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Abstract. p-catenin/CTNNBI is an intracellular scaf-
fold protein that interacts with adhesion molecules
(E-cadherin/CDH1, N-cadherin/CDH?2, VE-cadherin/CDH5
and oa-catenins), transmembrane-type mucins (MUC1/CD227
and MUCI16/CA125),signalingregulators (APC,AXIN1,AXIN2
and NHERF1/EBP50) and epigenetic or transcriptional regula-
tors (BCL9, BCLIL, CREBBP/CBP, EP300/p300, FOXMI,
MEDI12, SMARCA4/BRGI1 and TCF/LEF). Gain-of-function
CTTNBI mutations are detected in bladder cancer, colorectal
cancer, gastric cancer, liver cancer, lung cancer, pancreatic
cancer, prostate cancer and uterine cancer, whereas loss-of-func-
tion CTNNBI mutations are also detected in human cancer.
ABCBI, ALDHIAI, ASCL2, ATF3, AXIN2, BAMBI, CCNDI,
CD44, CLDNI, CTLA4, DKKI, EDNI, EOMES, FGFIS,
FGF20, FZD7, IL10, JAGI, LEF1, LGRS, MITF, MSX1, MYC,
NEURODI, NKDI, NODAL, NOTCH2, NOTUM, NRCAM,
OPN, PAX3,PPARD,PTGS2,RNF43,SNAIl,SP5, TCF7,TERT,
TNFRSF19, VEGFA and ZNRF3 are representative 3-catenin
target genes. [3-catenin signaling is involved in myofibroblast
activation and subsequent pulmonary fibrosis, in addition to
other types of fibrosis. f-catenin and NF-kB signaling activation
are involved in field cancerization in the stomach associated with
Helicobacter pylori (H. pylori) infection and in the liver associ-
ated with hepatitis C virus (HCV) infection and other etiologies.
[-catenin-targeted therapeutics are functionally classified into
[-catenin inhibitors targeting upstream regulators (AZ1366,
ETC-159, GO07-LK, GNF6231, ipafricept, NVP-TNKS656,
rosmantuzumab, vantictumab, WNT-C59, WNT974 and
XAV939), B-catenin inhibitors targeting protein-protein inter-
actions (CGP049090, CWP232228, E7386, ICG-001, LF3
and PRI-724), B-catenin inhibitors targeting epigenetic regula-
tors (PKF118-310), f-catenin inhibitors targeting mediator
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complexes (CCT251545 and cortistatin A) and -catenin inhibi-
tors targeting transmembrane-type transcriptional outputs,
including CD44v6, FZD7 and LGRS5. Eradicating H. pylori
and HCV is the optimal approach for the first-line prevention
of gastric cancer and hepatocellular carcinoma (HCC), respec-
tively. However, -catenin inhibitors may be applicable for the
prevention of organ fibrosis, second-line HCC prevention and
treating -catenin-driven cancer. The multi-layered prevention
and treatment strategy of B-catenin-related human diseases is
necessary for the practice of personalized medicine and imple-
mentation of precision medicine.
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1. Introduction

The CTNNBI gene encodes the intracellular scaffold protein
B-catenin (1), which interacts with adhesion molecules
(E-cadherin/CDH1, N-cadherin/CDH2, VE-cadherin/CDH5
and a-catenins) (2,3), transmembrane mucins (MUC1/CD227
and MUC16/CA125) (4,5), cytoplasmic signaling regulators
(APC, AXIN1, AXIN2, BTRC/BTRCP1, BTRC2/gTRCP2
and NHERF1/EBP50) (6,7), and nuclear transcriptional
regulators (BCL9, BCLOL, CREBBP/CBP, EP300/p300,
FOXM1, LEF1/TCF7L3, MED12, SMARCA4/BRG1, SPDEF,
TCF7/TCF-1, TCF7L1/TCF-3 and TCF7L2/TCF-4) (8-10).
Based on protein-protein interactions (PPIs), f-catenin
is involved in cell-cell adhesion, cellular signaling and
transcriptional regulation (Fig. 1A).
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[-catenin undergoes post-translational modifications,
including acetylation, glycosylation, methylation, phos-
phorylation and ubiquitylation. Oncogenic tyrosine kinases
phosphorylate B-catenin at Y654 to release B-catenin from
cadherin complexes, whereas canonical WNT signals prevent
the phosphorylation of -catenin at S33, S37, T41 and S45 to
release B-catenin from ubiquitylation-mediated degradation (1).
The B-TRCP complex is involved in the poly-ubiquitylation of
S33/S37/T41/S45-phosphorylated B-catenin and subsequent
proteasome-mediated degradation (9,11), whereas USP7
is involved in the de-ubiquitylation and stabilization of
[-catenin (12). Stabilized B-catenin is translocated into the
nucleus to activate the transcription of TCF/LEF target genes
(Fig. 1B). The acetylation of f3-catenin at K49 leads to tran-
scriptional activation, whereas the methylation of B-catenin at
K49 leads to transcriptional repression (13,14). The functions
of B-catenin are regulated by its localization, PPIs and stability
based on post-translational modifications.

Representative P-catenin target genes (Fig. 1C) include
ABCBI, ALDHIAI, ASCL2, ATF3, AXIN2, BAMBI, CCNDI
(Cyclin D1), CD44, Claudin-1 (CLDNI1), CTLA4, DKKI,
EDNI, EOMES, FGFI18, FGF20, FZD7, GBX1, ILI0 (IL-10),
Jagged-1 (JAGI), LEFI, LGRS, MITF, MSX1, MYC (c-Myc),
NEURODI, NKDI1, NODAL, NOTCH2, NOTUM, NRCAM,
osteopontin (OPN), PAX3, PPARD, PTGS2 (COX2), RNF43,
SNAII (Snail), SP5, TCF7, TERT, TNFRSF19 (Troy), VEGFA
(VEGF) and ZNRF3 (1,15-28). CTTTGATAT is the consensus
DNA-binding motif of TCF-3, whereas CTCGCGAGA is the
major DNA-binding motif of TCF-1 (29). By contrast, lysine
acetyltransferases CBP and p300 are reported to differentially
regulate [3-catenin-dependent transcriptional programs in stem
cells to propel them towards self-renewal and differentiation,
respectively (30). B-catenin target genes are upregulated in a
cell context-dependent manner based on the epigenetic status
of their regulatory regions and availability of transcriptional
regulators (1).

Inflammation is an immune response to repair tissue
damage caused by infectious agents, environmental stimuli
and endogenous irritants. The failure to resolve acute inflam-
mation leads to chronic inflammation characterized by the
continuous activation of macrophages and lymphocytes in
the inflamed tissue microenvironment and elevated levels
of the pro-inflammatory cytokines IL-1f, IL-6, IL-17 and
TNF-a (31,32). Chronic persistent inflammation then leads to
the collapse of homeostatic interactions among epithelial cells,
stromal cells and immune cells in the tissue microenvironment,
which causes organ fibrosis through the myofibroblast-like
transition of tissue-resident fibroblasts, stellate cells or bone
marrow-derived fibrocytes, and the subsequent deposition of
extracellular matrix (ECM) components, including collagen,
fibronectin and hyaluronan (Fig. 2A).

[-catenin signaling dysregulation is involved in chronic
inflammation, organ fibrosis, and various types of human
cancer (1,33). However, B-catenin-targeted therapy is not yet
approved for the treatment of patients with 3-catenin-related
diseases. As P-catenin is an intracellular protein without
intrinsic enzymatic activity, it is difficult to target [3-catenin for
drug development. In this review, gain- and loss-of-function
[(-catenin alterations in human cancer types are summa-
rized, and the pathophysiology of -catenin-related chronic
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inflammation and/or organ fibrosis are presented with emphases
on carcinogenesis in the stomach, liver and lungs. Finally, the
development of B-catenin inhibitors targeting its upstream
regulators, PPIs and downstream effectors are reviewed.

2. Gain- and loss-of-function f-catenin alterations in
human cancer

p-catenin-dependent transcription is aberrantly activated
in human cancer due to gain-of-function mutations in the
CTNNBI gene itself, in addition to genetic alterations in
the APC, AXIN2, RNF43 and RSPO3 genes involved in the
canonical WNT/B-catenin signaling cascade, upregulation
of canonical WNT ligands in the tumor microenvironment,
or Y654 phosphorylation of (3-catenin by oncogenic tyrosine
kinases, including BCR-ABLI fusion, FLT3-ITD mutation
and overexpression of MET (34).

Missense mutations at or in-frame deletions around S33,
S37, T41 and S45 in B-catenin give rise to gain-of-function
[-catenin mutants that are resistant to ubiquitylation-mediated
proteasomal degradation and induce the upregulation of
oncogenic target genes, including CCNDI and MYC, in
adrenocortical tumors, bladder cancer, colorectal cancer,
gastric cancer, liver cancer, lung cancer, pancreatic cancer,
prostate cancer and uterine cancer (35-40). Aberrant
[-catenin-dependent transcriptional activation drives human
carcinogenesis through the induction of cancer stem cell (CSC)
features, bulk tumor proliferation and the epithelial-to-mesen-
chymal transition (EMT) in the solid tumors mentioned above.

By contrast, nonsense or frame-shift mutations in 3-catenin,
including R95*, K335fs, R449fs, E458fs, R474*, R535%, ES71*
and E642fs, also occur in human cancer, including gastric
cancer and head and neck squamous cell carcinoma (37,41-43).
In melanoma, decreased B-catenin not only promotes inva-
sion and metastasis through disrupted cell-cell adhesion but
also resistance to targeted therapy through MITF/APE1 axis
repression (44.45). Ctnnbl haploinsufficiency has been shown
to promote aggressiveness and metastasis in a mouse model
of HER2-positive basal breast cancer (46). 3-catenin exerts
not only oncogenic but also tumor-suppressor functions in a
context-dependent manner.

[-catenin mutations are classified as i) gain-of-function
mutations clustered at or around S33, S37, T41 and S45,
ii) loss-of-function mutations due to nonsense or frame-shift
mutations and iii) other mutations to be further characterized.
In addition to these coding mutations, copy number gain (47)
and regulatory mutations in the proximal promoter region (48)
of the CTNNBI gene encoding B-catenin have been reported
in prostate cancer and breast cancer, respectively. Owing to the
pro- and anti-oncogenic roles of -catenin, integrative omics
analyses, including whole-genome sequencing, transcriptome
and immunohistochemical analyses, are necessary to precisely
prescribe B-catenin-targeted therapeutics in personalized or
precision medicine in the future.

3. Activation of f-catenin in chronic gastritis and gastric
cancer associated with Helicobacter pylori infection

Helicobacter pylori (H. pylori) is a Gram-negative, helical
rod-shaped microaerophilic bacterium that specifically
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CCND1 Cyclin D1 (G1 Cyclin)
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DKK1 WNT antagonist Dickkopf-1
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PAX3 Homeobox transcription factor
PPARD Muclear receptor PPAR-3
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Figure 1. Overview of -catenin functions at a glance. (A) Protein-protein interactions of 3-catenin. $-catenin is a scaffold protein that interacts with adhesion
molecules (E-cadherin, N-cadherin and VE-cadherin), transmembrane-type mucins (MUC1 and MUC16), signaling regulators (APC, AXIN1, AXIN2 and
NHERF1) and epigenetic or transcriptional regulators (BCL9, BCLOL, CREBBP, EP300, FOXM1, LEF1, MEDI12, SMARCA4, TCF7, TCF7L1 and TCF7L2).
B-catenin is involved in cell adhesion, intracellular signaling and transcription. The functions of -catenin are regulated by its localization, protein-protein
interactions and stability based on post-translational modifications. (B) B-catenin signaling into the nucleus. Canonical WNT signals prevent (3-catenin
phosphorylation at S33, S37, T41 and S45 to release $-catenin from ubiquitylation-mediated degradation, whereas oncogenic tyrosine kinases phosphory-
late B-catenin at Y654 to release 3-catenin from cadherin complexes. Stabilized [-catenin is translocated into the nucleus to activate the transcription of
TCF/LEF-target genes and transcription dependent on other transcription factors in a cellular context-dependent manner based on epigenetic states and the
availability of transcriptional regulators at the regulatory regions of target genes. (C) Transcriptional targets of -catenin. ABCBI, ALDHIAI, ASCL2, ATF3,
AXIN2, BAMBI, CCNDI, CD44, CLDNI, CTLA4, DKKI, EDNI1, EOMES, FGFI8, FGF20, FZD7, GBX1, IL10, JAGI, LEF1, LGR5, MITF, MSX1, MYC,
NEURODI, NKDI, NODAL, NOTCH2, NOTUM, NRCAM, OPN, PAX3, PPARD, PTGS2, RNF43, SNAILl, SP5, TCF7, TERT, TNFRSF19, VEGFA and ZNRF3
are representative (3-catenin target genes. -catenin target genes encoding transmembrane proteins, including CD44v6, FZD7 and LGRS, are shown in red.
Transmembrane proteins upregulated by the 3-catenin signaling are rational targets of antibody-based drugs, including monoclonal antibodies, antibody-drug
conjugates, bi-specific antibodies and chimeric antigen receptor-modified T cells.
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Figure 2. Precision medicine of chronic inflammation, organ fibrosis and cancer associated with aberrant (3-catenin signaling activation. (A) Chronic persistent
inflammation and fibrosis. The failure to resolve acute inflammation leads to chronic inflammation, organ remodeling and fibrosis with the subsequent deposi-
tion of extracellular matrix. -catenin is involved in the activation of myofibroblast-like cells during organ remodeling and fibrosis. (B) Field cancerization
in the stomach associated with H. pylori infection. Decades of persistent H. pylori infection lead to the sequential progression of chronic gastritis, atrophic
gastritis, intestinal metaplasia and gastric cancer. During chronic active gastritis, H. pylori injects CagA into epithelial cells to activate MET and p-catenin
signaling to promote epithelial proliferation. In a subset of human gastric cancer, the canonical WNT/B-catenin signaling cascade is aberrantly activated due
to gain-of-function mutations in the CTNNBI gene or loss-of-function mutations in the APC or RNF43 gene. 3-catenin is involved in H. pylori-related chronic
active gastritis and gastric cancer. (C) Multi-layered prevention and treatment of (3-catenin-related human diseases. Vaccines are available for the prevention
of cancer-associated infections with HBV and H. pylori. The eradication of HCV and H. pylori is an optimal first-line prevention of field cancerization in the
liver and stomach, respectively. Investigational 3-catenin inhibitors are expected to be applicable for organ fibrosis prevention, second-line HCC prevention
and treating 3-catenin-driven cancer. The multi-layered prevention and treatment strategy of (3-catenin-related human diseases is realistic for the practice of
personalized medicine at present and necessary for the implementation of precision medicine in the future. H. pylori, Helicobacter pylori; HBV, hepatitis B
virus; HCV, hepatitis C virus; RTK, receptor tyrosine kinase; IC, immune checkpoint; mAb, monoclonal antibody.

colonizes the human stomach through interactions between
bacterial BabA and HopQ adhesins to host ABO blood
antigens and CEACAM, respectively (49,50). H. pylori
secretes urease for ammonia production from urea to survive
in an microenvironment of high acidity, and they deliver
CagA, VacA, y-glutamyl transpeptidase and other virulence
factors to the gastric microenvironment to elicit epithelial
polarity dysregulation and mucosal damage, leading to
pro-inflammatory cytokine secretion and immune toler-
ance (51,52). Cytokine-mediated T helper cell (Th)l and
Th17 responses induce anti-H. pylori acquired immunity
within H. pylori-colonized microenvironments, whereas
the dendritic cell (DC)-mediated expansion of regulatory T
(Treg) cells leads to immune evasion within the gastric micro-
environment and cross-tolerance to allergens in extra-gastric
microenvironments (51,53).

In human organoid culture systems infected with
H. pylori, CagA is injected into epithelial cells through
the type IV secretion system and associates with the HGF
receptor (MET) and hyaluronan receptor (CD44) to promote
epithelial proliferation, in part through [-catenin signaling
activation (54-56). By contrast, in a mouse model with artifi-
cial H. pylori infection, Rspo3 is upregulated to expand Lgr5*
gastric stem/progenitor cells (57). As WNT2B (WNT-13)
was originally cloned and characterized as a canonical WNT
ligand derived from the human stomach (58,59), RSPO3
can enhance canonical WNT/B-catenin signaling activa-
tion through the release of Frizzled family WNT receptors
from RNF43/ZNRN3-mediated repression (1,60) and thus
promote epithelial proliferation and gastric hyperplasia. The
WNT/B-catenin signaling cascade is aberrantly activated in
human gastric cancer due to gain-of-function mutations in the



INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 42: 713-725, 2018

CTNNBI gene, as mentioned above, and to loss-of-function
mutations in the APC and RNF43 genes (37). Together,
these findings indicate that (-catenin serves key roles in
H. pylori-related chronic active gastritis and gastric cancer.

Decades of persistent H. pylori infection lead to field
cancerization in the stomach (Fig. 2B) through the sequential
progression of chronic active gastritis, fundic gland atrophy,
intestinal metaplasia and gastric cancer (61-63). Although
H. pylori eradication in relatively older patients with irrevers-
ible gastric atrophy and intestinal metaplasia may not contribute
to the prevention of gastric carcinogenesis due to preexisting
genetic and epigenetic alterations in the premalignant lesions,
H. pylori eradication in relatively younger patients with
chronic active gastritis and/or reversible atrophy is optimal for
the prevention of gastric carcinogenesis (Fig. 2C). A triple or
quadruple regimen (proton-pump inhibitor, amoxicillin and
clarithromycin with or without metronidazole) is prescribed
for the eradication of H. pylori (64-67). To avoid the preva-
lence of drug-resistant H. pylori, the quadruple regimen is
recommended for H. pylori eradication in Canada, Europe and
the US.

By contrast, atezolizumab, avelumab, durvalumab,
nivolumab and pembrolizumab are representative immune
checkpoint inhibitors that are approved for the treatment of
patients with certain types of cancer (34,68). As H. pylori erad-
ication eliminates H. pylori-related chronic inflammation and
H. pylori-specific immune evasion, and reduces non-specific
immune evasion caused by the DC-mediated Treg expansion
and IL-10 elevation in the gastric microenvironment, H. pylori
eradication may synergize with immune checkpoint inhibi-
tors for the treatment of advanced gastric cancer with chronic
active gastritis.

4. Activation of -catenin in liver fibrosis and hepatocellular
carcinoma

Chronic liver inflammation associated with hepatitis C virus
(HCV) infection, hepatitis B virus (HBV) infection, alcohol
abuse, non-alcoholic fatty liver disease and other etiologies
leads to liver fibrosis due to the myofibroblast-like transi-
tion of hepatic stellate cells or other mesenchymal cells and
subsequent accumulation of excessive ECM (31,33). Liver
cirrhosis is the most advanced stage of liver fibrosis, which is
characterized by impaired liver functions and complications,
including ascites, hepatic encephalopathy and upper gastroin-
testinal bleeding. Persistent liver inflammation leads to field
cancerization in the liver through the sequential progression of
chronic hepatitis, liver fibrosis and hepatocellular carcinoma
(HCC) (69), similar to H. pylori-related field cancerization in
the stomach (Fig. 2C).

The canonical WNT/B-catenin signaling cascade is involved
in the development and homeostasis of the liver (70,71).
Canonical WNT/B-catenin signals promote the prolif-
eration of LGR5* hepatocyte progenitors in the peri-venous
zone of hepatic lobules, whereas non-canonical WNT and
other signals promote the proliferation of cholangiocyte
progenitors in the peri-portal zone of hepatic lobules (71-73).
Canonical Wnt-dependent Lgr5* liver stem/progenitor cells
in an organoid culture have successfully been applied in
transplantation therapy for liver failure in a rat model (74).
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HCV is a single-stranded RNA virus that infects hepato-
cytes to produce Core, NS3/4A, NS5A, NS5B and other viral
proteins, and HCV upregulates the expression of p-catenin and
MYC in hepatocytes (69). HBV is a partially double-stranded
DNA virus that infects hepatocytes to produce HBx, pre-S, S
and other viral proteins, and HBx upregulates the expression of
EPCAM, B-catenin and MYC and activates NF-xB signaling
in hepatocytes (69). The RSPO-dependent activation of the
WNT/B-catenin signaling cascade is involved in the activation
of hepatic stellate cells to promote liver fibrosis (75), whereas
a [-catenin inhibitor (PRI-724) has been shown to prevent
HCV-related liver fibrosis in a mouse model (76). By contrast,
the WNT/B-catenin signaling cascade is aberrantly activated
in human HCC due to gain-of-function mutations in the
CTNNBI gene and loss-of-function mutations in the APC and
AXINI genes (35). Additionally, gain-of-function (-catenin
mutations (S33Y or S45Y) and the overexpression of Met have
been shown to synergistically promote liver tumorigenesis
in a mouse model (77), whereas an oncolytic adenovirus
Ad.wnt-E1A(A24 bp)-TSLC1 has been shown to effectively
target liver cancer cells with aberrant (3-catenin-TCF/LEF
signaling activation and repress in vivo tumorigenesis and
metastasis (78). B-catenin plays key roles in multiple processes
of chronic inflammation-related liver pathophysiology,
including hepatocyte proliferation, stellate-cell activation,
liver fibrosis and liver tumorigenesis.

The eradication of HCV is predicted to be an optimal
approach to prevent HCC; as such, the eradication of H. pylori
may be used to prevent gastric cancer. Direct-acting antivirals,
including HCV NS3/4A protease inhibitors (glecaprevir and
paritaprevir), HCV NS5A inhibitors (ledipasvir, ombitasvir,
pibrentasvir and velpatasvir) and HCV NS5B RNA polymerase
inhibitors (dasabuvir and sofosbuvir), have been developed for
the eradication of HCV. For example, glecaprevir/pibrentasvir
and velpatasvir/sofosbuvir are combination drugs that are
approved for the treatment of HCV genotypes 1,2, 3,4, 5 and
6 (79,80). Studies in Italy and Spain revealed that the occur-
rence and recurrence of HCC were not prevented by HCV
eradication (81,82), whereas a study in Japan revealed that
the occurrence of HCC was successfully prevented by HCV
eradication (83). As complications of non-viral etiologies of
chronic liver inflammation, ethnic or genetic backgrounds,
stages of liver fibrosis, and genomic or epigenetic alterations
in premalignant lesions may affect the outcomes of HCV
eradication, further investigations in larger cohorts are neces-
sary to address the controversy regarding the rate of HCC
development following HCV eradication.

5. Activation of f3-catenin in pulmonary fibrosis and lung
cancer

Fibrosis is a common pathology of chronic inflammation
in the liver and other organs, including the lungs, heart and
kidneys (31,32). Irreversible pulmonary fibrosis, cardiac
fibrosis or renal fibrosis leads to organ destruction and subse-
quent decompensation, which is the final serious condition in
patients with non-cancerous diseases. For example, cardiac
fibrosis is caused by the transformation of cardiac fibroblasts
into myofibroblasts and leads to myocardial stiffness and
ventricular dysfunction (32), whereas pulmonary fibrosis
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is caused by chronic inflammation associated with cancer
therapy, cigarette smoking, connective tissue diseases, envi-
ronmental pollution, infection, pulmonary hypertension and
idiopathic pulmonary fibrosis (84,85).

Airway damage-induced canonical WNT/B-catenin
signaling activation in alveolar epithelial type II cells
promotes the activation and remodeling of interstitial fibro-
blasts; transient remodeling leads to resolution, whereas
persistent remodeling leads to pulmonary fibrosis (31,85).
Canonical WNT/B-catenin signaling activation in pulmonary
endothelial cells activates perivascular fibroblasts to undergo
a myofibroblast-like transition, which also leads to ECM accu-
mulation and increased tissue stiffness, further promoting
pulmonary fibrosis (86,87). Pulmonary injuries also induce
the chemokine-dependent recruitment of monocytes and
their subsequent transition into monocyte-derived alveolar
macrophages that express higher levels of pro-inflammatory
and pro-fibrotic genes than tissue-resident alveolar macro-
phages (88). However, f-catenin inhibitors, including
ICG-001 and XAV939, ameliorate chronic lung injury and
prevent the progression to severe pulmonary fibrosis (89,90).
The canonical WNT/B-catenin signaling cascade is involved
in the pathogenesis of pulmonary fibrosis.

Genetic alterations in the canonical WNT/B-catenin
signaling regulators are relatively rare in human lung
cancer (91). However, lung CSCs differentiate into
WNT-producing supporting cells to maintain the stemness
of CSCs and promote the expansion of bulk tumor cells (92).
The upregulation of RSPO2 or RSPO3 leads to canonical
WNT/B-catenin signaling activation in patient-derived
xenograft (PDX) models of human lung cancer (93), and
nuclear B-catenin staining is associated with poor prognosis
in patients with lung cancer (94,95). Despite relatively
infrequent genetic alterations, the canonical WNT/B-catenin
signaling cascade is involved in multi-step tumorigenesis in
the human lungs through WNT- and RSPO-dependent para-
crine signaling.

Receptor tyrosine kinases (RTKSs), including ALK, DDR2,
EGFR, FGFR1, FGFR2, HER2, MET, NTRK1, RET and
ROSI, are aberrantly activated in human lung cancer due to
gene amplification, gene fusions or point mutations (96-99).
Although ALK inhibitors (alectinib and ceritinib), an
ALK/ROSI inhibitor (crizotinib) and EGFR inhibitors
(afatinib, erlotinib, gefitinib and osimertinib) are approved
for the treatment of patients with lung cancer, drug resistance
and recurrence are difficult to avoid due to acquired muta-
tions in the targeted RTKs, the by-passed activation of other
RTKs and B-catenin signaling activation (34). Therapy-related
chronic inflammation, in addition to cancer-cell plasticity and
intra-tumor heterogeneity, lead to resistance to RTK-targeted
therapeutics, in part through canonical WNT signaling
activation.

6. Therapeutics targeting p-catenin for preventing organ
fibrosis or treating cancer

[-catenin is involved in chronic inflammation, organ fibrosis
and carcinogenesis; however, B-catenin lacking intrinsic
enzymatic activity is a difficult target for drug development.
Antibody-based or decoy-receptor drugs targeting ligands
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or receptors involved in canonical WNT signaling and
small-molecule compounds targeting porcupine (PORCN),
tankyrase (TNKS) and f-catenin PPIs have been devel-
oped as P-catenin inhibitors for preclinical studies and/or
clinical trials (34). In addition to these investigational drugs,
small-molecule compoundstargeting epigenetic/transcriptional
regulators involved in B-catenin-dependent transcription and
antibody- or peptide-based drugs binding to -catenin-target
gene products have also been suggested as f-catenin inhibi-
tors. B-catenin-targeted therapeutics are functionally classified
as follows: i) B-catenin inhibitors targeting upstream regula-
tors, ii) P-catenin inhibitors targeting PPIs, iii) [3-catenin
inhibitors targeting epigenetic regulators, iv) B-catenin inhibi-
tors targeting mediator complexes, and v) B-catenin inhibitors
targeting transcriptional outputs (Fig. 3). Follows is a discus-
sion of the pros and cons of each [3-catenin inhibitor class.

B-catenin inhibitors targeting upstream regula-
tors. Anti-FZD1/2/5/7/8 monoclonal antibody (mAb)
(vantictumab) (100), anti-FZD5 mAb (IgG-2919) (101),
anti-RSPO3 mAb (rosmantuzumab) (102), FZDS8-Fc
(ipafricept) (103), PORCN inhibitors (ETC-159, GNF6231,
WNT-C59 and WNT974) (104-107) and TNKS inhibitors
(AZ1366, GOO7-LK, NVP-TNKS656 and XAV939) (108-111)
are therapeutics targeting upstream regulators of p-catenin
(Fig. 3). The on-target effects on f-catenin-independent WNT
signaling cascades are potential risks for anti-FZD mAbs,
FZD8§-Fc and PORCN inhibitors, whereas the on-target effects
on WNT-independent signaling cascades are potential risks
for TNKS inhibitors (34). ETC-159, ipafricept, rosmantu-
zumab, vantictumab and WNT974 are in clinical trials for the
treatment of cancer patients.

fB-catenin inhibitors targeting PPIs. CGP049090 (112),
CWP232228 (113), E7386 (114), ICG-001 (89), LF3 (115)
and PRI-724 (116) are representative therapeutics targeting
[-catenin PPIs (Fig. 3). CGP049090, CWP232228 and LF3
inhibit the PPI between (3-catenin and TCF, whereas E7386,
ICG-001 and PRI-724 inhibit the PPI between B-catenin
and CREBBP. Although E7386, ICG-001 and PRI-724 are
claimed to repress CREBBP-dependent stemness-related
transcription and reciprocally enhance EP300-dependent
differentiation-related transcription, this hypothesis remains
to be generalized for various types of primary tumors with
complex genetic alterations. In addition, the specificities of
therapeutics targeting -catenin PPI remain to be elucidated.
E7386 is in a clinical trial for cancer patients, whereas PRI-724
is in clinical trials for patients with cancer or liver fibrosis.

B-catenin inhibitors targeting epigenetic regulators.
Epigenetic components that permit access of the f-catenin
complex to the promoter and enhancer regions of its target
genes are downstream regulators of f-catenin-dependent tran-
scription (Fig. 3). IMID2A (KDM4A), IMID2B (KDM4B)
and JMJD2C (KDM4C) are Jumonji domain-containing
enzymes that demethylate histone H3 at K9 and K36 (H3K9
and H3K36) (117,118). IMID2C associated with 3-catenin and
chromatin is required for the expression of CCNDI and cell
growth in colorectal cancer cells (119). Mouse Jmjd2a and
Jmjd2c are required for the self-renewal of embryonic stem
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Figure 3. Investigational -catenin inhibitors and mechanisms of action. $-catenin-targeted therapeutics are functionally classified as i) 3-catenin inhibitors
targeting upstream regulators (AZ1366, ETC-159, GO07-LK, GNF6231, ipafricept, NVP-TNKS656, rosmantuzumab, vantictumab, WNT-C59, WNT974 and
XAV939), ii) B-catenin inhibitors targeting PPIs (CGP049090, CWP232228, E7386, ICG-001, LF3 and PRI-724), iii) $-catenin inhibitors targeting epigenetic
regulators (PKF118-310), iv) B-catenin inhibitors targeting mediator complexes (CCT251545 and cortistatin A), and v) 3-catenin inhibitors targeting transcrip-
tional outputs [CD44v6 chimeric antigen receptor-modified T cells, CD44v6 inhibitor AMC303, anti-FZD7 mAb cross-reacting with FZD1, FZD2, FZD5
and FZDS (vantictumab), anti-LGR5 mAb BNC101 and anti-LGRS5 ADCs]. AMC303, BNC101, ETC-159, ipafricept, PRI-724, rosmantuzumab, vantictumab
and WNT974 are in clinical trials, whereas other investigational B-catenin inhibitors are in preclinical stages. PPIs, protein-protein interactions; ADCs,
antibody-drug conjugates; PORCN, porcupine; TNKS, tankyrase; mAb, monoclonal antibody.

cells (ESCs) (120), and Jmjd2c associated with a mediator
complex is required for the lineage-specific gene expression
and multi-lineage differentiation of ESCs (121). PKF118-310
was initially identified as a compound that inhibits
[-catenin-dependent transcription via inhibition of the inter-
action between P-catenin and TCF7L2, and PKF118-310
has been re-discovered as a JMJD2A inhibitor (8,122,123).
PKF118-310 has been shown to exert antitumor effects on
colorectal cancer and prostate cancer in vitro and breast
cancer and HCC in vivo (122,124,125). PKF118-310 also exerts
antifibrotic effects in mouse models of dermal fibrosis (126).
Other epigenetic regulators, including EZH2 (127,128),
KDMI1A (LSD1) (129) and PRMTS5 (130), are also involved
in canonical WNT/B-catenin signaling activation in certain
contexts. As epigenetic regulators are desirable targets in
the field of clinical oncology (127,131-134), EZH2 inhibitors,
including GSK2816126 and tazemetostat/EPZ-6438), KDM1A
inhibitors, including GSK2879552 and pargyline, and PRMT5
inhibitors, including GSK3235025/EPZ015666 and PJ-68, have
been developed; however, the mechanisms of action of these
investigational drugs on B-catenin-dependent transcription

require further clarification to identify biomarkers for patient
selection. PKF118-310 is a promising compound to be opti-
mized for the treatment of patients with [3-catenin-dependent
fibrosis and cancer.

[-catenin inhibitors targeting mediator complexes. Mediator
complexes that assemble transcription factors, cofactors and
other regulators of RNA polymerase II-mediated mRNA
synthesis are involved in the 3-catenin-dependent transcription
of oncogenic targets, including CCNDI and MYC (135-137)
(Fig. 3). p-catenin binds to MED12, which associates with
MEDI13, cyclin C (CCNC) and CDK&8/19 to form the kinase
module of the mediator complex. As CDK8 and CDK19 are key
components of the mediator complex, CCT251545 (138,139)
and cortistatin A (140,141) have been characterized as
CDKS8/19 inhibitors that suppress -catenin-dependent tran-
scription and the in vivo tumorigenesis of colorectal cancer,
breast cancer and acute myeloid leukemia. CDK8/19 phos-
phorylates mediator complex components (CCNC, MEDI12,
MEDI13, MED14 and MED26), epigenetic regulators (BCL9,
BPTF, BRD9, KDM3A, MLL2, SETDIA and SIRT1) and
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transcription factors or cofactors (ATF7, FOXCI1, KLF12
and STAT1) (141). Additionally, mediator complexes are
involved in B-catenin-dependent transcription and transcrip-
tion dependent on other transcription factors (136,137). Due
to the unknown on-target effects associated with the various
functions of CDK9/18 and mediator complexes, the applica-
tion of CDKY9/18 inhibitors for the treatment of patients with
WNT-driven cancer has been suspended at the preclinical
stage.

B-catenin inhibitors targeting transcriptional outputs.
ABCBI, BAMBI, CD44, CLDNI, CTLA4, FZD7, JAG1, LGRS,
NOTCH2, NRCAM, RNF43, TNFRSF19 and ZNRF3 are
representative B-catenin target genes that encode transmem-
brane proteins (Fig. 1C). For example, the CD44v6 isoform
that functions as a positive regulator of canonical WNT,
CXCL12 (SDF1), FGF2, HGF, OPN and VEGF signaling in
CSCs is involved in malignant phenotypical characteristics,
including the EMT, tumor cell invasion and metastasis,
therapeutic resistance and recurrence (142-145). FZD7 is a
seven-transmembrane receptor, which transduces canonical
and non-canonical WNT signaling in a context-dependent
manner, whereas LGRS is a seven-transmembrane receptor,
which transduces RSPO signaling and potentiates WNT
signaling through FZD receptors (8,24,34,146-149). Other
transmembrane-type [-catenin signaling outputs are also
involved in various pathophysiological aspects of human
diseases.

As transmembrane proteins expressed on tumor cells
are appropriate targets for the development of peptide-based
drugs(142),mAbs,antibody-drugconjugates (ADCs),bi-specific
antibodies (bsAbs) and chimeric antigen receptor-modified T
cells (150-155), drugs targeting CD44v6, FZD7 and LGRS
are under development as functional -catenin inhibitors.
CD44v6 CAR-T cells (156) and anti-LGR5 ADCs (157,158)
and are in preclinical stages, whereas the phase I clinical trial
of anti-CD44v6 ADC (bivatuzumab mertansine) for patients
with head and neck squamous cell carcinoma was terminated
due to severe on-target skin toxicities (159). A peptide-based
CD44v6 inhibitor (AMC303) (160) is in a phase I clinical
trial for the treatment of patients with advanced solid tumors
(ClinicalTrials.gov Identifier: NCT03009214); anti-FZD7 mAb
(vantictumab), which cross-reacts with FZD1,FZD2,FZD5 and
FZDS (100), is in phase I clinical trials for cancer patients, as
mentioned above (ClinicalTrials.gov Identifier: NCT01957007
and NCT01973309); anti-LGR5 mAb (BNC101) (161) is also
in a phase I clinical trial for cancer patients (ClinicalTrials.gov
Identifier: NCT02726334). Antibody- or peptide-based drugs
are promising options for the treatment of f3-catenin-driven
human diseases; however, further evaluation of the benefits,
costs and on-target toxicities are necessary prior to clinical
application.

7. Multi-layered prevention and treatment of [-catenin-
related diseases

Clinical medicine, particularly clinical oncology, is moving
toward genomics-based personalized medicine due to the
development of nucleotide sequence technologies. Such
personalized medicine is expected to further evolve into
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omics- and clinical record-based precision medicine with rela-
tively inexpensive costs due to increasing medical expenses
in aging societies (162). Genomics-based testing platforms,
including MSK-IMPACT (43), FoundationOne (163) and
Oncomine Comprehensive Panel (164), and organoid- or
PDX-based drug screening (165-167) are useful tools for the
prescription of targeted therapeutics; however, there remain
unmet medical needs for patients with refractory cancer
driven by gain-of-function mutations in non-enzymatic onco-
genes, including CTNNBI and KRAS, or loss-of-function
mutations in tumor-suppressor genes, including APC and
TP53.

[-catenin signaling is involved in myofibroblast activation
and subsequent organ fibrosis (Fig. 2A), whereas the activa-
tion of B-catenin and NF-«xB signaling is involved in field
cancerization in the liver associated with HBV, HCV and other
etiologies, and field cancerization in the stomach associated
with H. pylori infection (Fig. 2B). Vaccines against HBV and
H. pylori are available for the prevention of cancer-associated
infections (168,169). The eradication of HCV and H. pylori
are optimal choices for the first-line prevention of HCC and
gastric cancer, respectively (Fig. 2C); however, pathogen
eradication is not always successful and may occur too late to
reverse the process of field cancerization. 3-catenin inhibitors
are expected to be applicable for organ fibrosis prevention,
second-line HCC prevention and treating f-catenin-driven
cancer (Fig. 2C). Although [-catenin without intrinsic enzy-
matic activity is difficult to target in drug development, several
classes of investigational [3-catenin inhibitors (Fig. 3) are in
preclinical stages or clinical trials for treating patients with
[-catenin-related diseases. The multi-layered prevention and
treatment strategy of P-catenin-related human diseases is
realistic at present and necessary for the implementation of
precision medicine in the future.
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