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Abstract

Background: Molecular biology is currently facing the challenging task of functionally characterizing the proteome. The
large number of possible protein-protein interactions and complexes, the variety of environmental conditions and cellular
states in which these interactions can be reorganized, and the multiple ways in which a protein can influence the function
of others, requires the development of experimental and computational approaches to analyze and predict functional
associations between proteins as part of their activity in the interactome.

Methodology/Principal Findings: We have studied the possibility of constructing a classifier in order to combine the
output of the several protein interaction prediction methods. The AODE (Averaged One-Dependence Estimators)
machine learning algorithm is a suitable choice in this case and it provides better results than the individual prediction
methods, and it has better performances than other tested alternative methods in this experimental set up. To illustrate
the potential use of this new AODE-based Predictor of Protein InterActions (APPIA), when analyzing high-throughput
experimental data, we show how it helps to filter the results of published High-Throughput proteomic studies, ranking in
a significant way functionally related pairs. Availability: All the predictions of the individual methods and of the
combined APPIA predictor, together with the used datasets of functional associations are available at http://ecid.bioinfo.
cnio.es/.

Conclusions: We propose a strategy that integrates the main current computational techniques used to predict functional
associations into a unified classifier system, specifically focusing on the evaluation of poorly characterized protein pairs. We
selected the AODE classifier as the appropriate tool to perform this task. AODE is particularly useful to extract valuable
information from large unbalanced and heterogeneous data sets. The combination of the information provided by five
prediction interaction prediction methods with some simple sequence features in APPIA is useful in establishing reliability
values and helpful to prioritize functional interactions that can be further experimentally characterized.
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Introduction

A number of computational methods have been developed to

predict functional associations in complete genomes. In particular,

three such methods have frequently been tested [1] and

implemented in well-organized popular servers [2]: phylogenetic

profiles (PP, [3]) examine the presence or absence of genes in

related species; genomic context (GC, [4]) considers the conser-

vation of the gene neighborhoods (proximity in the chromosome

organization) in different species; and gene fusion (GF, [5–6])

studies pairs of proteins for which a homolog of each of them has

been fused in the same protein. These methods have in common

the use of evolutionary information. Moreover, variants of these

methods are appearing continuously [7–9]. The performance of

some variants of these three methods was shown to be similar to

some of the High Throughput experimental proteomics approach-

es when compared to a manually curated gold standard set [1].

Other interaction prediction methods, such as in silico two-

hybrid (I2H, [10]) and mirror tree (MT, [11]), use multiple

sequence alignments and principles of co-evolution. Applying

these methods to large data collections produces a considerable

number of false positives, which is probably related to the

additional evolutionary trends that partially dilute the signal

directly related to protein-protein interactions [12–14]. However,

there is currently significant research activity in this area

addressing these problems, with new methodological approaches

displaying a better capacity to specifically distinguish the true co-

evolutionary information [12–14].

Previous studies have addressed the integration of data coming

from several sources (mostly experimental) for improving the
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prediction of protein interactions in S. cerevisiae [15–16]. These

methods rely on the large amount of experimental data available

for this organism and are mainly devoted to the assignment of

reliability values to experimentally derived protein interactions. In

contrast, the work presented here explores the combination of

several aspects of evolutionary information (instead of experimen-

tal information), in order to discover new protein functional

associations (not restricted to protein physical interactions)

between protein pairs. Therefore, our approach differs from

previous studies both in the a priori input information and in its

eventual applicability.

In the study presented here, we propose the application of a

machine learning methodology to improve the prediction of

functional interactions. Our approach is based on the combination

of the results of various prediction methods independently

developed in this area. We propose the use of a recently published

machine-learning algorithm known as ‘‘Averaged One-Depen-

dence Estimators’’ [17] to optimally combine the various

prediction methods. Our results show that the performance of

the AODE-based predictor is superior to a number of alternative

classifiers based on different machine learning algorithms when

their results are compared with a carefully derived data collection

of E. coli functional associations.

Finally, we have used our predictor to refine collections of

functional protein associations, including those obtained by a high-

throughput experimental approach [18] and interaction predic-

tions extracted from the widely used STRING server [2].

Results

Performance comparison for several classifiers
We explored several algorithms and various training sets with

different positive/negative ratios in order to reach a good

compromise between the actual underlying class unbalance (most

protein pairs are not expected to be functionally related). This

helped us determine whether the methods tested were suitable to

address the incapacity of most algorithms to handle highly

unbalanced sets (see the details in Methods).

This exploratory process generated several classifiers, the

performance of which had to be compared using our test set of

functional protein relationships (see Methods). The comparative

analysis was performed using Cost Curves (Curve Tool [19]) that

allow us to rapidly choose the best classifier by direct visual

inspection. As a rule of thumb, the best classifiers lie below the

worst ones because they have a lower cost (classification mistakes).

Indeed, the error difference between a pair of classifiers can be

measured through the vertical distance between their curves (a

brief description of the use of these curves is provided in the

Methods section).

The Cost Curves for different classifiers representing the

different machine learning algorithms used were examined and

from a visual inspection of this plot, it was clear that the best

performing algorithm in this preparatory phase test was AODE

(blue line, Fig. 1). The AODE Cost Curve lies below the

probability cost curves of all the other methods at most values,

which means that AODE makes fewer mistakes than any other

classifier for most positive/negative ratios (false positive and false

negative predictions). BayesNet [20–21] is the second best classifier

in terms of performance, emphasizing that Bayesian-based

classifiers are the most appropriate to address this problem.

Interestingly, BayesNet scored worse than AODE and even than

the trivial classifier when the probability cost was greater than 0.8.

This fact will be irrelevant in most of the cases (with very low

positives/negatives ratios), although it would become relevant for

those experiments implying the filtering of highly reliable sets of

associations obtained from experimental sources. Moreover,

BayesNet replaces any missing value with the median value from

the training set for the corresponding attribute, instead of ignoring

this value as AODE does. In this respect the AODE approach is

more appropriate for the semantics in our domain where a missing

value implies non-existence. This is an important issue because

most of the entries have at least one missing value and the

information contained in the lack of a value is expected to be more

instable and more difficult to extrapolate when predicting on new

entries. It is also interesting that the third best classifier according

to Cost Curves (Figure 1) is Naı̈ve Bayes (NB) [22] (that considers

independence among the input features), the comparison of these

three methods show that modeling the internal dependence

between the features clearly improves the results. It is important to

note that although other algorithms (eg. Random Forests [23])

have shown their value on previous related works [15], AODE is

shown to be more appropriate for the explored combinations of

problem, features and experimental system. Therefore the

superior performance of AODE for this preparatory phase test

cannot be taken as a proof of the general superiority of the

algorithm. Different methods are expected to yield different results

according the specific characteristics of each prediction problem.

Moreover, some of these classifiers could improve their behavior

by exploring in detail their parameter space.

For comparative purposes, the results obtained with the widely

applied Receiver Operating Characteristic (ROC) are shown

(Fig. 2). While ROC analysis leads to the same conclusions and

supports the superior performance of Bayesian classifiers to

address our problem, no significant differences where found

between the two Bayesian approaches adopted that consider

features dependence. Briefly summarizing, these two Bayesian

classifiers clearly perform better than all the other classifiers tested,

although AODE provides a slightly higher performance in some

conditions. As a consequence of the results of this test we consider

AODE as suitable choice for this problem, even if it is impossible

to guaranty that it will be superior to any other classifier in all

conditions.

Improvement by combining different information
sources

We considered it convenient to compare the accuracy of the

positive predictions made by the original methods and the AODE-

based classifier (APPIA), since each method has different

applicability and is potentially able to detect different type of

interactions. We compared the performance of the individual

methods with the one of their combination using APPIA by

examining the accuracy of the ‘n’ first predictions from an

extended test set, that includes the whole set of predictions for E.

coli after removing those cases used in the training set. In Fig. 3

each line represents the accuracy, measured as the ratio of true

positive predictions divided by the number of predictions in the

extended test set for an increasing number of predicted pairs (the

equivalent figure for the Test Set is shown in Fig. S1). As can be

seen, APPIA performs better than each individual method across

the entire range of ‘n’ first predictions. As such, APPIA has an

accuracy of 0.97 within the first 100 predictions, 0.69 within the

first 1000, 0.56 within the first 2000, 0.49 within the first 3000,

and so on.

When the comparison was done over a larger set of predicted

pairs (we selected the first 800 predictions, that is the total number

of predictions provided by the GF method, APPIA was 1.41 times

more accurate than the GC method, 3.80 times more accurate

than GF, 9.65 times more than PP, 32.38 times more than MT

Inferring Functional Relations
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and 47.67 times more accurate than I2H. The results obtained

with GC were the closest to APPIA and in fact, both methods

define almost the same landscape, although APPIA is 10 or 20

percentage points more accurate. The cause of this difference

seems to be the information added by the other individual

methods (GF, I2H, MT and PP) and additional attributes such as

protein length and size of protein family used in APPIA.

Moreover, we found that some individual methods are very

inaccurate (that is less than 10%), such as I2H, MT and PP. By

contrast, GC produced a much higher proportion of correct

predictions and indeed, GC was about 8 times more accurate than

PP (the best of the three poorest methods). GF provided very few

predictions due to its dependence on the occurrence of a particular

event (gene fusion). The relatively low frequency of gene fusion

events limits the ability of GF to predict most interactions.

It is important to notice, that our comprehensive definition of

functional associations is focused on the most informative types of

associations (see Methods). In our case, the main contributors are

co-regulation and metabolic pathways. Therefore, APPIA is

expected to be particularly useful for the prediction of these types

of associations. Consequently, the advantages of APPIA when

compared to other methods are expected to be more important for

these cases.

In conclusion, APPIA fusion of the various prediction methods

outperformed the individual computational methods by combin-

ing and complementing them with additional information such as

ranking attributes and biological characteristics (a detailed

comparison of features contribution is summarized in Table S1).

Application to a high throughput dataset
In order to show the potential of APPIA we have applied it to an

experimental dataset not included in our training and test sets. For

this purpose, we compiled the set of protein complexes detected by

Arifuzzaman et al. [24]. This data was collected by a high

throughput experimental approach based on pull-down technol-

ogy applied to E. coli proteins. It has been shown that high

throughput technologies, although valuable, often result in a large

number of false positives due to different methodological artifacts.

We have chosen this example because it includes a particularly

large number of protein associations that cannot be confirmed by

any other available data. Indeed, we found that only 7.85% of the

data could be confirmed with our comprehensive set of predictions

of functional associations (covering 0.64% of these ones). The

number of external confirmations is small (a common fact when

interaction sources are compared), even though our dataset

includes another set of protein complexes from a similar high

throughput pull down experiment (Butland et al. [18]).

We used APPIA to detect the subset of potentially biologically

meaningful interactions from this large-scale data set. We sorted

the set of protein pairs collected by Arifuzzaman using APPIA

score as a measure of the likelihood of a functional association, and

compared the level of confirmation for the ‘n’ best scoring pairs

Figure 1. Cost Curves for several machine learning algorithms. The X-axis represents the probability cost and the Y-axis the normalized
expected cost. Each cost curve corresponds to a different machine-learning algorithm. Looking at the legend from top to bottom, the algorithms are:
ADTree (Alternating Decision Tree); AODE and BayesNet, two Bayesian methods; Kstar, a case based reasoning algorithm; MLP, MultiLayer Perceptron,
a neural network; PART, a rules decision method; Random Forests, a combination of classification trees; and Naı̈ve Bayes. The last one is the trivial
classifier, without any algorithm assigned. See ‘‘Methods/Learning Algorithm’’ sub-section for the reference of each algorithm.
doi:10.1371/journal.pone.0009969.g001
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with the level obtained for the whole Arifuzzaman data set and for

those pairs predicted for the whole proteome (Fig. 4). The results

show clearly that the combination of information provided by

APPIA is able to extract a set of significant functional associations

from the noisy original data collection. For example, 68% of the

first 100 pairs and 42% of the first 1000 ones are confirmed in list

ranked with the AODE values. These figures are very significant

when compared to the original 8% confirmation for the whole set

of 7283 associations in the Arifuzzaman set. When comparing

‘‘filtered Arifuzzaman’s set’’ and AODE predictions, it is

important to note that the predictions for ‘‘filtered Arifuzzaman’s

set’’ are less reliable than those for whole proteome, because they

include different pairs. In fact, most of the reliable pairs for the

whole proteome were not retrieved by the Arifuzzaman’s

experiment and therefore they couldn’t be recovered by APPIA.

These results show the power of combining different data

sources and how easily the new predictor can be used to extract

valuable functional protein interactions from large-scale experi-

mental protein interaction datasets.

Comparison with the STRING database
STRING [2] is a database dedicated to the prediction of

functional associations between proteins for a set of fully

sequenced genomes. It contains an extensive compilation of data

ranging from imported external databases to in-house generated

predictions, including versions of some of the gene fusion, genome

context and phylogenetic profiles methods. STRING has its own

definition of a Gold Standard for functional associations based on

Figure 3. Methods accuracy for the Extended Test Set. The X-axis
represents the accumulative number of ‘n’ first predicted interactions,
sorted by the corresponding method score, which is different in each
case. The Y-axis represents the accuracy, calculated as the ratio of true
positives (TP) and total number of predictions considered in the
extended test set (all the predictions obtained for E. coli, but those used
in our training set). I2H stands for in silico two-hybrid, MT for mirrortree,
PP for phylogenetic profiles, GC stands for gene context, GF stands for
gene fusion and AODE for Averaged One Dependence Estimators.
doi:10.1371/journal.pone.0009969.g003

Figure 2. ROC curves for several machine learning algorithms. The X-axis represents the true positive rate and the Y-axis the false positive
rate. The legend should be interpreted as in figure 1, with the same order in the algorithms.
doi:10.1371/journal.pone.0009969.g002
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metabolic pathways [2]. This approach differs from the strategy

we adopted because it does not include regulatory relationships

between transcription factors and regulated genes, or between the

genes regulated by the same transcription factor. Even more

importantly, STRING takes advantage of the experimental

information available to predict metabolic-like functional associ-

ations, providing interesting additional experimental data for a

given relationship. By contrast, the predictions produced here are

more focused on associations for which there is not available

experimentally confirmation, which also implies that in principle

our predictions are applicable to any protein (within the E. coli

proteome here analyzed). Therefore, the coverage and the

capacity to discover unknown associations of APPIA should be

higher, while its capacity for detecting well-characterized protein

associations will be necessarily lower.

In order to test these ideas, we used APPIA to extract those

STRING entries with higher scores from a set of 240,885 protein

pairs above the minimal STRING confidence value of 0.15. In

order to obtain a view of the ability of both approaches for

detecting unknown functional associations all the experimentally

validated pairs were removed. We compare the STRING and

APPIA scores for the set of 121,042 associations present in both

datasets, representing 50.25% of the ones in STRING (Fig. 5).

The results obtained clearly show that both definitions of

functional links only partially overlap and that APPIA can

complement STRING predictions with a more comprehensive

definition of functional association between protein pairs.

EcID server
Results from each of the five prediction methods and from their

combination in APPIA are integrated in the EcID server (E. coli

Interaction Database, [25]), thereby allowing the user to retrieve

and navigate easily among the network of functional protein

interactions.

EcID supports two basic network navigation modes: the

‘Experimental Mode’ focused on retrieving experimentally

supported associations (similar to STRING approach) and the

‘Prediction Mode’ focused on providing predictions for less well-

characterized proteins. The APPIA scores presented here are used

to generate a prediction confidence criteria for the functional

associations displayed in the ‘Prediction Mode’. This allows the

system to provide a valuable set of putative protein relationships

for otherwise poorly characterized proteins. Moreover, it fulfils our

original purpose of gaining further insight into less well-

characterized proteins rather than simply ranking well-known

protein associations. The experimental server is freely accessible at

http://ecid.bioinfo.cnio.es/.

Discussion

We have presented here a new classifier to predict functional

protein associations based on the AODE algorithm. We

considered the AODE and BayesNet classification algorithms as

the best candidates to address our problem, the prediction of

protein functional interactions by combining results of five

heterogeneous prediction methods, protein size and number of

orthologues of each one of the two proteins. We additionally

include as input information the ranking position of the potential

interactor in the sorted list of scores of each one of the five

methods. These algorithms are particularly suitable for problems

containing missing data, as is the case here where it is not always

possible to obtain predictions with the five methods for the same

protein pairs. AODE and BayesNet have a better capacity to infer

the states of unknown variables using prior probabilities and

existing evidence. This is an important feature for a classifier

thought to be part of a periodically updated pipeline, as is the case

of protein/gene databases. Additionally, AODE provides quanti-

tative probability estimates that can be used as a measure of

reliability associated to each predicted pair.

This classifier based on the AODE algorithm (APPIA) takes

advantage of other computational methods based on the detection

of different evolutionary signals. All the methods and information

used as the input for the classifier are derived from the analyses of

information provided by genomic sequencing experiments. There-

fore, APPIA is intended to provide insights into poorly characterized

functional associations, rather than highlighting well-known ones.

In this sense, our approach differs from other popular and successful

approaches, like STRING, because it is independent of the

experimental information available for a considered protein pair.

Figure 4. Accuracy of APPIA for the Arifuzzaman experimental
set. The X and Y-axis should be interpreted as in figure 3. The filtered
set (green line) is obtained sorting the protein pairs in the external
database, i.e. the Arifuzzaman set, according the AODE score. Accuracy
of the Arifuzzaman set is represented by its mean value (a blue point).
This dataset cannot be sorted because there is no associated score.
doi:10.1371/journal.pone.0009969.g004

Figure 5. Comparison of APPIA and STRING accuracies on the
STRING prediction set. The X and Y-axis should be interpreted as in
figures 3 and 4. The filtered set (green line) is obtained sorting the
protein pairs in the external database, i.e. STRING, according the AODE
score. The STRING line (the blue one) is calculated sorting the data
according the STRING score, i.e. the external database score.
doi:10.1371/journal.pone.0009969.g005
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We focused on E. coli since it is well characterized at the

molecular level, with functions experimentally assigned to

approximately 57% of its genes (GenProtEC, February 2007)

and with homology-based assignments for an additional 25%. In

addition, bacteria are a good workbench due to the quantity of

genomes available and the relatively simple architecture of their

proteins, both factors that fundamentally boost the quantity and

quality of the predictions obtained by genome-based prediction

methods. Moreover, at least one of the methods (genomic context)

relies on the principle of genome organization that can only be

strictly applied to bacterial genomes (conservation of genomic

intergene proximity).

We showed that a recently proposed machine-learning

algorithm AODE is well suited to detect and rank functional

protein associations being particularly valuable for scenarios

characterized by a large proportion of missing values. Additionally

AODE can be easily and efficiently re-trained, making it a suitable

technique for its incorporation into periodically updated resources.

In order to assess the performance of this algorithm, we show

the results of the preparatory comparative analysis carried out with

alternative machine learning algorithms. To benchmark the

predictions obtained by different computational methods we used

both ‘‘Cost Curves’’ and ROC analyses. The results of these

analyses in a training-independent test set confirmed the suitability

of AODE to address this type of problem. Indeed, the AODE-

based classifier clearly outperforms all the alternative algorithms

evaluated in this test, except the BayesNet classifier that obtains

just slightly worse results.

We show that the AODE-based classifier outperforms the

original individual methods that it incorporates and that it can be

effectively combined with other data sources (experimental or

computational) to improve their results. Particularly noteworthy is

the combination of our classifier with the results of a previously

published large-scale pull down experiment, from which we are

able to score the original experimental data according to their

functional significance. This result highlights the value of this kind

of approach to remove the considerable number of false positives

that is still one of the main drawbacks of high-throughput

experimental approaches.

In conclusion, our results show that improvement in the

prediction of the functional association between proteins can be

produced by the integration of computational methods. Further-

more, they emphasize that integrative approaches can be useful to

gain insights into proteome characterization by selectively

detecting and scoring reliable subsets of functional protein

interactions.

Materials and Methods

There are several difficulties in building a predictor of

functional protein interactions due to the implicit nature of the

biological data. These difficulties include the intrinsic uncertainty

in the data, the extreme imbalance between the number of positive

and negative instances (less than 1% of positive class) and the large

percentage of values that are missing in relation to several features

(99.99% of the instances have at least one attribute without an

assigned value, see Table S2).

Input Data Representation
Each instance (or protein pair) is represented by 19 numerical

attributes derived from various sources. We can distinguish three

groups of attributes: i) the scores from each of the 5 methods to

predict protein interactions (see below); ii) the protein-centred

predictions rank for the protein pair, calculated as the position of

the protein pair in the sorted list of predictions from each method

for each of the two proteins (see below); and iii) 2 pairs of protein

features that are highly related to the performance of these

methods, the sequence length and the number of orthologues

detected for each protein in the pair (see below). In all cases, the

values missing for any of the 19 attributes were considered as

‘undetermined’ values and they were not replaced with flags

because in our situation the absence of information cannot be

considered as usable information. Although using flags provides

similar results (see Table S1) we prefer the alternative implemen-

tation that has a slightly better positive recovering rate and handles

missing data directly.

Computational prediction methods. The computational

prediction methods used are based on different sources of evidence

suggesting an interaction between a pair of proteins (Valencia and

Pazos, 2002). The inputs for the classifier presented here includes

the scores for each of the following 5 prediction methods:

(1) Phylogenetic Profiles (PP), a method to examine the presence

or absence of genes in related species [3]. The score used was

calculated according to the original publication. It is based on

the Hamming distance of the vectors presence or absence of

an ortholog for every E. coli protein in each of the compiled

genomes.

(2) Gene Context (GC) considers the conservation of the gene

neighborhoods in different species [4]. The score was

calculated as the number of cases in which the orthologues

of the gene pair of E. coli were at a genomic distance of closer

than 300 bp in the corresponding chromosome, according to

the original publication.

(3) Gene Fusion (GF) searches for non-overlapping similarity

matches within the same protein of pairs of proteins [5–6]. In

this case we use the z-scores collected from http://cgg.ebi.ac.

uk/services/allfuse/.

(4) Mirror Tree (MT) studies the similarity of phylogenetic trees

[11] and the MT score involves the Pearson’s correlation

coefficient of the all versus all orthologues sequence distance

matrices for the pair of proteins studied.

(5) In silico Two-Hybrid (I2H) quantifies the degree of co-

variation between pairs of residues in the two proteins [10],

and it was implemented in accordance with the original

publication.

All the methods (except GF that came from an external source)

were applied to a set of 118 complete prokaryotic genomes (see

Table S3). For the in-house methods, only reciprocal best BLAST

[26] hits between E. coli and the corresponding genome were

selected as putative orthologues (both e-values were required to be

smaller than 1E-5).

I2H and MT require pairs of multiple sequence alignments for

their application. We generated the corresponding multiple

sequence alignment for each set of orthologues with more than

15 sequences using MUSCLE [27]. Thus, we built 2183

alignments, each containing the orthologous sequences detected

for a different E. coli protein.

It is important to note that all the methods are used in their

original formats. We preferred to keep these simpler formats and

to enrich the input with the related attributes. This way, the

training algorithm itself can be optimized for these characteristics.

Protein-centered ranks of predictions. Several of the

methods are expected to have some protein-related biases (e.g.

some phylogenetic profiles are more usual and, therefore, PP over

predicts associations among the corresponding proteins), while

each input pair is considered to be independent of any other in our

Inferring Functional Relations
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algorithms. To cope with this situation, we calculated the ranking

position of the corresponding protein pair in the sorted prediction

lists for each of the two proteins in every method. Thus, for each

protein we introduced the values of the smallest and the highest

ranking of the pair in the five prediction methods (i.e. 10

additional attributes). These methods provide a large number of

low scoring results. Therefore we also removed the entries where

none of the 10 rankings were less than or equal to 100, only for PP,

MT and I2H rankings. This step reduces the noise coming from

uninformative pairs that would never be predicted by the input

methods

Protein features. Finally, we included 4 attributes that

represent two very basic protein features that are intrinsically

related with the performance of one or more of the prediction

methods. These features are the number of orthologues detected

and the sequence length for each protein in the pair.

Building the various datasets
A particularly controversial issue when making predictions of

protein interaction is the definition of a functional association. In

our case, we have chosen an inclusive definition of functional

association that is consistent with the different prediction methods

included. While some of these methods are expected to focus on

physical interactions (GF, I2H or MT), others are better suited to

predict biochemical pathways (GC) or they have a less well-defined

scope (PP). Indeed, our definitions of positive and negative classes

are an expansion of the datasets used in our recently proposed new

protein interaction method [25]. These datasets have been

completed with functional information not necessarily related to

physical protein interactions, such as regulatory information (see

below).

Positive class. The set of functional associations for E. coli

proteins was extracted from several external databases (see below)

and this set tries to capture the complex nature of the domain. It

contains 89,401 different protein pairs (homodimers were not

considered) from the following sources:

(1) Proteins involved in the same biochemical pathway. These

functional associations are extracted from the KEGG14 [28]

and EcoCyc15 [29] databases. We considered all the proteins

assigned to the same pathway to be functionally associated by

pairs, even though this does not necessarily imply a direct

physical interaction between them. We obtained 20,860

associations from KEGG and 3,446 from EcoCyc.

(2) Regulator-regulated gene associations. We extracted the

transcription regulatory data contained in EcoCyc and

established functional links between each transcriptional

regulator and its corresponding regulated genes. This set

contains 1,686 relationships.

(3) Set of co-regulated genes. Based on the same type of

information as the previous set, we established 58,275

functional associations among those proteins that are

regulated by the same regulator.

(4) Interactions directly extracted from the literature using text-

mining techniques. For this set we use the set of protein name

interactions obtained from iHOP for E. coli proteins [30].

These interactions are defined as the mention of proteins in

the same sentence of PubMed abstracts. In this way, we

retrieved 6,686 text mining-based interactions.

(5) Set of physical interactions derived from low-throughput

experiments. We used collections of 401, 58 and 2684 physical

interactions for E. coli proteins annotated in: DIP ([31],

http://dip.doe-mbi.ucla.edu/); BIND ([32], http://www.

bind.ca/Action); and IntAct ([33], http://www.ebi.ac.uk/

intact/), respectively.

(6) Collection of protein complexes extracted from EcoCyc.

These complexes are based on manual curation of the

scientific literature and they represent a high quality set of

very well known complexes. We established a functional link

for each pair of proteins that are part of the same complex.

This resulted in a set containing 950 protein associations.

(7) Protein complexes extracted from Butland et al. [18]. This

high throughput pull-down experiment provides information

similar to the set of complexes from EcoCyc (although less

reliable). This set includes 4,745 associations and it is expected

to have greater sensitivity and lower specificity than the

previous one.

This definition of positives is intended to be a comprehensive

representation of the functional associations among proteins. As a

consequence of the different amount of information available for

each type of functional associations, both training and test analyses

are going to be more informative about the predictive capabilities

of different methods for the main contributors to this set of

positives, i.e. co-regulated genes and metabolic associations.

Negative class. We generated the negative set from the non-

positive pairs among the proteins contained in the positive set

(homodimers were not considered). Thus, we tried to reduce the

uncertainty in the negative information by considering only

proteins with information available regarding protein function.

From the remaining pairs, we removed those pairs for which the

prediction methods generated no value, because they are

uninformative for our classifier. This process yielded 2,575,779

negative protein pairs. It is important to note that this set may still

contain some uncharacterized functional associations.

Datasets. Building training and test sets must deal with the

problem of the imbalance between classes (the negative class

initially constitutes over 99% of all the instances). Thus, the

training and test datasets were built using 20% positive and 80%

negative instances as a compromise between representing the

underlying distribution and providing a more balanced detail of

both classes without affecting classification performance.

The training set was composed of 2/3rds of the positive

instances (making up the 20% explained above), while the test set

included the remaining 1/3 of the positive protein pairs. The

training and test sets were completed with some of the instances

from the negative class and these were exactly 4 times the number

of positive instances, to reach 80% of negative instances in each set

as indicated previously. Hence, all the positive instances available

were employed in the training or test set. By contrast, many

negative instances were discarded. Hence, according to the

aforementioned criteria, the test set was half the size of the

corresponding training set.

Learning Algorithms
We use AODE algorithm for the classification [17]. AODE

achieves classification by averaging over all of a small space of

alternative Naı̈ve-Bayes-like models that have weaker indepen-

dence assumptions than NB [22]. This modification is intended to

avoid bias with a very small increase in variance. Resulting

algorithm relaxes the attribute independence assumption increas-

ing prediction accuracy and maintaining computational efficiency.

AODE is inspired by the notion of n-dependence estimators

[34]. An ‘n’-dependence estimator is similar to NB except that

each attribute depends upon at most ‘n’ other attributes, in

addition to the class. NB is a zero-dependence estimator, unlike

the well-known TAN, which is a one-dependence estimator [20].
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Higher-dependence estimators typically have a weaker bias but

a higher variance than NB. AODE avoids training time

computation and reduces variance by overall averaging of a

limited class of one-dependence estimators, since the more

effective ones also typically have a very high computational

complexity for training time [17] (for a more detailed description

of AODE, see Text S1). AODE demands nominal attributes and

therefore, discretization was performed using the ‘‘equal frequency

binning’’ criterion, with a minimum of 50 instances per band. This

criterion was chosen because it presents the best empirical results

against other possibilities, such as ‘‘equal width binning’’ (data not

shown).

AODE handles missing values by using only the known values

of each instance when it calculates the product of probabilities.

This idea is suitable for our domain, because it neither fills in

unknown attribute values with the mean (or median value), nor

does it ignore the instance completely like some other algorithms.

Filling missing values with the mean or majority value (as

BayesNet [20–21] and Naı̈ve Bayes do [22]) does not reflect the

semantics in our data, as features with a missing value might imply

they do not exist. Likewise, ignoring missing attribute values would

not be viable in our domain either, as almost all the instances have

some missing value (only 82 complete instances among 2,665,180).

This is due to the fact that the computational methods only give a

result in constrained conditions, so as to reach a minimum number

of orthologues in the proteins or to trigger an event (see methods

descriptions [35]).

For comparison, the preparatory phase test performed using

several machine learning methods has been included. The

algorithms included are: decision trees (in its new version ADTree

[36]); case based reasoning (Kstar [37]); neural networks

(MultiLayer Perceptron, MLP [38–39]); rules decision (PART

[40]); random forests [23], whose efficiency is proved in other

similar domains [15]; and another Bayesian method (BayesNet

[20–21]).

Besides AODE, BayesNet is a relevant algorithm in this study.

BayesNet refers to Bayesian Network [20]. The architecture and

implementation used here are the weka’s default ones [21]. This

algorithm implies the learning of the network structure and the

learning of the probability tables. A hill climbing learning

algorithm called K2 [41] is used to infer the network structure.

This algorithm adds arcs with a fixed ordering of variables.

Assessment of the quality of the learned network is done using a

Bayesian metric [21]. Direct estimates of the conditional

probability distribution tables of the Bayes network are done with

a simple estimator [21]. There is a modification in the default

configuration, referred to the maximum number of parents a node

can have in the net structure, fixing it to 2. Thus, a Tree

Augmented Bayes Network (TAN) is learned.

We used Weka’s implementation [42] for all the machine

learning algorithms applied here.

Assessment Method
In order to assess the performance of the different classifiers we

used Cost Curves (Curve Tool [19]) that were generated from the

results obtained with each classifier for the test set described below

(see Figure 1).

A Cost Curve analysis is a graphical technique used to visualize

the performance (error rate or expected cost) of binary classifiers

over the full range of possible class distributions and misclassifi-

cation costs. In a simpler interpretation, Cost Curve plots

represent the cost probability, equivalent [19] to the percentage

of positive instances in the data set to which the classifier is

applied, versus the normalized expected cost, equivalent to the

ratio of the mistakes both in terms of false positives as well as false

negatives. This interpretation assumes that the cost of misclassi-

fying positive examples (i.e. FN) is the same as the cost of

misclassifying negative examples (i.e. FP) [19]. When the cost of

misclassifying is different, the X-axis does not only represent the

fraction of positive instances, but the product of the cost of

misclassifying and the probability of an instance being from the

positive class. Y-axis indicates the fraction of the difference

between the maximum and the minimum possible costs that will

be incurred when the classifier is used [19]. Thus, Y-axis shows the

normalized expected cost for the cost scenario and class

distribution show by the value in the X-axis. On the left hand

side of the plot the curves measure the increasing ratio of false

positives (FP), while on the right hand side it shows the decreasing

ratio of true positives (TP).

Accordingly, the corresponding cost curve of a classifier is made

up of different straight lines, with the extremes at both sides of the

Y-axis and corresponding to several pairs ,ratio FP, ratio TP.

obtained for the different classification thresholds. The line

segments that are not dominated by any other (i.e., the lowest

ones) make up the whole cost curve.

This representation usually contains the curve corresponding to

the trivial classifier (red line in Figure 1), which always assigns the

same class to any instance as if it were a random classification. In

these graphs the best classifier is that with the lower curve (lower

cost) and the Cost Curves for useful classifiers should always be

below the trivial classifier curve, in order to be a good classifier for

whatever distribution between positive and negative instance class

in the dataset. Accordingly, the points in a curve that intersects the

trivial classifier (if they exist) determine the range of the X-axis for

which it is not suitable to use such a classifier since simple random

chance performs better. As a generic rule, a valid curve has

probability cost values lower than 0.3 (in Y-axis).

The major advantage of Cost Curves over ROCs is that they

allow a direct read out of the performance for any specific

combination of misclassification and class distribution. At the same

time, they show directly how performance changes across the full

range of values.

The correspondence between these two graphical techniques is

that one point of the former corresponds to one line in the latter.

The co-ordinates of a point in the ROC are the left hand and right

hand extremes in the Y-axis of the cost curve. Each line in a cost

curve consists of many classifiers that come from two variables:

different thresholds and different numbers of positive instances in

the data set. As in the ROC curve, the threshold of Cost Curves

determines the cut-off between the positive and negative class.

However, Cost Curves show more detailed information about

performance than the ROC curve with respect to class

distribution, because it only has one point and not a line to

represent the performance according to the different positive and

negative class distributions.

Another positive characteristic of the cost curves is that they

allow various classifiers to be readily compared. These classifiers

could be generated by applying assorted machine learning

algorithms or from different training and/or test sets. Thus, in

Cost Curves the error difference between a pair of classifiers can

be automatically measured through the vertical distance, which is

not so easy in ROC curve [19].

In summary, a Cost Curve is equivalent to a ROC in their

information content and they can be inter-converted. In this case

Cost Curves are used because they are easier to interpret in

meaningful units and they facilitate the selection of the best classifier

by simple visualization under certain conditions, for example, for

the cost of misclassification and probability of a specific class.
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Supporting Information

Figure S1 Methods accuracy for the Test Set. The X-axis

represents the accumulative number of ‘n’ first predicted

interactions, sorted by the corresponding method score, which is

different in each case. The Y-axis represents the accuracy,

calculated as the ratio of true positives (TP) and total number of

predictions considered in the test set extracted from our gold

standard of functional associations (see Methods). I2H stands for in

silico two-hybrid, MT for mirrortree, PP for phylogenetic profiles,

GC stands for gene context, GF stands for gene fusion and AODE

for Averaged One Dependence Estimators.

Found at: doi:10.1371/journal.pone.0009969.s001 (0.15 MB

TIF)

Table S1 Performance of different classifiers for the Test Set.

This table shows performance related descriptors for a number of

different classifiers. The descriptors included are: Area Under the

ROC Curve (AUC), Mathews Correlation Coefficient (MCC,

formula shown below), True Positives (TP), True Negatives (TN),

False Positives (FP) and False Negatives (FN). The table is divided

in three regimes. The first one (yellow background) represents the

incremental inclusion of features in AODE classifiers. New

features are included from the most to the least discriminative

(MCC score for these features) ones: Methods (Gene Fusion, Gene

Context, Phylogenetic Profiles, Mirror Tree and in silico two-

hybrid), Length (protein sequence lengths) and Nseqs (number of

sequences). Rankings in the list of scores for each method are

finally included (as they are derived from the corresponding

methods) to build the presented APPIA classifier. The second

regime (white background) shows the performance for the AODE

using all the features and with flags instead of missing values.

Finally, the third regime (green background) shows the perfor-

mance of the other seven different classifying algorithms used

in the preliminary test. MCC = (TP6TN2FP6FN)/SQRT((TP +
FN)6(TP + FP)6(TN + FP)6(TN + FN)).

Found at: doi:10.1371/journal.pone.0009969.s002 (0.02 MB

PDF)

Table S2 Attributes statistics. This table shows some statistical

measures of each attribute used in the classification process. The

range of the column values represents the minimum and

maximum value reached for this attribute in all the examples. In

each case, the mean and the standard deviation are calculated

without taking into account the instances with an unknown value.

Total number of instances: 2,665,180. It should be noted that the

high percentage of unknown values is important in many

attributes.

Found at: doi:10.1371/journal.pone.0009969.s003 (0.06 MB

PDF)

Table S3 List of fully sequenced genomes used. This is the set of

118 prokaryotic genomes to which the computational prediction

method has been applied.

Found at: doi:10.1371/journal.pone.0009969.s004 (0.04 MB

PDF)

Text S1 AODE detailed description. A detailed description of

the AODE algorithm.

Found at: doi:10.1371/journal.pone.0009969.s005 (0.07 MB

PDF)
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