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Abstract

Carbapenem-resistant Escherichia coli has emerged as a major public health issue across

the world. This study was aimed to determine the virulence content and phylogenetic groups

of carbapenemase-producing E. coli isolates in southwest Iran. One hundred and fifty-two

non-duplicate E. coli isolates were collected from various clinical samples. Antibiotic sus-

ceptibility and minimum inhibitory concentrations (MIC) were determined according to the

Clinical and Laboratory Standards Institute (CLSI) guidelines by Kirby-Bauer disc diffusion

and agar dilution methods. Phenotypic screening of carbapenemase enzymes was per-

formed by modified Hodge test (MHT). Detection of carbapenemase genes, phylogenetic

groups, and virulence-associated genes were also performed by the PCR assay. The high-

est and lowest resistance rates were observed against mezlocillin (70.4%) and doripenem

(13.1%), respectively. Out of 28 isolates that were resistant to carbapenem antibiotics, 12

(7.9%) strains were phenotypically carbapenemase producers. The blaOXA-48 was the pre-

dominant carbapenemase gene, detected in 58.3% of isolates, followed by blaIMP (41.7%)

and blaNDM (8.3%). None of the isolates harbored blaVIM and blaKPC genes. Among the

twelve carbapenemase-producing strains, urinary isolates were mostly classified into B2

(41.7%) and D (25%) phylogenetic groups, while other clinical isolates belonged to B1

(25%) and A (8.3%) groups. The frequency of virulence-associated genes was also investi-

gated in all isolates and ranged from 6.6% for hly to 75% for fimA. The emergence of carba-

penemase-producing strains is a growing concern to public health. Therefore, the proper

implementation of monitoring programs is crucial for limiting their dissemination.

Introduction

Multidrug resistance has been increased all over the world that is considered a public health

threat [1]. Several recent investigations reported the emergence of multidrug-resistant (MDR)

bacterial pathogens from different origins including humans, birds, cattle, and fish that

increase the need for routine application of the antimicrobial susceptibility testing to detect

the antibiotic of choice as well as the screening of the emerging MDR strains [2–9]. Most
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members of the Enterobacteriaceae and particularly Escherichia coli strains are of special

importance due to their high prevalence in the community, ability to cause various infections,

and high resistance to most antibiotics [10]. E. coli is an opportunistic pathogen in the gut of

healthy individuals. Some strains of this bacterium can colonize other tissues and host organs

and become extraintestinal pathogenic E. coli (ExPEC) [11]. ExPEC using an arsenal of viru-

lence-associated factors can overcome host defense systems and cause serious diseases such as

sepsis, meningitis, pneumonia, urinary tract infections, cystitis, and pyelonephritis [12]. The

pathogenicity of ExPEC depends on the various virulence factors, including; adhesins, toxins,

iron-acquisition factors, and invasins which are encoded by the several virulence genes: fimA
(type 1 fimbriae), papGIII, papC (P fimbriae), sfa (S fimbriae), afa (afimbrial adhesins), cnf1
(cytotoxic necrotizing factor 1), sat (secreted autotransporter toxin), hly (hemolysins), aer
(aerobactin), iutA (aerobactin siderophore receptor), and iroN (salmochelin siderophore

receptor) [12, 13]. Generally, E. coli strains are categorized into four major phylogenetic

groups (A, B1, B2, and D). According to epidemiological studies, ExPEC strains are often

sorted as phylogroup D or B2, whereas commensal strains are frequently classified as phy-

logroup A or B1. However, horizontal genetic transmission processes allow the exchange of

virulence-associated genes among phylogroups, which may confer the emergence of highly

pathogenic strains belonging to phylogroups A or B1 [14].

Due to growing resistance to broad-spectrum antibiotics including fluoroquinolones,

third-generation cephalosporins, and aminoglycosides, the carbapenems have progressively

become the last line for treatment of life-threatening infections [15]. However, with the dra-

matic increase in carbapenems usage, the emergence of carbapenem-resistant species has

become a mounting public health problem around the world [16]. There are various mecha-

nisms for resistance to carbapenems, one of the main of which is the production of carbapene-

mase enzymes. The most common carbapenemases identified in Enterobacteriaceae are class

A (KPC), class B (NDM, IMP, and VIM), and class D (type OXA-48). The widespread occur-

rence of carbapenemase-producing E. coli could trigger a new epidemiological crisis, similar to

that caused by extended-spectrum β-lactamases [17]. Although several studies have been per-

formed on the prevalence of carbapenem-resistant E. coli in different parts of Iran, our data in

the southwestern region are very limited. Thus, this study was aimed to investigate the fre-

quency of carbapenemase-producing E. coli isolates and their correlation with phylogenetic

background and Virulence-associated genes.

Materials and methods

Ethics approval

The study protocol has been under the Helsinki Declaration and received ethical approval

from the Institutional Ethics Committee of Abadan University of Medical Sciences (Ethical

Code: IR.ABADANUMS.REC.1399.169).

Bacterial isolation and identification

From Jan 2021 to Sep 2021, 152 nonduplicate E.coli isolates were collected from clinical speci-

mens (including urine, sputum, wound, and blood) of patients admitted to affiliated hospitals

of the Abadan University of Medical Sciences. All isolates were accurately identified by per-

forming standard methods [18]. Briefly, the specimens were inoculated in MacConkey broth

(Merck, Darmstadt, Germany) and incubated at 37˚C for 24 h. A loopful of broth culture was

subsequently cultured on Eosin Methylene Blue (EMB; Biolife Italiana, Italy) and MacConkey

agar. All grown lactose-fermenting colonies were identified via bacteriological tests (such as

hemolytic activity on blood agar, motility test, and Gram staining result) and conventional
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biochemical tests including triple sugar iron agar, oxidase, catalase, production of lysine decar-

boxylase, citrate utilization test, Sulfur Indole Motility (SIM), Methyl Red & Vogues-Proskauer

(MR-VP), and urease test [18, 19]. Finally, purified isolates stored in trypticase soy broth

(Merck, Darmstadt, Germany) containing 20% glycerol at -70˚C until further use.

Antimicrobial susceptibility testing

The antibiotic susceptibility testing was performed for E.coli isolates by the Kirby-Bauer disc

diffusion method under the Clinical and Laboratory Standards Institute (CLSI) guidelines [20]

for the following standard antibiotics (Roscoe, Taastrup, Denmark): Cefepime (FEP; 30 μg)

Imipenem (IMP; 10 μg), Ampicillin/Sulbactam (SAM; 20 μg), Ertapenem (ETP; 10 μg), Mero-

penem (MEM; 10 μg), Aztreonam (ATM; 30 μg), Doripenem (DOR; 10 μg), and Mezlocillin

(MEZ; 30 μg). E. coli ATCC 25922 was used as a quality stander strain. In addition, for carba-

penem non-susceptible isolates, resistance to imipenem was evaluated by minimum inhibitory

concentration (MIC) with a standard agar dilution test [20]. All studied isolates were also clas-

sified into MDR (non-susceptibility to at least one agent in� three antimicrobial families),

extensively drug-resistant (XDR; non-susceptibility to� one agent in all but� two antimicro-

bial families) and pandrug-resistant (PDR; non-susceptibility to all antimicrobial classes) as

previously described [21].

Phenotypic detection of carbapenemase

For confirmation of carbapenemase production, all imipenem-resistant strains were screened

by the Modified Hodge test (MHT) according to the CLSI guidelines [20]. In this method, an

overnight suspension of E. coli ATCC 25922 adjusted to the turbidity of the 0.5 McFarland was

prepared and cultured uniformly on Müller-Hinton agar (MHA; Merck Co., Darmstadt, Ger-

many) containing 70 μg per ml of ZnSO4. A carbapenem disk was placed in the center of the

plate, and the microorganism suspected of producing carbapenemase was drawn in a straight

line from the edge of the disk to the sides of the plate. The clover leaf-shaped inhibition zone

formation around the central disc was considered as carbapenemase production.

Detection of carbapenemase genes by Multiplex PCR

Bacterial DNA was extracted using the simple boiling method [22]. The presence of carbape-

nemase genes including (blaNDM, blaVIM, blaKPC, blaIMP, and blaOXA-48) was determined using

Multiplex PCR assay as previously described [23]. The PCR products were run on 1.8% aga-

rose gel stained with 0.5 μg mL-1 ethidium bromide.

Molecular characterization of phylogenetic groups

All isolates were phylogenetically categorized into four main groups (A, B1, B2, and D) using

triplex PCR assay as described by Clermont et al. [24]. To confirm the presence of the ampli-

fied fragment, PCR product electrophoresis on 2% agarose gel along with molecular size

marker 100 bp (Ampliqon, Denmark) was examined.

Multiplex PCR for virulence genes

In this study, 11 different virulence gene factors (fimA, papC, papGIII, aer, sat, afa, sfa, cnf-1,

hly, iutA, and iroN) were assessed by PCR method using a thermal cycler (Bio-Rad Laborato-

ries, Inc.). The multiplex PCR reaction was performed in 25 μL volumes containing 3 μl of

DNA template, 1 μl of each specific primer, 12.5 μL of Master Mix Red (Ampliqon, Denmark),

and 7.5 μl of double-distilled water. The sequences of used primers and amplification
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conditions are presented in Table 1 [25–27]. The PCR products were analyzed by 1.8% agarose

gel electrophoresis in 1x TBE buffer (0.89 M Tris-Borate, 0.02 M EDTA, pH 8.3), stained with

ethidium bromide (SinaClon BioScience Co., Iran), and visualized by using UV light.

Statistical analysis

The statistical analysis was performed using the Statistical Package for Social Sciences Statistics

software (SPSS; IBM, Chicago, IL, USA) version 21.0. For the objectives of this study, Fisher’s

exact test or Chi-square test were used for comparison and P-value< 0.05 was considered sta-

tistically significant. To examine the relationship between the two nominal variables, a Phi cor-

relation test was used.

Results

Phenotypic characteristics of the recovered isolates

Of the 152 E. coli strains, 129 (84.9%) were isolated from urine, 8 (5.3%) from the wound, 9

(5.9%) from blood, and 6 (3.9%) from sputum. All collected isolates have been identified as E.

coli according to their morphological and biochemical characteristics. The isolates appeared as

Table 1. List of primers sequences used in this study.

Gene Primer Sequence (5´!3´) Size of Product Amplification Reference

blaNDM GGTTTGGCGATCTGGTTTTC
CGGAATGGCTCATCACGATC

621 94˚C, 10 min; 36 cycles of 94˚C for 30 s, 52˚C, 40 s, 72˚C, 50 s, final extension 72˚C, 5

min.

23

blaVIM GATGGTGTTTGGTCGCATA
CGAATGCGCAGCACCAG

390

blaKPC CGTCTAGTTCTGCTGTCTTG
CTTGTCATCCTTGTTAGGCG

798

blaIMP GGAATAGAGTGGCTTAAYTCTC
GGTTTAAYAAAACAACCACC

232

blaOXA-48 GCGTGGTTAAGGATGAACAC
CATCAAGTTCAACCCAACCG

438

fimA GTTGTTCTGTCGGCTCTGTC
ATGGTGTTGGTTCCGTTATTC

447 94˚C, 3 min; 30 cycles of 94˚C for 1 min, 55˚C, 30 s, 72˚C, 1 min, final extension 72˚C,

8 min.

25

papGIII CATTTATCGTCCTCAACTTAG
AAGAAGGGATTTTGTAGCGTC

482

sat ACTGGCGGACTCATGCTGT
AACCCTGTAAGAAGACTGAGC

387

afa GCTGGGCAGCAAACTGATAACTCTC
CATCAAGCTGTTTGTTCGTCCGCCG

750 94˚C, 3 min; 30 cycles of 94˚C for 1 min, 63˚C, 30 s, 72˚C, 1 min, final extension 72˚C,

8 min.

26

sfa CTCCGGAGAACTGGGTGCATCTTAC
CGGAGGAGTAATTACAAACCTGGCA

410

hly AACAAGGATAAGCACTGTTCTGGCT
ACCATATAAGCGGTCATTCCCGTCA

1177

cnf-1 AAGATGGAGTTTCCTATGCAGGAG
CATTCAGAGTCCTGCCCTCATTATT

498

aer TACCGGATTGTCATATGCAGACCGT
AATATCTTCCTCCAGTCCGGAGAAG

602

papC GACGGCTGTACTGCAGGGTGTGGCG
ATATCCTTTCTGCAGGGATGCAATA

328

iutA GGCTGGACATCATGGGAACTGG
CGTCGGGAACGGGTAGAATCG

300 94˚C, 3 min; 30 cycles of 94˚C for 1 min, 58˚C, 30 s, 72˚C, 1 min, final extension 72˚C,

8 min.

27

iroN AAGTCAAAGCAGGGGTTGCCCG
GACGCCGACATTAAGACGCAG

665

https://doi.org/10.1371/journal.pone.0266787.t001
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motile gram-negative rods under a microscope, and after growing on MacConkey agar gave

distinct pink colonies due to the fermentation of lactose. They also had hemolytic colonies on

blood agar and typical shiny metallic colonies on EMB. Isolates were positive for biochemical

tests of catalase, lactose fermentation, MR, and indole. However, their oxidase, lysine decar-

boxylase, VP, citrate, H2S production, and urease tests were negative.

Antimicrobial susceptibility testing

All studied isolates showed significant resistance to tested antibiotics. The highest resistance

rates were observed in mezlocillin (70.4%, 107 isolates) and aztreonam (67.1%, 102 isolates).

In contrast, 13.1% (20 isolates) and 15.1% (23 isolates) of the isolates were resistant to doripe-

nem and meropenem, respectively (Table 2, Fig 1). The MIC was evaluated for 26 imipenem

non-susceptible isolates and the results showed 12 were resistant to 4->128 μg/ml of imipe-

nem (Table 5). In total, 28 (18.4%) isolates were resistant to at least one of the carbapenem

drugs. MDR phenomena were found in 104 (68.4%) isolates, among which, only 12 were har-

boring various carbapenemases genes (Table 3). Correlation analysis was performed between

Table 2. Antimicrobial resistance profile of the 152 E. coli isolates.

Antibiotic classes Antimicrobials Resistant (%) Intermediate (%) Susceptible (%)

Penicillins Mezlocillin 107 (70.4) 5 (3.3) 40 (26.3)

Ampicillin/Sulbactam 57 (37.5) 9 (5.9) 86 (56.6)

Cephalosporins Cefepime 75 (49.3) 8 (5.3) 69 (45.4)

Carbapenems Imipenem 24 (15.8) 2 (1.3) 126 (82.9)

Meropenem 23 (15.1) 4 (2.6) 125 (82.2)

Doripenem 20 (13.1) 0 132 (86.8)

Ertapenem 28 (18.4) 8 (5.3) 116 (76.3)

Monobactams Aztreonam 102 (67.1) 5 (3.3) 45 (29.6)

https://doi.org/10.1371/journal.pone.0266787.t002

Fig 1. Antimicrobial resistance profile of the 152 E. coli isolates.

https://doi.org/10.1371/journal.pone.0266787.g001
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different phenotypic MDR patterns and the carbapenems resistance genes. The derived results

disclosed strong positive correlations between blaNDM gene and DOR (phi = 0.704); blaOXA-48

gene, MEM (phi = 0.781), and IMP (phi = 0.744); blaIMP gene, MEM (phi = 0.654), and IMP

(phi = 0.622) (Table 4).

Phenotypic detection of carbapenemase

After performing the phenotypic MHT, 12 (7.9%) isolates showed positive tests and were con-

firmed as carbapenemase producers.

PCR- based detection of carbapenem-resistance genes

Based on PCR results, all twelve imipenem non-susceptible strains carried at least one carbape-

nemase-related gene (Table 5). The blaOXA-48 was the most prevalent gene, detected in 58.3%

(7/12) of isolates, followed by blaIMP (41.7%, 5/12) and blaNDM (8.3%, 1/12). Also, the cohar-

boring of two genes, blaOXA-48, and blaIMP were observed in one isolate. None of the strains

carried blaVIM and blaKPC genes.

PCR- based detection of virulence-determinant genes

The frequency of the four major phylogroups (A, B1, B2, and D) in carbapenemase-producers

isolates was differed based on the findings of the triplex PCR test. Among all 152 E. coli iso-

lates, the predominant phylogenetic groups were D (49.3%) followed by B2 (27%) (Table 6, Fig

2). In the carbapenemase-producers, the urinary isolates have belonged to phylogroups B2

(41.7%) and D (25%). Also, other clinical isolates belonged to groups B1 (25%) and A (8.3%)

Table 3. Frequency of the antimicrobial resistance profile and the resistance genes among all E. coli isolates.

No. (%) of strains Type of resistance Phenotypic MDR Resistance genes

83 (54.6) MDR Penicillins: mezlocillin, ampicillin/sulbactam

Carbapenems: ertapenem

Monobactams: aztreonam

ND

9 (5.9) MDR Penicillins: mezlocillin, ampicillin/sulbactam

Cephalosporins: cefepime

Monobactams: aztreonam

ND

29 (19.1) Resistant Penicillins: mezlocillin, ampicillin/sulbactam

Carbapenems: ertapenem

ND

19 (12.5) Resistant Penicillins: mezlocillin

Monobactams: aztreonam

ND

4 (2.6) MDR Carbapenems: ertapenem, imipenem, meropenem

Monobactams: aztreonam

Cephalosporins: cefepime

blaIMP

6 (3.9) MDR Penicillins: mezlocillin, ampicillin/sulbactam

Carbapenems: ertapenem, imipenem, meropenem

Cephalosporins: cefepime

blaOXA-48

1 (0.6) MDR, Possible XDR Penicillins: ampicillin/sulbactam

Carbapenems: ertapenem, imipenem, doripenem

Monobactams: aztreonam

Cephalosporins: cefepime

blaNDM

1 (0.6) MDR, Possible XDR Penicillins: mezlocillin, ampicillin/sulbactam

Carbapenems: imipenem, meropenem, ertapenem, doripenem

Cephalosporins: cefepime

Monobactams: aztreonam

blaIMP, blaOXA-48

ND, not detected.

https://doi.org/10.1371/journal.pone.0266787.t003
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Table 5. Carbapenem resistance pattern, phylogenetic grouping, and virulence genes profiles of 12 carbapenemase-producers isolates.

Strains

(n = 12)

Sample Type Carbapenemase Genes Phylogenetic group Virulence factors CRP IMP MIC (μg

/ml)

E05 Urine blaIMP B2 fimA IMP 16

E12 Urine blaOXA-48 D papC, cnf-1, fimA IMP, ETP 32

E14 Sputum blaIMP D iroN, iutA, afa MER 8

E52 Wound blaNDM B1 sat, afa, aer, fimA, papGIII, iroN, cnf-1,

iutA
IMP, ETP, DOM >128

E37 Urine blaIMP B2 fimA, papGIII, iutA ETP 4

E10 Urine blaOXA-48 B2 fimA, sfa, hly IMP 16

E28 Urine blaOXA-48 B2 cnf-1, fimA, sfa, hly ETP 16

E61 Wound blaOXA-48 B1 sat, afa, fimA, iroN, cnf-1, iutA IMP, MER, ETP 64

E73 Blood blaIMP A afa, aer, fimA, iutA MER 8

E77 Wound blaIMP, blaOXA-48 B1 sfa, hly, aer, fimA, papC, iroN, cnf-1, iutA,

afa
IMP, MER, ETP,

DOM

>128

E65 Urine blaOXA-48 B2 fimA, sfa, papGIII, iutA IMP, MER 16

E23 Urine blaOXA-48 D cnf-1, fimA, sfa, papGIII, iutA IMP 4

CRP: Carbapenem-resistant pattern, IMP: Imipenem, MER: Meropenem, ETP: Ertapenem, Doripenem: DOM, The resistance breakpoint (CLSI) for imipenem is MIC

�4 mg/ml.

https://doi.org/10.1371/journal.pone.0266787.t005

Table 4. The correlation between various phenotypic MDR patterns and the carbapenems resistance genes.

blaNDM blaOXA-48 blaIMP DOR MEM ETP IMP ATM MEZ SAM FEP

blaNDM 1.00 -0.026 -0.022 0.704 -0.034 0.030 0.273 0.024 -0.439 0.020 0.196�

- 0.788 0.822 <0.0001 0.731 0.758 0.005 0.805 <0.0001 0.842 0.044��

blaOXA-48 1.00 0.120 0.242 0.781 0.082 0.744 -0.921 0.060 0.053 0.535

- 0.221 0.013 <0.0001 0.402 <0.0001 <0.0001 0.540 0.586 <0.0001

blaIMP 1.00 0.296 0.654 0.068 0.622 0.055 -0.790 -0.890 0.447

- 0.002 <0.0001 0.483 <0.0001 0.573 <0.0001 <0.0001 <0.0001

DOR 1.00 0.180 0.043 0.388 0.034 -0.296 0.028 0.279

- 0.065 0.662 <0.0001 0.725 0.002 0.776 0.004

MEM 1.00 0.105 0.952 -0.720 -0.508 -0.582 0.684

- 0.283 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

ETP 1.00 0.110 -0.075 -0.068 -0.061 -0.612

- 0.260 0.440 0.483 0.532 <0.0001

IMP 1.00 -0.685 -0.622 -0.554 0.718

- <0.0001 <0.0001 <0.0001 <0.0001

ATM 1.00 -0.55 -0.049 -0.492

- 0.573 0.616 <0.0001

MEZ 1.00 0.890 -0.447

- <0.0001 <0.0001

SAM 1.00 -0.398

- <0.0001

FEP 1.00

-

� Phi coefficient

�� Approximate Significance

https://doi.org/10.1371/journal.pone.0266787.t004
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(Table 5). The results showed significant differences in phylogroups B1 (p = 0.024) between

carbapenemase producers and non-producers. In this study, the frequency of 11 virulence fac-

tors for E.coli isolates was investigated and ranged from 6.6% (hly) to 75% (fimA). Based on

data from the multiplex PCR results, 91.7% (11/12) of imipenem non-susceptible strains were

positive for fimA. The correlation between the frequency of virulence genes and carbapene-

mase production was not statistically significant except for papGIII, afa, sfa, hly, cnf-1, and

iutA. The distribution and correlation of the virulence-associated genes are shown in detail in

Table 6 and Fig 3. Remarkably, the strains isolated from the wound specimen were not only

resistant to most carbapenems tested and had the highest MIC, but also contained several viru-

lence factors genes.

Discussion

Carbapenems are commonly used in clinical settings to treat MDR gram-negative bacterial

infections owing to their broad spectrum of antibacterial activity [15]. Yet, several monitoring

programs claim that the overuse of these antibiotics and the emergence of carbapenem-resis-

tant organisms have become a major global health concern [28]. Eastern Mediterranean coun-

tries, including Iran, have the highest risk of antimicrobial resistance, and carbapenem-

resistant E. coli strains are on the WHO list of global priority pathogens, which is classified as

critical [29]. To best our knowledge, the current study demonstrated for the first time the over-

all prevalence of carbapenemase-related genes in recent extraintestinal E. coli isolates in Aba-

dan, southwest Iran. The current study investigated 152 clinical E. coli isolates. The majority of

strains were retrieved from urine (84.9%) and blood (5.9%). Similarly, in the previous study

performed by Tian et al. in China, the E. coli strains were mainly isolated from urine and

blood samples [15]. This research demonstrated a total carbapenem resistance of 18.4%

among clinical isolates of E. coli, which was higher than the rate reported from a study con-

ducted by Zowawi et al. in the gulf cooperation council countries [30]. In our study, the non-

Table 6. Distribution of virulence genes and phylogenetic groups among carbapenemase producer and non-producer isolates.

Virulence genes Carbapenemase Total (N = 152) (%) p-value
Producers (N = 12) (%) Non-producers (N = 140) (%)

fimA 11 (91.7) 103 (73.6) 114 (75) 0.296

papGIII 4 (33.3) 14 (10) 18 (11.8) 0.038

sat 2 (16.7) 22 (15.7) 24 (15.8) >0.999

afa 5 (41.7) 18 (12.8) 23 (15.1) 0.020

sfa 5 (41.7) 15 (10.7) 20 (13.1) 0.010

hly 3 (25) 7 (5) 10 (6.6) 0.033

cnf-1 6 (50) 32 (22.8) 38 (25) 0.074

aer 3 (25) 42 (30) 45 (31.7) >0.999

papC 2 (16.7) 23 (16.4) 25 (16.4) >0.999

iutA 8 (66.7) 48 (34.3) 56 (36.8) 0.049

iroN 4 (33.3) 46 (32.9) 50 (32.9) >0.999

Phylogenetic group

A 1 (8.3) 25 (17.8) 26 (17.1) 0.692

B1 3 (25) 6 (4.3) 9 (5.9) 0.024

B2 5 (41.7) 36 (25.7) 41 (27) 0.314

D 3 (25) 72 (51.5) 75 (49.3) 0.130

Numbers in bold are statistically significant.

https://doi.org/10.1371/journal.pone.0266787.t006
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susceptibility rates against four tested carbapenems including doripenem, meropenem, imipe-

nem, and ertapenem varied from 13.1% to 23.7%. Antibiotic susceptibility testing showed that

the less effective carbapenem in the present study was ertapenem, while most of our isolates

were sensitive to doripenem. In contrast to these findings, Manohar et al. from India reported

a lower resistance rate for ertapenem compared to meropenem and imipenem in clinical E.

coli isolates [31]. In another study by Sharahi et al. from Iran who investigated 113 clinical E.

coli isolates, 43.4%, 49.6%, 61.9%, and 73.5% of them were resistant against ertapenem, doripe-

nem, meropenem, and imipenem respectively [32]. One other noteworthy finding of the pres-

ent study was the high frequency of MDR E. coli (68.4%) which was higher than the previously

shown statistics in India (29.6%) [33], Iran (23.9%) [32], and Egypt (58.3%) [11]. These dis-

crepancies in the findings may be due to various reasons, including differences in the geo-

graphical area of the research, variation in the pattern of antibiotic prescribing, and the lack of

Fig 2. Distribution of virulence factors genes among the retrieved strains (n = 152).

https://doi.org/10.1371/journal.pone.0266787.g002
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a comprehensive monitoring program for the appropriate usage of antibiotics in some

countries.

In this study, according to the results of phenotypic MHT, only 12 (7.9%) isolates showed

positive tests and were confirmed as carbapenemase producers, which was in agreement with

the report of Khan et al. [34]. Nonetheless, a lower prevalence of carbapenemase-producing E.

coli strains was reported in Egypt [35], as well as in China [15]. MHT results of the current

study were further confirmed by PCR assay, and it was found that blaOXA-48, blaIMP, and

blaNDM were existence in 58.3%, 41.7%, and 8.3% of isolates, respectively. Previous studies

confirmed the high prevalence of blaOXA-48. Al-Agamy et al. [36] reported a similar frequency

Fig 3. Distribution of phylogenetic groups among the retrieved strains (n = 152).

https://doi.org/10.1371/journal.pone.0266787.g003

PLOS ONE Carbapenemase-producing Escherichia coli

PLOS ONE | https://doi.org/10.1371/journal.pone.0266787 May 10, 2022 10 / 15

https://doi.org/10.1371/journal.pone.0266787.g003
https://doi.org/10.1371/journal.pone.0266787


of blaOXA-48 (60%), while Solgi et al. [37] recorded a higher prevalence rate of blaOXA-48

(82.8%) and blaNDM (31%) than our study. The spread of blaOXA-48-containing strains has

recently been reported in parts of Western Europe and North Africa [38], although it is notable

that Turkey is thought to be the major reservoir [39]. On the other hand, various reports from

the Middle East [40], Balkans [41], and the Indian subcontinent [42] have demonstrated that

these areas could be considered the primary reservoirs for blaNDM producers. Therefore, con-

sidering that Iran is in the corridor of population transport between Pakistan, Iraq, and Tur-

key, it can be concluded that at least some carbapenemase-producing strains in Iran, might be

originated from these countries, the proof of which requires more comprehensive research.

Interestingly, one of the strains isolated from a patient’s bedsore sample not only had a

MIC>128 μg/ml and was resistant to all four carbapenem antibiotics tested, but also contained

blaOXA-48 and blaIMP simultaneously. However, the blaVIM and blaKPC genes were not detected

in any carbapenem non-susceptible isolates. Several mechanisms for the emergence of MDR

strains have been described, some of the most important of which are: 1) association among

resistance genes; Antibiotic resistance genes could well be genetically linked if they occur on

the same chromosomal region or mobile element, and hence tend to be transported together.

2) Horizontal gene transfer; this mechanism usually occurs for antimicrobials in the same class

due to mutations in penicillin-binding proteins as well as beta-lactamases. In addition, it may

also occur for various antibiotics in different classes, because the efflux pumps impact a variety

of antibiotics in different species. 3) Antibiotic exposure; It occurs mainly due to the

routine and inappropriate use of combination therapy by patients and repeated treatment fail-

ure [11, 43].

In the current study, phylotype B2 (41.7%) was detected as the predominant group among

the carbapenemase-producers. In accordance with our results, Ortega et al. were reported the

majority (26.5%) of carbapenemase-producing clinical isolates belonged to phylogroup B2

[17]. Nonetheless, unlike our findings, El-Shaer et al. found that carbapenemase positive clini-

cal isolates were mainly classified as phylogroup C (50%) [44]. This study showed that E. coli
isolate, harbored a wide range of virulence factors genes for ExPEC, encoding siderophores

(iutA, aer, iroN), adhesins (fimA, afa, papGIII, papC, sfa), and toxins (cnf1, hly, sat). In this

study, the overall frequency of virulence genes ranged from 6.6% for hly to 75% for fimA. Type

1 fimbriae, encoded by the fimA gene, is associated with biofilm formation and commonly

found in most of the E.coli isolates, conferring as an important virulence factor [18]. Similar to

our study, Nojoomi et al. [45] reported that fimA was the most frequent virulence gene in clini-

cal E.coli isolates. Besides, Johnson et al. reported that phylogroups B2 and D were predomi-

nant groups among ExPEC clinical isolates, and the frequency of virulence-associated genes

varied from 0.4% to 98% [46]. As shown in Table 6, out of a total of 12 carbapenem-resistant

strains, 11 isolates (91.7%) and 8 (66.7%) were positive for fimA and iutA, respectively. The

majority (10/11) of the investigated virulence-associated genes, occurred more frequently

among carbapenemase producers than non-producers, with statistically significant differences

for three genes: fimA, iutA, and cnf-1. It was remarkable that carbapenem-resistant strains iso-

lated from wound specimens had more virulence factor genes than other clinical strains and

belonged to phylogroup B1. The lack of molecular typing and sequencing of virulence genes

and carbapenems resistance genes were the study’s some limitations.

Conclusions

Antimicrobial resistance, and in particular resistance to carbapenems, which are often pre-

scribed as a last resort to treat infections, is spreading alarmingly. This work was the first

report in Abadan which adds to our knowledge of the frequency of carbapenemase-producing
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E. coli isolates, as well as their virulome profiles. According to our findings, doripenem was the

most useful carbapenem for the treatment of E. coli infections. Furthermore, the significant

and worrying frequency of MDR-E. coli underscores the necessity for a surveillance program

to restrict the spread of these strains in our region. Among carbapenemase genes, blaOXA-48,

blaIMP, and blaNDM were existences, which were associated with high MIC levels (4 to 128 μg

/ml). Virulome analysis of the isolates revealed that the genes involved in adhesin and iron

acquisition, especially fimA and iutA were prevalent in the carbapenems-resistant strains. The

emergence of carbapenemase-producing strains encoding various virulence factors is a con-

cern for the treatment of the infections, and proper implementation of monitoring programs

is crucial for limiting their dissemination.
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