computing relative positional encoding representations, 
enabling the model to be informed by how far two positions are apart in 
a sequence. The relative attention used in Deep5mC is presented as. 

Relative Attention = Softmax
(

QKT + Srel
̅̅̅̅̅̅
Dh

√

)

V 

Where Q, V, and K are the query, value and key in a self-attention 
model, Dh is the dimension of one attention head h, Srel = QRT and Rij =

aK
ij , QRT = Skew(QEr), Er is the relative position embedding matrix. In 

Deep5mC, we utilized 16 attention heads with an embedding size Dh of 
1024.

CNN Encoding: There are four main types of tokens in DNA se-
quences, and this limited-token property makes it challenging to capture 
high-level contextual information. To address this challenge, we incor-
porated convolutional neural networks (CNN) to capture local de-
pendencies in DNA sequences by combining vectors of the current token 
with its adjacent neighboring bases. We applied a CNN layer with 1024 
output channels and a kernel size of (3, 1024) to combine every three 
consecutive bases.

2.2.2. Transformer framework
DNA sequences share structural similarities with natural language 

sentences, making transformer methods a natural fit for sequence-based 
predictions. Transformer algorithms [25] rely on self-attention 

Fig. 1. Data preprocessing. Hg19: Genome Reference Consortium Human 
Build 37.
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mechanisms to process input data in parallel, making it highly efficient 
to process sequential data. Self-attention mechanisms enable trans-
formers to weigh the importance of different elements in an input 
sequence and dynamically adjust their influence on the output. The 
self-attention is computed as follows: 

Attention(Q,K,V) = softmax
(

QKT
̅̅̅̅̅
dk

√

)

V 

Where Q, K, V are the concatenation of query, key, and value vectors, 
respectively. Given an input sequence S = {s1, s2,…, sn} with its input 
matrix M ∈ Rn×m, where n is the sequence length and m is the embed-
ding size, Q, K, and V are calculated by multiplying M with three 
different learnable matrices W(K), W(Q), and W(V), with dk is the 
dimension of the key vector. To enhance learning, Vaswani et al. [25]
proposed multi-head attention which concatenates the output of 
different attention heads. In Deep5mC, we used a transformer model of 
16 layers with 16 multi-heads and a hidden size of 1024.

These representation vectors learned through a transformer model 
were then combined into a single 1,024-element vector by a fully con-
nected neural network, and the combined vector was then passed 
through a second fully connected layer to predict methylation percent-
age with a sigmoid activation function.

2.3. Training Deep5mC models

To evaluate 5mC predictions, we adopted a cross-chromosome 
testing strategy where the whole-genome data were split to training 
chromosomes and testing chromosomes. For each chromosome, we 
extracted subsequences of 2561 bp centered on CpG sites. We trained 
our model on training chromosomes, and generated evaluation perfor-
mance on testing chromosomes. During the training process, we opti-
mized the model using an Adam optimizer with a learning rate of 5e-6, a 
batch size of 512 and the loss function of mean absolute error (MAE) 
which is defined as: 

MAE =
1
n
∑n

i=1
|Yi − Ŷ i|

Where n is the batch size, Yi is a list of real methylation percentages and 

Ŷ i is a list of predicted methylation percentages. To prevent overfitting, 
we applied 20% dropout [32] for all layers (except for the output layer).

Methylated levels in human genomes are not uniform but highly 
imbalanced, with CpG sites predominantly exhibiting either high or low 
methylation, as shown in Fig. 3 for chromosome 1. This imbalance poses 
a significant challenge for model training. To mitigate this issue, 
undersampling was applied by randomly selecting positions within 
methylated sites for training.

2.4. Comparison with state-of-the-art methods

Although several existing methods have been developed to predict 
5mC status, only iPromoter-5mC and 5mC_Pred released well-trained 
models that were publicly available for downloading and testing (as of 
December 2024). Consequently, these two methods were the only op-
tions for comparison in this study, despite their limitations as ideal 
benchmarks.

iPromoter-5mC employs a straightforward deep forward network to 
identify methylated positions. It extracts diverse features from 41 bp 
subsequences, such as one-hot vectors for nucleotides, and deoxy-
nucleotide property and frequency. iPromoter-5mC was trained and 
tested on data collected from the encyclopedia of cancer cell line [33]
and UCSC genome browser [34]. It was specifically utilized for detecting 
5mC modifications in promoter regions of cancer cells.

5mC_Pred leveraged natural language processing models to predict 
5mC methylation percentages. It utilized a fastText [35] model to 
generate representation vectors of 1-mers to 3-mers from 41 bp sub-
sequences, and then used various machine learning models (XGBoost, 
random forest, deep forest, and deep feed forward network) for 
methylation prediction. 5mC_Pred was trained and tested on the same 
dataset of iPromoter-5mC.

2.5. Evaluation metrics

Since each site can be considered to be either methylated or unme-
thylated, we used various classification metrics to evaluate prediction 
performance of Deep5mC and of the state-of-art methods. These metrics 
include sensitivity, specificity, precision, F1-score, accuracy, and Mat-
thew’s correlation coefficient (MCC), which are defined as follows: 

Fig. 2. Deep5mC architecture. The one-hot encoding, position embedding, and token embedding are for feature extractor.
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Sensitivity =
TP

(TP + FN)

Specificity =
TN

(TN + FP)

Precision =
TP

(TP + FP)

F1 − score =
2 × Sensitivity × Precision
(Sensitivity + Precision)

Accuracy =
TP + TN

(TP + FN + FP + TN)

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√

Where TP is true positive (methylated) predictions of methylated sites, 
TN is true negative (unmethylated) predictions of unmethylated sites, 
FN is false negative (unmethylated) predictions of methylated sites and 
FP is false positive (methylated) predictions of unmethylated sites.

For regression assessment where each site is associated with a 
methylation percentage, we used Pearson correlation coefficient (r) 

r =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

•
∑n

i=1
(yi − y)2

√

Where xi is a list of predicted values, x is the mean of predicted values, yi 
is a list of expected values and y is the mean of the expected values.

3. Results

3.1. Prediction comparison with the state-of-the-art methods

We evaluated Deep5mC against two state-of-the-art approaches: 
iPromoter-5mC [19] and 5mC_Pred [19]. These two methods were the 
only ones with released well-trained models for 5mC prediction (as of 

2024), although both were mainly tested on promoter regions. To ensure 
a fair comparison, we constructed a testing dataset using a subset of 
filtered sites located within 2000 bp upstream regions of transcription 
start sites in chromosomes 21 and 22. In addition, different existing 
methods used varying thresholds to define methylated (τm) and unme-
thylated (τum) sites: a site is classified as methylated if its methylation 
percentage is larger than τm or unmethylated if its methylation per-
centage is smaller than τum. To conduct a comprehensive evaluation, we 
applied three threshold pairs: τm = 0.95 and τum = 0.05 (95–5 dataset, 
similar to iPromoter-5mC), τm = 0.8 and τum = 0.2(80–20 dataset), as 
well as τm = 0.5 and τum = 0.5 (50–50 dataset, used by 5mC_Pred). With 
these threshold pairs, the number of methylated and unmethylated sites 
in testing datasets was shown in Table 1, and prediction performance 
was presented in Table 2.

As shown in Table 2, Deep5mC consistently outperformed the other 
models across all three datasets. Matthew’s correlation coefficient 
(MCC) for Deep5mC was approximately 0.87, significantly higher than 
that achieved by iPromoter-5mC (by 0.88) and 5mC_Pred (by 0.87). 
Additionally, Deep5mC achieved markedly higher F1-scores, with 
average improvements of 0.59 over iPromoter-5mC and 0.94 over 
5mC_Pred. These results suggest the superior capability of Deep5mC in 
accurately predicting both methylated and unmethylated sites.

Specifically, Deep5mC demonstrated substantial improvements in 
nearly all evaluated metrics. For example, it achieved superior sensi-
tivity, with an average improvement of 0.67 over iPromoter-5mC and 
0.90 over 5mC_Pred, underscoring its effectiveness in identifying 
methylated sites. While 5mC_Pred exhibited marginally higher speci-
ficity compared to Deep5mC, with improvements of 0.06, 0.03, and 0.07 

Fig. 3. Distribution of methylation percentages in Chromosome 1 after preprocessing, illustrating an imbalance of highly methylated and low methylated sites. Other 
chromosomes show similar methylation distributions.

Table 1 
Summary of the testing datasets.

Threshold # Methylated sites # Unmethylated sites

95–5 8683 4272
80–20 31,730 4948
50–50 32,354 4948

Threshold: τm − τum. A site is classified as methylated if its methylation per-
centage is larger than τm or unmethylated if its methylation percentage is smaller 
than τum.
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for the 80–20, 95–5, and 50–50 datasets, respectively, Deep5mC ach-
ieved a balanced performance across both sensitivity and specificty.

Overall, the findings demonstrate the markedly superior efficacy of 
Deep5mC in discerning methylation patterns, revealing a strong 
connection between nucleotide context and methylation status in the 
human genomes.

3.2. Chromosome-level performance evaluation of Deep5mC

Beyond the ability to predict methylation status in promoter regions, 
Deep5mC can predict methylation status of CpG sites in other genomic 
regions. To assess its performance at a chromosome level, we evaluated 
the prediction of Deep5mC on all filtered CpG sites from two chromo-
somes 21 and 22, while training Deep5mC on chromosomes 1 through 
20. The total number of CpG sites from chromosomes 21 and 22 are 
1383,361 with 1197,784 methylated and 185,577 unmethylated posi-
tions using τm = 0.8 and τum = 0.2. On this dataset, Deep5mC achieved 
an accuracy of 0.87, an AUC of 0.93, showcasing the proficiency of 
Deep5mC in predicting methylation status. Moreover, predicted 
methylation percentages of Deep5mC correlated strongly with experi-
mental methylation percentages (Pearson correlation=0.71), as illus-
trated in Fig. 4. This strong correlation demonstrates Deep5mC’s ability 
to accurately predict methylated sites. Please note that a diagonal line 
does not appear in Fig. 4 because real genomic methylation data is 
dominated by highly methylated or highly unmethylated sites.

To further validate the robustness of Deep5mC’s predictions, we 
randomly selected 4 chromosomes (chromosomes 7, 4, 17 and 11 with 
8124,119 CpG sites) to train Deep5mC and then tested Deep5mC on the 
remaining 18 chromosomes with 31,440,860 CpG sites. The results 
demonstrate that Deep5mC maintained high prediction accuracy, 
achieving an MCC of 0.61, an accuracy of 0.9 and an F1-score of 0.9.

3.3. Effect of sequence length on the methylation prediction by Deep5mC

Deep5mC utilized 2561 bp sequences to detect nucleotide context 
information, while most existing methods rely on shorter (41 bp) se-
quences. To evaluate how sequence length affects Deep5mC’s perfor-
mance, we conducted investigations using various sequence lengths, 
ranging from 11 bp to 1281 bp, as summarized in Table 3. In these in-
vestigations, Deep5mC models were trained without CNN layers. The 
results revealed that longer sequences usually generated better perfor-
mances. For example, training on 161 bp sequences improved an AUC to 
0.74, while training on 11 bp sequences only achieved an AUC of 0.63. 
However, we also found that the best performance was achieved with 
the length of 321, and longer sequences slightly decreased the perfor-
mance. Since this best performance is still lower than that of Deep5mC 
with CNN layers, more investigations are needed to determine an 
optimal sequence length for our model with CNN layers.

Nevertheless, these investigations suggest that longer sequences, 
rather than 41 bp sequences used in existing works, enable Deep5mC to 
capture long-range context information for predicting methylation 
profiles. These findings support a strong association between 5mC and 
long-range context in the human genome.

3.4. Long-range sequence dependency of 5mC

To visualize this dependency of 5mC status on long-range sequence 
context, we plotted the trained weights in the transformer model of 
Deep5mC in Fig. 5, which presents the learned positional attention 
patterns in Deep5mC. This visualization illustrated that Deep5mC 
captured information from bases located further away from the central 
position, supporting our conclusion of long-range dependency of 5mC. 
In addition, Deep5mC can detect 5mC patterns from genomic sequences, 
which can be extended to study 5mC-sequence dependency in human 
diseases.

3.5. Association of generated vectors and 5mC methylations

To better understand how Deep5mC predicts 5mC status, we 
analyzed the representation output of the transformer layer and the 
output of the first fully connected layer. We used uniform manifold 
approximation and projection (UMAP) [36] to create those vectors for 

Table 2 
Comparison of the performance of the proposed model with iPromoter-5mC and 5mC_Pred.

Measure Deep5mC iPromoter-5mC 5mC_Pred

95–5 80–20 50–50 95–5 80–20 50–50 95–5 80–20 50–50

Sensitivity 0.89 0.91 0.91 0.21 0.24 0.24 0.00 0.00 0.00
Specificity 0.95 0.92 0.91 0.65 0.66 0.66 0.98 0.98 0.98
Precision 0.97 0.98 0.98 0.56 0.82 0.82 0.31 0.57 0.57
Accuracy 0.91 0.91 0.91 0.36 0.30 0.30 0.32 0.13 0.13
MCC 0.88 0.87 0.86 − 0.13 − 0.07 − 0.07 − 0.06 − 0.06 − 0.06
F1-score 0.93 0.95 0.95 0.31 0.37 0.38 0.00 0.00 0.00

MCC: Matthew’s correlation coefficient

Fig. 4. Correlation of Deep5mC predicted methylation percentages (%) against 
experimental methylation percentages (%). Light yellow: high density of dots; 
Blue: lower density.

Table 3 
Performance of Deep5mC for predicting methylation percentage on CpG sites in 
chromosome 21 and 22 with shorter sequences as input for Deep5mC. CNN layer 
was not used. Correlation: Pearson correlation coefficient.

Length (#bp) Accuracy Correlation AUC

11 0.54 0.32 0.63
21 0.52 0.36 0.67
41 0.55 0.44 0.69
81 0.59 0.54 0.71
161 0.70 0.58 0.74
321 0.80 0.52 0.85
641 0.75 0.46 0.82
1281 0.71 0.43 0.78
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2D visualization, and the results were shown in Fig. 6. For this analysis, 
we used sequences from chromosome 22.

Fig. 6(a) clearly shows that the transformer layer effectively gener-
ated a meaningful representation of methylated and unmethylated sites 
based on genomic sequences. Following the processing through a fully 
connected layer, Fig. 6(b) presented two clusters: one corresponding to 
methylated sites and the other to unmethylated sites, although some 
methylated sites were misclassified. Since Deep5mC uses only genomic 
sequences as input to generate the representation, the clear separation of 
methylated and unmethylated sites in Fig. 6 suggests that 5mC meth-
ylations are strongly influenced by genomic sequence context, rather 
than occur randomly.

3.6. Effect of transformer sizes on methylation prediction

Deep5mC relies on a transformer with 16 layers and 16 multi-heads. 
While this hyperparameter setting has not been extensively optimized, 
we investigated the effect of different transformer sizes on methylation 
prediction performance. We trained a smaller transformer with 6 layers 
and 8 multi-heads, and the results were shown in Table 4. The smaller 

transformer achieved an accuracy of 0.58, Pearson correlation of 0.35, 
and an AUC of 0.86, which were significantly lower than the perfor-
mance achieved by a transformer with 16 layers and 16 multi-heads. 
These results confirmed that larger transformer models improve 5mC 
predictions, as complex transformer models can capture more intricate 
patterns hidden in genomic sequences. However, training larger trans-
former models requires substantially more GPU resources. Given the 
excellent performance of the current model, Deep5mC offers a practical 
and effective solution for methylation predictions.

4. Discussion

In this study, we developed Deep5mC, an innovative deep learning- 
based method to identify 5mC methylations through biological language 
learning models. Using solely DNA sequences as input, Deep5mC dis-
cerned methylation patterns by integrating local dependencies via 
convolutional neural networks, long-range dependencies through 
transformer layers and relative position embedding. Trained on a 
comprehensive database encompassing nearly 10 million sequences 
pertinent to DNA 5mC methylations, Deep5mC demonstrated the 
capability to accurately predict methylation status across the majority of 
CpG sites in the human genome.

Despite relying on genomic sequences, Deep5mC generated accurate 
prediction of methylation status, compellingly suggesting that Deep5mC 
could be instrumental in exploring that 5mC methylations do not 
randomly occur in the human genome but are associated with genomic 
context. In addition, the investigations with different transformer con-
figurations revealed that (1) the association of 5mC and genomic se-
quences is complicated, which needs to be learned by larger 
transformers with more layers and more multi-heads, and (2) long-range 
genomic context (>300 bp) is necessary to accurately detect methyl-
ation status. These observations provide valuable recommendations for 
designing DNA sequence-based transformer models in future.

Also, DNA methylations may be regulated by chromatin 

Fig. 5. The heatmap of self-attention scores of the positional encoding layer 
from head 0. Green indicates high weights, while white indicates low weights.

Fig. 6. Visualization after dimensionality reduction with UMAP for representation vector generated by the transformer layer (a) and for the output generated by the 
first fully connected layer (b). The instances were from chromosome 22. Yellow: methylated; purple: unmethylated.

Table 4 
Performance of Deep5mC for predicting methylation percentage on CpG sites in 
chromosome 21 and 22 with different transformer layer sizes. Correction: 
Pearson correlation coefficient.

#Layers #Multi-Heads Accuracy Correlation AUC

6 8 0.58 0.35 0.86
16 16 0.87 0.71 0.93
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accessibility, histone modifications and transcription factors. These 
factors offer dynamic regulations in response to various stimuli and 
environments. Thus, when more multi-omics datasets are available for 
individual genomes, we will integrate these regulatory factors into 
Deep5mC, not only improving 5mC prediction performance but 
enabling cell- and tissue-specific methylation detection. In this multi- 
omics framework, we will design specific transformer models to detect 
chromatin accessibility, histone modification and transcription factor 
binding, and then integrate output of Deep5mC and those of these 
specific transformer models to make the final methylation prediction. 
Furthermore, while Deep5mC focuses on the human genome, it is highly 
beneficial to extend Deep5mC for methylation detection in other 
eukaryotic genomes, such as mouse and zebrafish, where 5mC is a 
common chemical modification. When developing across-eukaryotic- 
genome Deep5mC, transfer learning is a promising approach for 
addressing the issue of limited training data in some species. Moreover, 
across-species studies could also uncover species-specific patterns of 
DNA methylations.

Finally, Deep5mC has several limitations. First, Deep5mC currently 
does not differentiate cell-type-specific or disease-associated methyl-
ation patterns. Further improvements will incorporate cell types, dis-
eases or other epigenetic information as additional embedded input to 
generate condition-specific methylations. Second, Deep5mC is designed 
to predict 5mC methylations and does not cover other DNA methylation 
types. We will extend Deep5mC to predict other types of methylations, 
such as 6 mA and 4mC. Given the scarcity of labeled training data for 
those methylation types, transfer learning can be used to adapt 5mC 
models. Third, GPU resources are recommended to train Deep5mC and 
use Deep5mC, as it is time-consuming to train and test a larger trans-
former model. For example, on the training set with 76,363,332 
genomic sites, it took approximately 72 h to train Deep5mC on a NVIDIA 
A100 GPU. On the testing dataset consisting of 37,302 genomic sites 
(Table 1, 50–50 threshold), Deep5mC prediction takes about 3 h on a 
NVIDIA A100 GPU to generate predictions with a batch size of 16. 
Without GPU acceleration, training and inference times would be 
significantly longer, limiting accessibility.

5. Conclusion

In this work, we introduced and rigorously evaluated Deep5mC, an 
advanced transformer-based model designed to predict 5mC methyl-
ation status within the human genome. Comparative analyses across 
diverse evaluation strategies demonstrated that Deep5mC significantly 
outperformed existing methods in detecting 5mC methylation patterns. 
These findings compellingly suggested that Deep5mC could empower 
the study of the association of 5mC methylations and genomic se-
quences. Moreover, Deep5mC can be extended to other eukaryotic ge-
nomes and applied to disease-specific studies.
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