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Image segmentation is still an open problem especially when intensities of the objects of interest are overlapped due to the presence
of intensity inhomogeneities. A bias correction embedded level set model is proposed in this paper where inhomogeneities are
estimated by orthogonal primary functions. First, an inhomogeneous intensity clustering energy is defined based on global
distribution characteristics of the image intensities, and membership functions of the clusters described by the level set function
are then introduced to define the data term energy of the proposed model. Second, a regularization term and an arc length term
are also included to regularize the level set function and smooth its zero-level set contour, respectively. Third, the proposed
model is extended to multichannel and multiphase patterns to segment colorful images and images with multiple objects,
respectively. Experimental results and comparison with relevant models demonstrate the advantages of the proposed model in
terms of bias correction and segmentation accuracy on widely used synthetic and real images and the BrainWeb and the IBSR
image repositories.

1. Introduction

Image segmentation is a fundamental but one of the most
important problems in pattern recognition and computer
vision [1, 2]. In general, it is aimed at separating an image
into several parts corresponding to the objects of interest.
Inner elements (i.e., pixels for 2D images or voxels for 3D
images) of each part, recognized as components of a desired
object, are considered as having an identical characteristic in
terms of shape, structure, or texture [3, 4]. As well known,
due to the decades of efforts of numerous researchers, a vari-
ety of impressive image segmentation methods have been
proposed in the literature [5–11]. However, it is still a chal-
lenging task to extract objects of interest accurately from a
complex image [12, 13]. In particular, if the image is cor-
rupted by noises and inhomogeneous intensities (generally
viewed as intensity biases), intensity homogeneity of the

image will be destroyed due to intensity overlaps between dif-
ferent objects caused by the noises and biases, which certainly
brings challenges to classical segmentation methods that are
based upon edge detection or thresholding [14–16]. Unfortu-
nately, intensity inhomogeneities exist in most of real-world
images inevitably. Figure 1 gives an example to demonstrate
negative effects of inhomogeneities on intensity distribution
of a camera captured image and a medical brain image.

As mentioned earlier, a variety of segmentation methods
have been proposed in the literature. As one class of the most
popular segmentation methods, active contour models
(ACMs) have been extensively studied and have proven to
be specially effective for image segmentation due to their abil-
ity to elastically deform and delineate object boundaries with
smooth and closed contours in subpixel accuracy [17, 18].
The fundamental idea of ACMs is to introduce a contour to
represent boundaries of interested objects and then drive
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the contour moving toward its interior normal direction
under some constraints [19]. The constraints are generally
contained in a predefined energy function which will finally
get its minimal value when the contour stops on true bound-
aries of the desired objects [20]. However, there are inherent
drawbacks of traditional ACMs, i.e., initialization sensitivity
and difficulties associated with topological changes in merg-
ing and splitting of the evolving contour. Therefore, since
the active contour model was proposed by Kass et al. [21],
many efforts have been devoted to developing improved
methods to overcome the inherent drawbacks [22]. As one
of the most important improvements of ACMs, level set
methods regard the active contour as the zero-level set con-
tour of a predefined one-dimension higher function named
as level set function in the literature. Motion of the contour
is implied in evolution of the entire level set function under
a principled energy minimization framework instead of
directly driving the contour itself [23]. Therefore, interesting
elastic behaviours of the active contour are preserved with
topological changes of the contour efficiently being handled
implicitly during the evolution of the level set function. In
addition, level set methods are easily extended to a higher
dimension and prior knowledge of objects of interest can be
incorporated into their energy framework to guide the zero-
level set contour moving close to the desired boundaries [24].

Existing level set-based image segmentation methods are
usually divided into two categories, which are edge-based
models and region-based models, according to whether an
edge indicator or a region descriptor is used to guide the
motion of the zero-level set contour [25, 26]. Edge-based
level set methods are good at identifying boundaries from
images with strong intensity gradients. Therefore, they inev-
itably suffer from a weak boundary problem caused by the
presence of intensity inhomogeneities and noises [27]. This

drawback restricts their applications while in turn promotes
the passion of researchers in this field to develop region-
based level set models which take statistical information of
the image intensities in general as guide descriptors to iden-
tify each region of interest [28]. In this paper, a region-
based level set model is proposed where the image intensities
are clustered globally and the bias correction is embedded as
well. Specifically, the intensity bias, which causes inhomoge-
neous intensities, is estimated in the model by orthogonal
primary functions based on the principle that any of a
smooth function can be estimated by a linear combination
of primary functions in enough order. To illustrate the prob-
lem visually, a demonstration of orthogonal Legendre func-
tions in fitting smooth two-dimensional functions is given
in Figure 2. Another contribution of this work is that the pro-
posed model is further extended to segment multichannel
images and images with multiple objects.

The paper is organized as follows. Related work and some
typical and highly relevant ACM models are reviewed briefly
in Section 2. Details of the proposed model are presented in
Section 3. Experimental results of the proposed model on
synthetic and natural images that are widely used in the liter-
ature and comparison with greatly relevant models on the
BrainWeb and IBSR image repositories are given in Section
4. We analyse and discuss relationship and improvement of
the proposed model with representative models, its robust-
ness to initialization, and coefficient impact in Section 5,
which is followed by conclusion and future work in Section 6.

2. Related Work

Let Ω ⊂ R2 be a 2-dimensional continuous domain and I be
an image defined on the domain. Thus, the observed image
can be viewed as a mapping from Ω to R. In general, the
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Figure 1: Intensity overlaps of interested objects in a camera image (upper) and an MR brain image (lower).
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problem of image segmentation using ACMs is in fact to find
an optimal contour C to divide the image domain into dis-
joint subregions, which are generally denoted by Ω1 and Ω2
for binary segmentation problems in the literature.

2.1. Classical Mumford-Shah Functional Model. To find the
optimal contour C, Mumford and Shah propose an energy
model-based image segmentation method in [29]. The basic
idea of this classical model is to find a pair of the two tuples
ðu, CÞ for a given image I, where u is a piecewise smooth
approximation of I. The general form of this model can be
written into the following energy function, defined by

EMS u, Cð Þ =
ð

u − Ið Þ2dx + μ
ð
Ω/C

∇uj jdx + ν Cj jdx, ð1Þ

where j⋆j is the modulus operation and μ and ν are positive
weighting coefficients. Note that unless otherwise specified,
integrations are all performed on the entire image domain
Ω in this paper.

When the contour C is exactly located on the desired
boundaries and u is piecewise smooth enough to approxi-
mate I, this functional takes its minimal value and vice versa.
However, it is not easy to find the optimal solution of the
above-defined energy functional due to different natures of
the unknown C and u and the nonconvexity of the functional
as well.

2.2. Chan-Vese’s Piecewise Constant Model. To overcome the
difficulties in solving Equation (1), Chan and Vese propose a

piecewise constant case of the Mumford-Shah model in [30],
which has proven to be particularly influential in binary
segmentation problems. In the well-known CV model,
the contour C is considered as the zero-level set contour of
a one-dimension higher level set function ϕ defined on the
image domain Ω, i.e., C ≜ fx : ϕðxÞ = 0g. The level set func-
tion ϕ takes positive and negative values, respectively, in the
subregions Ω1 and Ω2 which are separated by the contour
C, i.e., Ω1 ≜ fx : ϕðxÞ > 0g and Ω2 ≜ fx : ϕðxÞ < 0g. Thus,
membership functions M1ðϕðxÞÞ =HðϕðxÞÞ and M2ðϕðxÞÞ
= 1 −H ðϕðxÞÞ can be, respectively, used to represent these
two regions by making M1ðϕðxÞÞ = 1 for x ∈Ω1, M2ðϕðxÞÞ
= 1 for x ∈Ω2, and otherwise, both of them are 0. Note that
H is the Heaviside function. Then, the energy functional of
the CV model is defined by

ECV c1, c2, ϕð Þ = 〠
2

i=1

ð
I xð Þ − cið Þ2Mi ϕ xð Þð Þdx

+ μA ϕð Þ + νL ϕð Þ,
ð2Þ

where AðϕÞ = Ð ð1 −HðϕðxÞÞÞdx is the area of the subregion
Ω2 which is enclosed by the 0-level set contour C, LðϕÞ =Ð j∇HðϕðxÞÞjdx is the length of the 0-level set contour C, μ
and ν are positive weighting coefficients, and c1 and c2 are
two constants that are used to approximate average intensi-
ties of the given image I on either side of the 0-level set con-
tour C. It is obvious that c1 and c2 are related to the global
properties of the image intensities inΩ1 andΩ2, respectively.
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Figure 2: 15 2D orthogonal Legendre functions and the bias field (down-right) estimated using a linear combination of these functions with
weighting coefficients being 1.05, -0.05, -0.06, 0.01, 0.01, -0.20, 0.04, 0.12, -0.02, 0.02, 0.01, -0.02, 0.05, -0.03, and -0.01 from up-left to down-
right, respectively.
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This model has also been further extended to segment images
into multiple parts using multiphase level set functions [31].
But the CV model and its multiple phase extension are both
on account of the assumption that intensities of the image
are statistically homogeneous in each part and use different
constants to estimate intensities of these parts. They are
therefore well known as piecewise constant (PC) models,
which will fail to segment images with intensity inhomogene-
ity when disordered intensity distribution introduces overlaps
between objects of interest. That is to say that even though the
CV model is robust to some extent with respect to noise and
is also less sensitive to the initialization, it generally fails to
segment images with intensity inhomogeneity [30].

2.3. The Piecewise Smooth Model. In addition to introducing
a local energy term as proposed in [32] or improving original
global energy by means of image local characteristics in [33],
two similar ACMs are proposed by Vese and Chan [31] and
Tsai et al. [34] instead under the framework of minimization
of the Mumford-Shah functional to overcome the difficulty
of the CV model in segmentation of images with intensity
inhomogeneity. These models are widely known as piecewise
smooth (PS) models where the image intensities are consid-
ered as two piecewise smooth functions instead of constants
to represent intensities on either side of the contour C [31]
by minimizing

EPS u1, u2, ϕð Þ = 〠
N

i=1

ð
I xð Þ − ui xð Þð Þ2Mi ϕ xð Þð Þdx

+ μ〠
N

i=1

ð
∇uij j2Mi ϕ xð Þð Þdx + νL ϕð Þ,

ð3Þ

where μ and ν are positive weighting coefficients.
Although intensity inhomogeneities are handled to some

extent by the piecewise smooth models, it is obvious that the
involved update of u1 and u2 at each iteration will certainly
increase the computational burden due to solving of two par-
tial differential equations on the entire image domainΩ [33].
In addition, the level set function of the above model has to
be periodically reinitialized using signed distance functions,
which not only introduces problems like when and how it
should be performed but also affects numerical accuracy in
an undesirable way [35].

2.4. Region-Scalable Fitting Model. To resolve undesirable
effects caused by reinitialization, a distance regularization
term is proposed to regularize the level set function preserv-
ing its sign distance property in [27], defined by

P ϕð Þ =
ð 1
2 ∇ϕ xð Þj j − 1ð Þ2dx: ð4Þ

In [36], besides the above-defined regularization term, the
local region information is incorporated into the region-based
level set method as a data term relying on the assumption
that intensities are locally homogeneous. Specifically, for a
given point y ∈Ω, two fitting functions f1ðyÞ and f2ðyÞ are
used to approximate image intensities in the local subneigh-

borhoods of y which come from separating its local neigh-
borhood by the 0-level set contour of ϕ and are obviously
subsets of Ω1 and Ω2, respectively. Let e

i
f ðxÞ =

Ð
Kðx − yÞ

ðIðxÞ − f iðyÞÞ2dy where K is a normalized even function that
satisfies KðuÞ ≥ KðvÞ, if juj < jvj, and limjuj→∞KðuÞ = 0 with
the local size being implied and scalable. The level set model
proposed in [36] is named as the region scalable fitting
model, defined by

ERSF =
ð
〠
2

i=1
λie

i
f xð ÞMi ϕ xð Þð Þdx + νL ϕð Þ + μP ϕð Þ, ð5Þ

where λ1 and λ2 are positive constants and ν and μ are pos-
itive weighting coefficients.

Wang et al. further extended the RSF model to distin-
guish regions with similar intensity means but different var-
iances by introducing Gaussian distributions to describe the
local image intensities [35]. This improvement is in fact
based on the assumption that intensities of the image obey
normal distribution. Nevertheless, the image intensities are
not necessarily described by a specific distribution, i.e., the
intensities vary in any positions and directions and so do
the intensity inhomogeneities. Therefore, histogram of the
intensities and local statistics regarding the intensity and
the magnitude of gradient is used to drive the evolution of
the zero-level set contour in [37, 38].

Although the above-mentioned RSF model and its
improved models perform well in segmenting images with
intensity inhomogeneity, the size of local scalable regions
determined by the kernel function K and the initial place-
ment of the contour C have a great influence on segmenta-
tion performance [39]. In fact, the final zero-level set
contour of this kind of model will not be able to stop at
desired locations, in particular, when all of the internal pixels
of local regions only belong to eitherΩ1 orΩ2 due to an inap-
propriate scalable size are set. Moreover, it is obvious that the
models discussed above are unable to estimate the bias field
and further remove it from the inhomogeneous image to be
segmented.

2.5. Local Intensity Clustering Model. In contrast, the local
intensity clustering (LIC) model is proposed in the purpose
of performing a satisfactory segmentation result and estimat-
ing the bias field existing in the image at the same time [40],
which is based on the following two assumptions. That is, the
bias field b and the true image J are viewed as two multiplica-
tive components of the image I and the bias field b is smooth
and varies slowly. That is to say, in a small enough circular
neighborhood of a given point y ∈Ω, the bias field can be
seen as a constant bðyÞ and the standard K-means clustering
can be used to classify intensities in the neighborhood. Tak-
ing all the center points of the entire image into account,
the energy functional of the LIC model is defined by

ELIC =
ð
〠
2

i=1
eib xð ÞMi ϕ xð Þð Þdx + νL ϕð Þ + μP ϕð Þ, ð6Þ
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where eibðxÞ =
Ð
Kðx − yÞðIðxÞ − bðyÞciÞ2dy, ν and μ are pos-

itive weighting coefficients, M1ðϕðxÞÞ and M2ðϕðxÞÞ are the
membership functions of Ω1 and Ω2, and K is a normalized
function with properties described in Section 2.4.

The LIC model shows that the image is well segmented
and the bias field existing in the image can be estimated at
the same time [40]. However, this model is still sensitive to
the size of the local scalable region and the initial location
of the zero-level set contour, as the RSF model [39]. In addi-
tion, there is no explicit constraint on the bias field to guaran-
tee its slowly varying property.

2.6. Local Inhomogeneous Intensity Clustering Model. In [41],
a constraint on the bias field is therefore established to ensure
its smoothly and slowly varying property by linearly combin-
ing a given set of orthogonal primary functions, denoted by
g1, g2, …, and gM . The model proposed in [41] is named
as the local inhomogeneous iNtensity clustering (LINC)
model, defined by

ELINC =
ð
〠
2

i=1
eiw xð ÞMi ϕ xð Þð Þdx + νL ϕð Þ + μP ϕð Þ, ð7Þ

where eiwðxÞ =
Ð
Kðx − yÞðIðxÞ −wTGðyÞciÞ2dy, GðxÞ and

w are column vectors defined by GðxÞ = ðg1ðxÞ, g2ðxÞ,⋯,
gMðxÞÞT and w = ðw1,w2,⋯,wMÞT , respectively, and w1,
w2,…,wM are weighting coefficients of the primary functions.
Note that ð·ÞT is the transpose operator and all the other sym-
bols represent the same with those in Section 2.5.

As demonstrated in [41], the LINC model has the capa-
bility in extracting desired objects accurately from noisy
images and correcting the intensity biases simultaneously,
and it is robust to initialization. Furthermore, the LINC
model converges in less iterations than RSF and LIC [41].
However, convolution operation in the evolution results in
a heavy computational burden.

3. The Proposed Model

In fact, the size scalable kernel function K acts as a role of
localization in the RSF, LIC, and LINC models. Due to the
approximatively homogeneous characteristics of local image
intensities, it also plays an important part to ensure smooth-
ness of the bias field in the LIC and LINC models. That is to
say that its function overlaps with the linear combination of
primary functions to some extent for the LINC model except
for localization. To eliminate this overlap and promote the
computational performance, we propose a global inhomoge-
neous intensity clustering-based active model in this paper
and give details of the proposed model in this section.

3.1. The Image Model and Problem Representation. Given an
intensity inhomogeneous image I defined onΩ, its intensities
are generally in the literature viewed as

I xð Þ = b xð ÞJ xð Þ + n xð Þ, ð8Þ

where IðxÞ and JðxÞ are, respectively, the observed and true
intensities at location x of the image, b is the bias field
accounting for the intensity inhomogeneities in the observed
image, and n is additive zero-mean noise. It has been pointed
out that the image model defined in Equation (8) is famous in
the literature. In this paper, we propose a new model to esti-
mate the bias field rather than define a new image model. In
the literature, the true image J is generally regarded as con-
stant piecewise which takes a specific intensity value for
pixels belonging to the same object. We denote the number
of all objects of interest by N and the intensity value of the i
th type of objects by ci in this paper. Thus, the problem of
image segmentation and bias correction is naturally con-
verted into finding the optimal estimation of b and the true
intensity values ci for each type of the objects.

3.2. Representation of the Bias Field. As well known, smooth
functions are usually used to approximate the bias field b
in the literature due to the slowly varying property of b.
And a function can be theoretically approximated by a lin-
ear combination of a given number of primary functions up
to arbitrary accuracy, only if the number of the primary
functions is sufficiently large [42]. Therefore, given a set
of primary functions with a specific cardinality M, denoted
by g1, g2, …, and gM , we represent the bias field as a linear
combination of these functions with w1, w2, …, and wm as
weightings, i.e.,

b xð Þ = 〠
M

k=1
wkgk xð Þ =wTG xð Þ, ð9Þ

where ð·ÞT is the transpose operator and GðxÞ and w are
column vectors defined by GðxÞ = ðg1ðxÞ, g2ðxÞ,⋯, gM
ðxÞÞT and w = ðw1,w2,⋯,wMÞT , respectively. Note that
the primary functions used in this paper are orthogonal
and estimation of the bias field is performed by finding the
optimal coefficients w1,w2,⋯,wM .

3.3. Global Inhomogeneous Intensity Clustering (GINC). As
mentioned earlier, the true image J consists of N nonover-
lapping regions, each corresponding to one type object of
interest with a constant intensity, denoted by c1, c2,⋯, cN .
Therefore, the product of image components b and J can be
rewritten as

b xð ÞJ xð Þ ≈ b xð Þci for x ∈Ωi, ð10Þ

where i = 1, 2,⋯,N . Taking Equation (9) into account, the
above equation is rewritten as

b xð ÞJ xð Þ ≈wTG xð Þci for x ∈Ωi: ð11Þ

In consideration of the image model given in Equation
(8), we have

I xð Þ ≈ wTG xð Þci + n xð Þ for x ∈Ωi: ð12Þ
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As mentioned earlier, nðxÞ is additive zero-mean noise.
Therefore, we define the following inhomogeneous intensity
clustering energy

F = 〠
N

i=1
λi

ð
Ωi

I xð Þ −wTG xð Þci
� �2

dx, ð13Þ

where λ1, λ2,⋯, λN are positive constants to indicate the
preference of the proposed model to the corresponding class.
Note that when boundaries of the regionsΩi for i = 1, 2,⋯,N
exactly agree with the image structure, i.e., the territory dis-
tribution of all objects of interest, the above-defined energy
takes its minimal value.

3.4. Two-Phase Level Set Formulation GINC2. It is obvious
that the proposed energy in Equation (13) is expressed in
terms of the regions Ω1, Ω2,…, and ΩN , which makes it dif-
ficult to derive a solution to minimize the energy from this
expression. In the case that the image domain Ω is sepa-
rated into two disjoint regions Ω1 and Ω2, i.e., N = 2, the
energy defined in Equation (13) can be converted to a level
set formulation by representing the two disjoint regions
with a given level set function ϕ defined on Ω. Then, the
energy minimization problem can be solved by using well-
established variational methods [40]. Let the level set func-
tion ϕ take negative and positive signs on either side of
the 0-level set contour denoted by C ≜ fx : ϕðxÞ = 0g, which
can be used to represent a partition of the domain Ω with
two disjoint regions. The disjoint regions separated by the
contour can be represented by Ω1 ≜ fx : ϕðxÞ > 0g and Ω2 ≜
fx : ϕðxÞ < 0g. In consideration of properties of the Heavi-
side function H, the regions are further represented by the
following member functions M1ðϕðxÞÞ =HðϕðxÞÞ and M2
ðϕðxÞÞ = 1 −HðϕðxÞÞ, respectively. Note that the above defi-
nition is in accordance with the one given in Section 2.2.
Thus, for the case N = 2, we rewrite the energy F described
in Equation (13) into the following level set formulation:

F = 〠
2

i=1
λi

ð
I xð Þ −wTG xð Þci
� �2

Mi ϕ xð Þð Þdx, ð14Þ

which is obviously a function of variables ϕ, intensity vector
c = ðc1, c2ÞT , and w = ðw1,w2,⋯,wMÞT . This energy func-
tion is considered as the data term of the proposed model
GINC, defined by

E ϕ, c,wð Þ =F ϕ, c,wð Þ + νL ϕð Þ + μP ϕð Þ, ð15Þ

where the representations of L and P are the same ones as
given in Equations (2) and (4), respectively. They are used
here to smooth the zero-level set contour C and regularize
the entire level set function ϕ.

The proposed model is essentially different from both
LIC and LINC. First, there is no normalized even convolu-
tion kernel function in the proposed model and the integral
is therefore one layer which is less than either LIC or LINC.
Second, compared with the LIC model where there is no
any specific constraint on the bias field, the linear combina-

tion of a given set of primary functions is introduced as an
additional constraint to ensure its smoothness. Third, the
proposed method is global based whereas the LIC and LINC
models are both local based.

3.5. Extension to Multichannel Case GINC2
L. It is obvious that

the above model defined in Equation (15) is applicable in
extracting objects of interest from gray images. But multi-
channel images of the same scene that come from different
imaging modalities or colorful images are becoming more
and more common in our life. To extend the proposed model
to be able to extract objects of interest from multichannel
images, we first denote a given multichannel image I by I =
ðI1, I2,⋯, ILÞ where L is the channel number of I. Let eiðxÞ
=∑L

j=1γ jðI jðxÞ −w j
TGðxÞcijÞ2 where γj are positive weight-

ing coefficients that are used to control influence of the jth
channel and are all set to be 1 in this paper unless otherwise
specified. We then rewrite Equation (14) as follows:

F ϕ, C,Wð Þ = 〠
2

i=1
λi

ð
ei xð ÞMi ϕ xð Þð Þdx, ð16Þ

where C is an 2 × L matrix defined by C = ðc1, c2,⋯, cLÞ
and W is a matrix with M × L elements defined by W =
ðw1,w2,⋯,wÞ. We finally rewrite Equation (15) as follows:

E ϕ, C,Wð Þ =F ϕ, C,Wð Þ + νL ϕð Þ + μP ϕð Þ: ð17Þ

3.6. Further Extension to Multiphase Case GINCN
L . Since one

level set function ϕ can only be used to represent 2 subregions
of image domain Ω denoted by membership functions M1
and M2, which are in fact inside and outside of the zero-
level contour of ϕ, Q level set functions are required to repre-
sent N subregions where Q = ½log2ðNÞ�. Thus, the subregion
Ωi can be represented by the member function MiðΦÞ, i.e.,
MiðΦðxÞÞ = 1 for x ∈Ωi and MiðΦ1ðxÞÞ = 0 otherwise where
Φ = ðϕ1, ϕ2,⋯, ϕQÞ and i = 1, 2,⋯,N . To extend the pro-
posed model to segment multiple objects from images with
intensity inhomogeneity, we first further rewrite Equation
(16) as follows:

F Φ, C,Wð Þ = 〠
N

i=1
λi

ð
ei xð ÞMi Φ xð Þð Þdx: ð18Þ

We then define P ðΦÞ =∑Q
q=1P ðϕqÞ and LðΦÞ =∑Q

q=1L

ðϕqÞ where P ðϕqÞ = ð1/2Þ Ð ðj∇ϕqðxÞj − 1Þ2dx and LðϕqÞ =Ð j∇HðϕqðxÞÞjdx, respectively. Finally, we rewrite Equation
(17) as follows:

E Φ, C,Wð Þ =F Φ, C,Wð Þ + νL Φð Þ + μP Φð Þ: ð19Þ

3.7. Energy Minimization. In the proposed model, image seg-
mentation and bias correction are determined by the final
level set function bΦ and the optimal weighting coefficients
Ŵ that are obtained by minimizing the energy functional E
ðΦ, c,wÞ defined in Equation (19). The energy minimization
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is achieved by an iterative process. That is to say, the energy
functional EðΦ, C,WÞ is minimized with respect to each of
its variables Φ, C, and W using an iteratively alternating
update strategy, i.e., trying to update each of the variables
in each iteration by considering the other two with known
values obtained from the last iteration.

For fixed C and W, we minimize the energy functional
EðΦ, C,WÞ with respect to Φ = ðϕ1, ϕ2,⋯, ϕQÞ using the
standard gradient descent method and obtain

∂ϕq
∂t

= −〠
N

i=1

∂Mi Φð Þ
∂ϕq

λiei + μ ∇2ϕq − div
∇ϕq
∇ϕq
��� ���

0B@
1CA

0B@
1CA

+ νδ ϕq

� �
div

∇ϕq
∇ϕq
��� ���

0B@
1CA,

ð20Þ

where q = 1, 2,⋯,Q.
For fixed Φ and W, we minimize the energy functional

EðΦ, C,WÞ with respect to C by solving the equation ∂E/∂
C = 0 where 0 is a N × L matrix with constant value 0 and
obtain

cij =
Ð
I j xð Þw j

TG xð Þ� �
Mi Φ xð Þð ÞdxÐ

w j
TG xð Þ� �2Mi Φ xð Þð Þdx

, ð21Þ

where i = 1, 2,⋯,N and j = 1, 2,⋯, L.
For fixed Φ and C, we minimize the energy functional E

ðΦ,C,WÞ with respect to W by solving the equation ∂E/∂
W = 0 where 0 is a M × L matrix with constant value 0 and
obtain

w j = A−1
j v j, ð22Þ

where j = 1, 2,⋯, L and Aj is a matrix with M ×M elements
and v is an M-dimensional column vector, given by

Aj =
ð

〠
N

i=1
λic

2
ijMi ϕ xð Þð Þ

 !
G xð ÞGT xð Þdx, ð23Þ

v j =
ð

I j xð Þ〠
N

i=1
λicijMi ϕ xð Þð Þ

 !
G xð Þdx: ð24Þ

3.8. Implementation. In our numerical implementation, the
Heaviside function H is approximated by a smooth version
Hε with ε = 1:0, defined by

Hε xð Þ = 1
2 1 + 2

π
arctan x

ε

� �� �
: ð25Þ

The derivative of which can be deduced and written as

δε xð Þ =Hε
′ xð Þ = 1

π

ε

ε2 + x2
: ð26Þ

In this paper, the bias field is theoretically approximated
by a linear combination of 15 orthogonal Legendre polyno-
mial functions up to four order precision in our implementa-
tion, i.e.,M = 15. The implementation of the proposed model
is straightforwardly expressed as follows in Algorithm 1.

Note that the convergence criterion used in this paper is
∑N

i=1∑
L
j=1kcijðn+1Þ − cij

ðnÞk2 < 0:001, where cij
ðnÞ is the cluster

center cij updated at the nth iteration and ∥⋆∥2 is the Euclid-
ean distance of ⋆.

The main additional computational cost in the proposed
model is for computing w j in Equation (22) compared with
representative models reviewed in Section 2. However, we
notice that GðxÞ and I jðxÞ are independent of the level set
functions Φ and clustering centers C which indicate that we
can compute GðxÞGTðxÞ for Equation (23) and I jðxÞGðxÞ
for Equation (24) in advance and keep the results fixed dur-
ing the iteration to accelerate the proposed model.

4. Results

In this section, we first evaluate effectiveness of the proposed
model GINC on synthetic images that are widely used to ver-
ify ACMs and selected natural images from public datasets.
We then evaluate the proposed model on two public MR
brain image repositories qualitatively and quantitatively.

Require: The multichannel image I, its channel number L, and the number of objects of interest N .
Ensure: Segmentation results determined by membership functionMiðΦÞ and the bias field b = ðb1, b2,⋯, bLÞ with each bj estimated

by w j
TGðxÞ where i = 1, 2,⋯,N and j = 1, 2,⋯, L.

1: Initialize W with a random M × L matrix and ϕq with a binary step function, defined by ϕqðxÞ = −a for x inside the initial zero-
level contour of ϕq and ϕqðxÞ = a otherwise, where q = 1, 2,⋯,Q.

2: Update cluster center matrix C with its elements cij computed using Equation (21) where i = 1, 2,⋯,N and j = 1, 2,⋯, L.
3: Update ϕq by adding it with the difference determined by postmultiplying Equation (20) with Δt where Δt represents the step of
temporal difference and q = 1, 2,⋯,Q.

4: Update the weighing coefficient matrix W with each column of W computed using Equation (22).
5: Check convergence criterion and iteration number. If convergence has been reached or the iteration number exceeds a predeter-
mined maximum number, stop the iteration, otherwise, go to Step 2.

Algorithm 1: The proposed bias correction embedded level set model GINC.
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Unless otherwise specified, we set a = 2:0, Δt = 0:1, λ1 = λ2
= λ3 = 1:0, μ = 1:0, and ν = 0:005 × 255 × 255 in this paper.

4.1. Effectiveness of GINC. In this subsection, we qualitatively
evaluate the effectiveness of the proposed model on synthetic
images and selected natural images from public datasets and
give the validation results in the following paragraphs. Note
that the synthetic and natural images are either widely used
in the literature to verify active contour models or appropri-
ate for application of the proposed model GINC.

We first apply the proposed model to three synthetic gray
images (widely used to evaluate active contour models in the
literature), one cardiac X-ray image, and one brain MR image
in this subsection. The original images with initial 0-level set
contour in green are given in the first column of Figure 3.
From the red curves used to indicate final segmentation
results of the proposed model on the corresponding image,

also given in the first column of Figure 3, it is obvious that
segmentation results of the proposed model on the images
are agreed with contents contained in the images even though
intensities of the images are not homogeneous due to existing
of severe intensity biases as shown in Figure 3. That is to say
that it is difficult to extract objects of interest from the images
because intensity ranges of objects (including the background)
in the images are overlapped due to severe intensity inhomo-
geneities existed in the images which manifests as there are
no well-separated peaks in intensity histograms of the images
as shown in Figure 3. However, there are well-defined and
separated peaks in histograms of the bias corrected images,
each corresponding to one object or the background. This
demonstrates the capability of the proposed model in cor-
recting bias fields from images with intensity inhomogeneity.
Meanwhile, the biases estimated by the proposed model with
orthogonal primary functions are all slowly (not sharply)
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Figure 3: Results of GINC in segmenting inhomogeneous gray images and correcting the biases.
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varying as shown in Figure 3 which meets properties of the
bias field as described in Section 1.

We then apply the proposed two-phase level set model to
segment four selected natural images with three color chan-
nels from BSD database [7], namely, 135069, 42049, 3096,
and 86016, respectively. The reason we selected these images
is that each of the images contains only one object besides the
background which can therefore be distinguished with one
level set function, i.e., N = 2 and Q = 1. Results of the pro-
posed model on segmentation of the images with two-phase
level sets are given in Figure 4. It is obvious that the estimated
biases are smoothly varying and the corrected images are
more homogeneous than the originals. Furthermore, the
energy functional of the proposed model defined in Equation
(17) is converged (generally in less than 50 iterations) as
shown in the right column of Figure 4.

We thirdly apply the proposed three-phase level set
model to segment two MR brain images which are corrupted
by severe intensity inhomogeneities and two selected natural
images from MSRCORID database [43], namely, 164_6484
and 112_1204. The first two images are widely used to evalu-
ate multiple-phase active contour models in the literature,
and the last two images are selected because three kinds of

objects are contained which are suitable for three-phase seg-
mentation. From the results given in Figure 5, we can see that
the estimated biases are smooth and the corrected images are
much more homogeneous. Moreover, the extracted objects
are coincided with the images.

We fourthly evaluate energy convergence of the proposed
model on all above-mentioned images and show the iteration
process of the proposed model on four of them in Figure 6.
The images are appropriate to evaluate the proposed model
in the sense of one-channel-two-phase, one-channel-multi-
ple-phase, multiple-channel-two-phase, and multiple-chan-
nel-multiple-phase, respectively. It can be seen that the
proposed model is convergent and satisfactory results can
be generally obtained in less than 20 iterations. Note that
three kinds of color are used to show the results clearly.

We finally compare results of the proposed model with
greatly relevant models on one synthetic image and one nat-
ural image from BSD qualitatively and show the result in
Figure 7. Note that to be fair, initializations on either image
are all the same for each of the comparable models. And we
set the parameters λ1 = λ2 = 1:0, μ = 1:0, and ν = 0:005 ×
255 × 255. As the CV, RSF, LIC, and LINC models are short
of the capability to extract interested objects from color
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Figure 4: Results of GINC2
3 in segmenting natural images from BSD database.
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Figure 5: Results of GINC3
1 and GINC3

3 in segmeting brain MR images and natural images from MSRCORID database, respectively.
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Figure 6: Evolution demonstration of 0-level set contour of the proposed model GINC.
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images directly, we first convert the color image to a gray
image using the rgb2gray function of matlab and then input
the image to the models. However, the proposed model can
be directly used to deal with color images (three channels).
Therefore, segmentation contour of the proposed model on
the natural image given is marked on the original colorful
image whereas results of the others are marked on the gray
images. As shown in Figure 7, due to the absence of dealing
with intensity inhomogeneity, segmentation results of the
CV model include other regions besides geometrical shapes
really exist in the synthetic image and eagles in the natural
image. Segmentation results of the RSF model are a little
better than those of the CV model because it can handle
intensity inhomogeneity to some extent. But the RSF model
lacks the capability of bias estimation and correction. As
shown in Figure 7, the bias fields estimated by the LIC
model are obviously not smooth enough and segmentation
results are certainly wrong. Although segmentation results
and bias estimations of the LINC model are desirable, color
images cannot be directly input into the model before being
converted to gray ones. In addition, as mentioned in Section 1,
convolution operation in the evolution results in a heavy com-
putational burden for LINC which we will further discuss in
Section 5.2. It is obvious that the proposed model achieves
the best segmentations, bias estimations, and corrections.

4.2. Evaluation on Public Image Repositories. In this subsec-
tion, we evaluate the effectiveness of the proposed model
quantitatively on one simulated MR dataset and one real
MR image dataset. The first one consists of 9 cases of MR
images with three different levels of noise and intensity inho-
mogeneity, respectively. Resolutions of the images are 181
× 217 × 181 with 1mm in-plane pixel size and 1mm slice
thickness. For more information about the dataset, interested
readers are referred to the website http://brainweb.bic.mni
.mcgill.ca/brainweb/ and the reference [44]. To construct a
much more challenging dataset for segmentation methods,
three more levels of nonlinear intensity inhomogeneities are
added to the original image with noises. Therefore, there
are totally 18 image cases for the first image dataset. The
second image set is known worldwide as the Internet Brain
Segmentation Repository (IBSR) which contains 18 cases of
T1-weighted brain MR image cases with skull-removed

masks and manually guided expert segmentation results.
Resolutions of the images are all 256 × 128 × 256. Interested
readers are referred to https://www.nitrc.org/projects/ibsr
for detail. Note that for each image case, the segmentation
task is to extract white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF) from the background. As
intensities of the background are all zero for the images,
two level set functions are used to partition the images into
three regions that is K = 2 and N = 3. To compare the perfor-
mance of the proposed model with representative models like
CV, LIC, and LINC on these image datasets, we first extend
the comparable models to three phase (matlab codes will be
released on our personal homepage if this paper got pub-
lished). We then define membership functions M1 = ð1 −H
ðϕ1ÞÞð1 −Hðϕ2ÞÞ, M2 = ð1 −Hðϕ1ÞÞHðϕ2Þ, and M3 =Hðϕ1Þ
to represent WM, GM, and CSF, respectively. For a fair com-
parison, we first extend comparison models to three phases
and then use the same parameter set and the same strategy
to initialize the level set functions for all the comparison
models. The initialization strategy is that areas separated by
a predefined threshold are adopted to initialize ϕ1 by consid-
ering the areas as inside and outside of the zero-level contour.
Areas separated by another predefined threshold are adopted
to initialize the level set function ϕ2. The thresholds are adap-
tively defined as 0.8 and 0.3 times of maximal intensity of
pending to be segmented images. We have to point out that
the proposed model is robust to initialization which will be
discussed in Section 5.3. Note that we applied the proposed
model and comparable representative models only on image
slices that really contain WM, GM, and CSF.

4.2.1. Qualitative Comparison. Segmentation results of the
proposed model and three representative methods on the
90th slice of selected BrainWeb cases and the 128th slice of
selected IBSR image cases are given in Figures 8 and 9. The
corresponding bias estimation and correction results are
given in Figures 10 and 11, respectively. The reason we select
these images is that they are the most noisy and biased and
they are therefore challengeable. It can be seen that (1) the
proposedmodel is muchmore robust to noises and bias fields
and (2) segmentation results of the proposed model are much
closer to corresponding ground truth. Quantitative evalua-
tion will be given in Section 4.2.2.

CV
→

RSF
←

CV
→

RSF
←

LIC

LINC

IEOPF

Init & Seg Bias Corrected Init & Seg Bias Corrected

Figure 7: Qualitative comparison with representative models on one synthetic image (left) and one natural image from BSD (right).
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4.2.2. Quantitative Evaluation. To quantitatively evaluate
segmentation results of the proposed framework with the
representative method, false positive ratio (FPR), false nega-
tive ratio (FNR), and dice similarity coefficient (DSC) are
metrics used in this paper. Let NFP and NFN be the number
of FP (false positive) and FN (false negative) and A be the
ground truth, FPR and FNR can then be defined by

FPR = NFP
Ij j − Aj j ð27Þ

and

FNR = NFN
∣A ∣

, ð28Þ

respectively. Pairwise vertical mouldings denote the size of
the contained region. As well known, values of FPR and

FNR are both in ½0, 1� with a smaller value indicating a better
match between the segmentation and the ground truth. On
the other side, the definition DSC can be written as

DSC = 2 ∣ A ∩ B ∣
∣A∣+∣B ∣

, ð29Þ

where ∩ is the intersection operator. Values of DSC are in
the interval of ½0, 1� with a higher value indicating a better
match between the segmentation result B and the ground
truth A.

Quantitative comparison of segmentation results of the
proposed model with representative models on the Brain-
Web and IBSR images in terms of FPR, FNR, and DSC is
given in Figure 11 on the left column and right column,
respectively. For the BrainWeb dataset, it can be seen that
boxes of WM, GM, and CSF of the proposed model in terms
of FPR and FNR are much more compacted and the

Orig CV LIC LINC GINC3
1 GT

Figure 8: Segmentation comparison with highly relevant models on selected BrainWeb images.
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mediums are lower than CV, LIC, and LINC which indi-
cates segmentation results of the proposed model match
better with corresponding ground truth than representative
models. On the contrary, boxes of WM, GM, and CSF of
the proposed model in terms of DSC are also compacted
but the mediums are higher than CV, LIC, and LINC which
indicates a better match of the segmentation results with cor-
responding ground truth. On the other side, for the IBSR
dataset, FPR boxes of WM and FNR boxes of GM and CSF
are more compacted and lower than representative models.
DSC boxes of WM, GM, and CSF are more compacted than
other models with medium values similar to CV but higher
than LIC and LINC. As shown in Figure 12, biases of IBSR
images are weak than BrainWeb and ground truths in IBSR
images consider more nonzero area as gray matter and there-
fore decrease areas of WM and CSF. This is the main reason
that performance of the proposed model on IBSR is worse
than that on BrainWeb images. It has to be pointed out that
we set λ1 = 2:0 to suppress the areas considered as WM by
the proposed model and impact of weighting coefficients will
be discussed in Section 5.4.

5. Discussion

5.1. Relationship with CV and PS. We can figure out that
when bðxÞ = 1, the proposed energy F in Equation (14) can

be simplified as the first term of the CV model as shown in
Equation (2). To ensure the bias field to be 1 on the entire
image domain Ω, the necessary and sufficient condition is
that (1) λ1 = λ2 = 1:0 and (2) w1 = 1:0 and wi = 0 for i = 2,
3,⋯,M. This indicates that the proposed GINC2 model is
a generalization of the Chan-Vese model. In a similar way,
if we define uiðxÞ = wTGðxÞci, the energy defined in Equa-
tion (14) will reduce to the first term of the PS model as
shown in Equation (3) and the smoothness of uiðxÞ are
ensured by the orthogonal primary functions g1, g2, …,
and gM implied in G. Therefore, no further regularization
term like the second term in Equation (3) are needed to
smooth uiðxÞ.

5.2. Improvement to LINC. As described in [41], in the
case of two-phase implementation of the LINC model,
there are 7 convolutions in the size of normalized kernel
K for each iteration of the level set function, which are
the main factor causing computational burden of LINC.
As smoothness of bias fields existing in images with inho-
mogeneous intensities can be guaranteed by orthogonal
primary functions, the proposed model GINC removes
the convolution kernel K from the LINC model and there-
fore there is no convolution in iterations of the level set
function anymore.

Orig CV LIC LINC GINC3
1 GT

Figure 9: Segmentation comparison with highly relevant methods on selected IBSR images.
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Figure 10: Comparison of bias estimation and correction with highly relevant methods on selected BrainWeb images.

Orig Bias Corrected

LIC LINC GINC3
1 LIC LINC GINC3

1

Figure 11: Comparison of bias estimation and correction with highly relevant methods on selected IBSR images.
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5.3. Robustness of GINC to Initialization. As mentioned
above, the proposed model is a generalization of CV and a
simplification of LINC. It is well known that the intensity
constants in CV can be seen as the global average of inside
and outside regions separated by the 0-level set contour.
Therefore, CV is greatly nonsensitive to local intensities
and robust to initialization [30]. On the other side, as pointed
out in [41], LINC is also robust to initialization. Thus, as a
generalization of CV and a simplification of LINC, the pro-
posed model is robust to initialization. We give a demonstra-

tion of the proposed model on one vessel image in four
initialization strategies in Figure 13 to verify robustness of
the proposed model to initialization. It is obvious that there
are no obvious differences between any two strategies in
terms of bias estimation and final segmentations, which
proves that the proposed model is robust to initialization.

5.4. Impact of Weighting Coefficients. For three-phase seg-
mentation of the proposed model on BrainWeb and IBSR
datasets where M1 = ð1 −Hðϕ1ÞÞð1 −Hðϕ2ÞÞ, M2 = ð1 −H
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Figure 12: Quantitative comparison with highly relevant methods on BrainWeb (left) and IBSR (right) images.
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ðϕ1ÞÞHðϕ2Þ, and M3 =Hðϕ1Þ, the formulation in Equation
(20) can be rewritten into

∂ϕ1
∂t

= −δ ϕ1ð Þ −λ1e1 1 −H ϕ2ð Þð Þ − λ2e2H ϕ2ð Þ + λ3e3ð Þ

+ μ ∇2ϕ1− div ∇ϕ1
∣∇ϕ1 ∣

	 
	 

+νδ ϕ1ð Þ div ∇ϕ1

∣∇ϕ1 ∣

	 

,

ð30Þ

∂ϕ2
∂t

= −δ ϕ2ð Þ −λ1e1 1 −H ϕ1ð Þð Þ + λ2e2 1 −H ϕ1ð Þð Þð Þ

+ μ ∇2ϕ2−div
∇ϕ2
∣∇ϕ2 ∣

	 
	 

+νδ ϕ2ð Þ div ∇ϕ2

∣∇ϕ2 ∣

	 

:

ð31Þ
It is obvious that eiðxÞ ≥ 0 in Equation (20) and Mi ∈

½0, 1� where i = 1, 2, 3. Therefore, the first term on the right
hand of Equation (30) is monotone increasing for λ1 and
λ2 and decreasing for λ3, respectively, only if they take
positive values. Thus, given a positive increment on λ1
and λ2, the level set function ϕ1 will be increased much
harder in each iteration. On the contrary, given a positive
increment on λ3, ϕ1 will be decreased much harder. As
described in Algorithm 1, we let the level set functions
take negative and positive values inside and outside the
0-level set contours, respectively. Hence, for all the others
fixed, the greater the coefficient λ1 and λ2 are, the smaller
the region inside the 0-level set contour is, and vice versa.

Similarly, the greater the coefficient λ3 is, the smaller the
region outside the 0-level set contour is, and vice versa.
The same analysis can be applied to Equation (31) to con-
clude that the greater the coefficient λ1 and λ2 are, the
smaller the regions inside and outside the 0-level set con-
tour are, and vice versa. As mentioned earlier, the regular-
ization term and arc length term are used to maintain
regularity of the level set function and smooth 0-level set
contour. Thus, the greater the parameters μ and ν are,
the level set function is closer to sign distance function
and the smoother the 0-level set contour is.

6. Conclusion and Future Work

The proposed model is effective in segmenting images with
inhomogeneous intensities and provide a smooth bias esti-
mation of the inhomogeneity. We will further improve the
proposed model to extract brain tissues in 3D on public
image repositories in our future work.
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