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Functional Brain Networks: Unique Patterns with Hedonic 
Appetite and Confidence to Resist Eating in Older Adults 
with Obesity
Jonathan H. Burdette 1,2, Paul J. Laurienti1,2, Laura L. Miron1,2, Mohsen Bahrami1,3, Sean L. Simpson1,4,  
Barbara J. Nicklas5, Jason Fanning6, and W. Jack Rejeski 5,6

Objective: The purpose of this study was to determine whether base-
line measures of hedonic hunger—the Power of Food Scale—and self- 
control for food consumption—the Weight Efficacy Lifestyle  
Questionnaire—were associated with network topology within two sets of 
brain regions (regions of interest [ROIs] 1 and 2) in a group of older adults 
with obesity. These previously identified brain regions were shown in a 
different cohort of older adults to be critical for discriminating weight loss 
success and failure.
Methods: Baseline functional magnetic resonance imaging data (rest-
ing state and food cue task) were collected in a novel cohort of 67 older 
adults with obesity (65-85 years, BMI = 35-42 kg/m2) participating in an 
18-month randomized clinical trial on weight regain.
Results: The Power of Food Scale was most related to ROI 1, which in-
cludes the visual cortex and sensorimotor processing areas during only 
the food cue state. During both the food cue and resting conditions, the 
Weight Efficacy Lifestyle Questionnaire was associated with ROI 2, which 
includes areas of the attention network and limbic circuitry.
Conclusions: Our findings show critical, distinct links between brain net-
work topology with self-reported measures that capture hedonic hunger 
and the confidence that older adults have in resisting the consumption of 
food because of both intrapersonal and social/environmental cues.

Obesity (2020) 28, 2379-2388. 

Introduction
Our research group has been at the forefront of research on intentional weight loss 
in older adults (1-5), and consistent with data from large multicenter clinical trials of 
weight loss in middle-aged adults (6), considerable variability in the amount of weight 
loss with treatment and eventual weight regain has been observed (7). In 2017, we com-
pleted an 18-month weight loss intervention of older adults with obesity, a subset of 
whom (n = 65) underwent functional magnetic resonance imaging (fMRI) in the morn-
ing following an overnight fast (5). The brain scans were recorded during both the rest-
ing state and a food cue visualization task. Combining functional brain networks and 
machine learning, we were able to discriminate between those who either succeeded or 
failed to meet an 18-month 5% weight loss criterion with an accuracy that exceeded 95% 
(8). We currently have an ongoing federally funded randomized clinical trial of weight 
regain following weight loss in older adults with obesity, and we received a supplement 
that enabled us to collect baseline fMRI data on a subset of the cohort at rest and during 
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Study Importance

What is already known?

►	Obesity is associated with deleterious 
health effects in older adults.

►	We previously applied machine learning 
techniques to functional brain network 
data and found two sets of brain re-
gions that were critical for discriminating 
weight loss success and failure with an 
accuracy greater than 95%.

What does this study add?

►	 In a novel cohort of older adults with obe-
sity undergoing a weight loss interven-
tion, we found significant relationships 
between the organization of the two pre-
viously discovered brain networks and 
measures of food-seeking behavior.

►	The Power of Food Scale was most re-
lated to a collection of brain regions that 
includes the visual cortex and sensory 
motor processing areas during only the 
food cue state, whereas during both 
the food cue and resting conditions, the 
Weight Efficacy Lifestyle Questionnaire 
was associated with a set of brain re-
gions that includes areas of the attention 
network and limbic circuitry.

How might these results change the 
direction of research or the focus of 
clinical practice?

►	The hedonic desire to consume food and 
the ability to control consumption are 
highly variable and depend on individual-
istic experiences that are associated with 
the organization of specific brain networks.

►	More attention in research and clinical 
practice should be given to conditioned 
behavior and to the role of nonconscious 
processes in weight management.
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a food cue visualization task (n = 67) (9). The current study examines 
whether baseline measures of hedonic hunger—the Power of Food 
Scale (PFS) (10)—and a measure of control over eating—the Weight 
Efficacy Lifestyle (WEL) Questionnaire (11)—are associated with 
network organization in the very brain regions that were found to be 
critical for predicting weight loss in our prior work (8).

The PFS was developed by Lowe and colleagues as a measure of 
hedonic hunger (12) and was designed to assess the preoccupation with 
and desire to consume foods for the purpose of pleasure as opposed 
to hunger. Short-term laboratory studies have shown that individuals 
who exhibit higher scores on the PFS display greater attentional bias 
to high-calorie foods and more often choose unhealthy snacks; notably, 
these effects can be neutralized through cognitive distraction (13,14). 
Prior neuroimaging research by our group with the PFS (15,16) has 
shown that the functional brain networks of those scoring high and low 
on the measure differed in the resting state and during a food cue visu-
alization task. Those scoring high, as opposed to low, on the PFS had 
greater local efficiency within the visual cortex and greater community 
structure in the sensorimotor circuit when imagining desired food, irre-
spective of whether they were in a fasted or fed state (15,16).

The WEL Questionnaire, developed by Clark and colleagues, is a mea-
sure of the ability to resist or control eating in different personal states 
or social/environmental contexts (11). Both baseline WEL scores (17) 
and change with treatment (18-20) have been predictive of weight loss, 
with Rejeski and colleagues (20) finding that change in WEL scores 
during the early, intensive phase of treatment partially mediated the 
18-month treatment effect on weight loss.

In the current study, using cross-sectional data from baseline assessments, 
we examine whether scores on the PFS and WEL of older adults with 
obesity are related to network organization of the two regions of inter-
est (ROIs) that were most influential in our prior predictive analyses 
(Supporting Information Figure S1). ROI 1 includes the cerebellum, lat-
eral sensorimotor areas, posterior insula, and midanterior cingulate cortex, 
as well as the early visual cortex, and thus it would be expected to be most 
relevant to the PFS scale (16,20). Because participants were instructed 
to view a cross on a screen during the resting state scan and then words 
of favorite foods during the visualization task, we predicted that the PFS 
would have little relationship to network metrics calculated in the rest-
ing state, whereas it would have a strong relationship to network metrics 
during the visualization task. Because the network topological metrics 
clustering coefficient (CC) and global efficiency (GE) give clues about 
information processing and functional network topology, we hypothesized 
a more small-world topology for those scoring higher on the PFS and a 
more segregated lattice-like topology in those scoring lower on the PFS.

ROI 2 includes bilateral frontal and parietal areas known to be inte-
gral to the executive attention network and components of the hedonic/
goal-directed network, including the amygdala, temporal pole, hippo-
campus, fusiform gyrus, and inferior insula. Because we had previously 
postulated that ROI 2 represents the process of top-down control that 
the attention network projects onto the limbic regions, we expected that 
this region would be most strongly related to WEL scores. Given recent 

work by Chen and colleagues (21), we further hypothesized that the 
WEL would be related to network organization in these regions in both 
the resting state and food visualization task; nonetheless, we expected 
the relationship to be the strongest during the visualization task. As 
such, we hypothesized that individuals scoring lower on the WEL—
those with worse executive control over food—would have a more dis-
tributed small-world network topology in ROI 2 when viewing food and 
a more lattice-like segregated topology during rest.

Methods
Participants
A sample (n = 71) of older adults with obesity were recruited from 
a weight regain study, Empowered with Movement to Prevent 
Obesity and Weight Regain (EMPOWER) (9). All eligible and will-
ing EMPOWER participants without contraindications for an MRI 
scan completed an in-person screening visit and a 45-minute MRI 
scan after an overnight fast. MRI data were collected at baseline be-
fore participants initiated any treatment. Of the 71 participants who 
consented (57 females and 14 males), the final sample included 67 
participants because of complications with the imaging process. This 
study protocol was approved by the Wake Forest School of Medicine 
Institutional Review Board.

Overview of the EMPOWER study
Inclusionary criteria for EMPOWER included: age 65 to 85 years, 
BMI between 35 and 42 kg/m2, and sedentary lifestyle, which is de-
fined as engaging in less than 20 minutes of aerobic exercise per day 
(9). Participants were excluded if they had evidence of cognitive im-
pairment as determined at screening using the Montreal Cognitive 
Assessment (22). See Fanning and colleagues (9) for detailed descrip-
tions of the methods.

Measures
Power of Food scale. The PFS assesses the drive to consume highly 
palatable foods in an obesogenic environment, with higher scores 
associated with higher drive (12). We used the total score of the PFS as 
this score has been shown to have good test-retest reliability (r = 0.77), 
internal consistency (α = 91), and existing support for its construct 
validity (12). For example, in a comprehensive review, Espel-Huynh 
and colleagues (23) reported that individuals with high PFS scores 
attend more readily to highly palatable foods, a shift in attention that is 
accompanied by increased activation in areas of the brain known to be 
related to eating behavior. Additionally, within the context of weight loss 
interventions, the magnitude of reduction in PFS scores with treatment 
has been found to be directly related to the amount of weight lost (24,25).

WEL Questionnaire. The WEL measures confidence in one’s ability 
to resist consuming food in the presence of negative emotions and in 
situations with increased food availability and social pressure (11). 
Higher scores are associated with higher coping ability. Previous work 
(26) reinforced the excellent internal consistency reliability of the WEL 
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total score, Cronbach α = 0.95 (27), with support for construct validation 
demonstrating that people with obesity with low scores are at risk for 
disordered patterns of eating, including binging, food addiction, and 
night-eating syndrome (27). In a clinical trial of weight loss with older 
adults, we found that change in the WEL total score from baseline to  
6 months was predictive of lost weight assessed at 18 months (20).

Procedure for the MRI ancillary study
Initial in-person visit. Documented consent was obtained for this 
ancillary study, and MRI compatibility information was gathered. 
Participants also named their four favorite foods for use in the MRI 
scanning protocol.

MRI scanning visit: resting and food cue states. Participants 
arrived in the morning having fasted from food for at least 8 hours. 
The MRI scan session included two separate fMRI conditions: a 
resting state and a food cue visualization task. During the resting state, 
participants were instructed to keep their eyes open and focus on an on-
screen fixation cross for 6 minutes. During the food cue visualization 
task, participants viewed the words of their favorite food items. As each 
word was presented in 30-second intervals for a total of 6 minutes, 
participants were instructed to imagine the taste, the smell, and the 
satisfaction of consuming the food.

MRI scanning protocol and functional brain network generation. 
See Methods in the online Supporting Information.

Brain regions of interest. This study examined the network 
properties of two functionally defined ROIs found to be predictive of 
weight loss in older adults with obesity (8). These ROIs were within 
the context of the Shen functional atlas (28) (Supporting Information 
Figure S1 and Table S9).

Statistical analysis by mixed-effects modeling and 
associated covariates
We used a mixed-modeling framework in order to understand how 
PFS, WEL, and baseline connection strength were associated with 
topological network characteristics within two functionally defined 
ROIs. We used continuous scores of the PFS and WEL in our models. 
This two-part model examines the probability (presence or absence) 
of network connections as well as the strength of existing connec-
tions (29,30). For the scope of this study, we focused solely on the 
strength of the network connections. Negative correlations (connec-
tion strength) were set to 0 because the model includes graph features 
that are not applicable with negative connections (29). All connec-
tion strength results for each condition are provided in the online 
Supporting Information (Tables S1-S4), as well as a description of 
the probability findings (Supporting Information Tables S5-S8). This 
multivariate regression framework calculated the relationship be-
tween connection strength as the outcome (dependent) variable and 
network and nonnetwork covariates (including interactions between 
the two sets) as the independent variables. The model included aver-
age CC and average GE as network variables (31). Age, sex, race, and 
BMI were included in the model as covariates to control for any asso-
ciation with network organization. To account for potential effects of 
participants’ brain sizes, the spatial Euclidian distance and squared 
distance between network nodes were included as confounding vari-
ables (32). For discussion of statistical power for this approach, see 
Methods in the online Supporting Information.

Planned post hoc analysis
To follow up on significant interactions in the model, further post hoc 
analyses were performed. Specifically, we applied appropriate contrast 
statements to the regression analyses to examine the interactions be-
tween the PFS or WEL and the network topological feathers (CC and 
GE) within the ROIs. These post hoc analyses enabled us to determine 
whether the PFS and WEL contributed to statistically significant in-
teractions by estimating the contrast statements of already estimated 
residuals for corresponding parameters.

Results
Table 1 displays demographic information and variables of interest in-
cluded in the statistical model. Participant average age was 70.8 years 
with an average BMI of 35.3 kg/m2. Scores on either the PFS or WEL 
did not differ by sex. For the PFS, only ROI 1 results are shown because 
there were no significant findings for ROI 2, whereas for the WEL, we 
discuss only ROI 2 because there were no significant effects for ROI 
1 (see Supporting Information Tables S1-S4 and Results in the online 
Supporting Information for a complete set of model results).

PFS results
Food cue visualization. As hypothesized, significant three-way 
interactions between GE*PFS*ROI 1 and CC*PFS*ROI 1 on connection 
strength illustrate that the PFS affected the relationships between 
connection strength and our network variables of interest (GE and CC) 
significantly more within ROI 1 compared with the remainder of the 
brain (Table 2). Results for the contrasts (Table 3) indicate that the PFS 
significantly altered the relationship between connection strength and 
both network variables. This interaction was positive for GE, indicating 
that the relationship between GE and connection strength was greater 
in those with higher PFS scores. For CC, the interaction was negative, 
indicating that the relationship between CC and connection strength 
was lower in those individuals with higher PFS scores.

Figure 1 illustrates the significant three-way interaction for 
GE*PFS*ROI 1. Because the PFS is a continuous variable, the actual 
plots of this interaction would be three-dimensional planes and diffi-
cult to visualize. Therefore, although continuous data were used for 
the actual statistical model, we used the upper and lower bounds of the 
PFS distribution to create individual lines representing the relationship 

TABLE 1 Participant demographics and measures

Variable
Overall 
(n = 67)

Male 
(n = 13)

Female 
(n = 54)

Age (y), mean (SD) 70.8 (4.6) 70.7 (5.3) 70.8 (4.5)
BMI (kg/m2), mean (SD) 35.3 (3.4) 35.4 (3.2) 35.3 (3.4)
Race, n (%)

African American or Black 18 (26.9) 1 (7.7) 17 (31.5)
Hispanic 1 (1.5) 0 1 (1.9)
White 48 (71.6) 12 (92.1) 36 (66.7)

Behavioral measures, mean (SD)
Power of Food Scale (PFS) 2.60 (0.88) 2.31 (0.85) 2.68 (0.88)
Weight Efficacy Lifestyle (WEL) 107.3 (28.5) 104.8 (22.5) 107.9 (29.9)
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at higher and lower PFS scores. It is clear from Figure 1A that there 
was no difference in the relationship between GE and connection 
strength for different PFS scores in the brain areas outside ROI 1 
because the slopes are similar for blue and green lines. However, sig-
nificant effects of the PFS on GE in ROI 1 are supported by the slope 
for those with higher PFS (yellow line) than lower PFS scores (red 
line). Figure 1C shows the relationship between connection strength, 
CC, and PFS within ROI 1 and for the remainder of the brain. Clearly, 
there is no difference in the slope for those with higher and lower PFS 
scores in the regions outside ROI 1 (blue and green lines). The signif-
icant interaction of the PFS and CC within ROI 1 is depicted by the 
shallow slope for higher PFS scores (yellow line) relative to lower PFS 

scores (red line) and relative to both the higher and lower PFS scores 
outside ROI 1.

Resting state. A key difference for the resting state compared with the food 
cue visualization task was that the hypothesized interaction of GE*PFS*ROI 
1 did not achieve significance. These outcomes are shown pictorially in 
Figure 1B. Although the slopes of the red and yellow lines differ from the 
slopes of the blue and green lines, consistent with the significant GE*ROI 1 
interaction, the slopes of the red-yellow and blue-green line pairs are similar 
because the GE*PFS*ROI 1 interaction was not significant. In addition, the  
three-way interaction of interest for CC (CC*PFS*ROI 1) was not 
significant (Figure 1D).

TABLE 2 Regression results for PFS

Estimate (β) SE t-score P value

Food cue state
PFS 0.00449 0.004224 1.06 0.2876
ROI 1 0.04584 0.001180 38.84 <0.0001
PFS*ROI 1 0.00133 0.001181 1.13 0.2586
GE 0.03368 0.000991 33.98 <0.0001
GE*PFS −0.00063 0.000990 −0.64 0.5231
GE*ROI 1 0.02908 0.002461 11.81 <0.0001
GE*PFS*ROI 1 0.01329 0.002599 5.11 <0.0001
CC 0.07362 0.001020 72.21 <0.0001
CC*PFS 0.00066 0.001018 0.65 0.5174
CC*ROI 1 −0.00673 0.002388 −2.82 0.0048
CC*PFS*ROI 1 −0.01089 0.002488 −4.37 <0.0001
Resting state
PFS −0.00439 0.004518 −0.97 0.3317
ROI 1 0.04515 0.001218 37.07 <0.0001
PFS*ROI 1 −0.00177 0.001208 −1.46 0.1437
GE 0.03344 0.001150 29.09 <0.0001
GE*PFS −0.00048 0.001149 −0.42 0.6732
GE*ROI 1 0.02354 0.002636 8.93 <0.0001
GE*PFS*ROI 1 −0.00073 0.002709 −0.27 0.7870
CC 0.07691 0.001154 66.67 <0.0001
CC*PFS −0.00031 0.001156 −0.27 0.7857
CC*ROI 1 −0.00151 0.002518 −0.60 0.5480
CC*PFS*ROI 1 −0.00224 0.002545 −0.88 0.3779

Results are for network strength and include analyses for ROI 1. Main hypothesized interactions are highlighted in gray with significant effects bolded. Asterisks denote interac-
tion between variables.
CC, clustering coefficient; GE, global efficiency; PFS, Power of Food Scale; ROI, region of interest 1.

TABLE 3 Post hoc findings on topological characteristics of ROI 1 driven by PFS during food cue state

Estimate (β) SE t-score P value

GE*PFS within ROI 1 0.01266 0.002738 4.62 <0.0001
CC*PFS within ROI 1 −0.01023 0.002644 −3.87 0.0001

Significant effects bolded.
CC, clustering coefficient; GE, global efficiency; PFS, Power of Food Scale; ROI 1, region of interest.



Obesity

www.obesityjournal.org  Obesity | VOLUME 28 | NUMBER 12 | DECEMBER 2020     2383

Original Article
OBESITY BIOLOGY AND INTEGRATED PHYSIOLOGY

WEL Questionnaire
Food cue visualization task. The main hypothesized interactions 
(GE*WEL*ROI 2 and CC*WEL*ROI 2) were significant, indicating that 
the interaction between GE and CC with the WEL was stronger in ROI 2  

than the remainder of the brain (Table 4). The results for the contrasts 
(Table 5) indicate that the WEL significantly altered the relationship 
between connection strength and both network variables within ROI 2  
during the food cue condition. The interaction was negative for GE, 

Figure 1 Association of connection strength, network variable (global efficiency and clustering coefficient), Power of Food Scale (PFS), 
and ROI 1 in comparison with connection strength of the remainder of the brain (all brain regions outside of ROI 1). Note that the PFS 
is a continuous variable, and the statistical analyses used the continuous variable in the model. However, to help clarify the statistical 
findings, we used upper and lower bounds of the scores to create a generalized representation of those with higher and lower PFS 
scores (“High PFS” and “Low PFS” in the graphs). [Color figure can be viewed at wileyonlinelibrary.com]
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indicating that the relationship between GE and connection strength 
was lower in those individuals with higher WEL scores. For CC, the 
interaction was positive, indicating that the relationship between CC 
and connection strength was higher in those individuals with higher 
WEL scores.

Figure 2 illustrates these interactions (GE and CC with WEL in ROI 2).  
As with the PFS, the WEL was used as a continuous variable in the 
statistical model, but we used the upper and lower bounds of the distri-
bution to create plots to visualize the relationship for higher and lower 
WEL scores. Figure 2A and 2C graphically depict the significant WEL 
findings during the food visualization task for GE and CC, respectively. 
For both network variables, the lack of interaction with the WEL in 
areas outside ROI 2 is evident by the blue and green lines that have 
highly similar slopes in each graph. For GE, the negative three-way 
interaction (GE*WEL*ROI 2) resulted in a steeper slope for the lower 
WEL scores (red line) than for the higher WEL scores (yellow line). 
This indicates that the connection strength increases that were associ-
ated with increases in GE were greater for those with lower WEL scores 
but only in ROI 2. For CC, the three-way interaction (CC*WEL*ROI 2)  
was positive. This is illustrated in Figure 2C by the steeper slope of 
those with higher WEL scores (yellow line), as connection strength rap-
idly increased as CC increased for higher WEL scores compared with 
lower WEL scores (red line).

Resting state. The hypothesized three-way interaction (GE*WEL* 
ROI 2) was significant, indicating that the interaction between GE and 
WEL was stronger in ROI 2 than in the remainder of the brain (Table 
4). CC exhibited a significant main effect and a significant interaction 
with ROI 2 but not with the WEL. As with GE, the hypothesized three-
way interaction (CC*WEL*ROI 2) was significant, indicating that the 
interaction between CC and the WEL was also stronger in ROI 2 than 
in the remainder of the brain.

Contrasts were used to determine the strength and direction of the WEL 
effect in ROI 2 for the resting state (Table 5). WEL scores significantly 
altered the relationship between connection strength and both network 
variables within ROI 2 during the resting state, but the direction of these 
effects was opposite of those observed during the food cue state. The 
interaction was positive for GE, indicating the relationship between GE 
and connection strength was higher in those individuals with higher 
WEL scores. The interaction for CC was negative, indicating that the 
relationship between CC and connection strength was lower in those 
individuals with higher WEL scores.

Figure 2B and 2D graphically demonstrate the findings for the resting 
state. For both GE and CC, the slopes for individuals with higher (green 
line) and lower (blue line) WEL scores are similar in the brain regions 
outside ROI 2. In ROI 2, GE exhibited the strongest relationship with 
connection strength for higher WEL scores (yellow line). For lower 
WEL scores, the slope of the line becomes negative, indicating that 

TABLE 4 Regression results for WEL

Estimate (β) SE t-score P value

Food cue state
WEL −0.00893 0.003915 −2.28 0.0225
ROI 2 0.02956 0.001413 20.91 <0.0001
WEL*ROI 2 0.00173 0.001467 1.18 0.2384
GE 0.03482 0.001010 34.48 <0.0001
GE*WEL −0.00077 0.001009 −0.76 0.4460
GE*ROI 2 0.01295 0.002948 4.39 <0.0001
GE*WEL*ROI 2 −0.00915 0.002975 −3.07 0.0021
CC 0.07309 0.001051 69.51 <0.0001
CC*WEL −0.00061 0.001052 −0.58 0.5611
CC*ROI 2 0.01196 0.002720 4.40 <0.0001
CC*WEL*ROI 2 0.00783 0.002502 3.13 0.0018
Resting state
WEL −0.00529 0.004342 −1.22 0.2228
ROI 2 0.02579 0.001470 17.55 <0.0001
WEL*ROI 2 0.00212 0.001475 1.44 0.1502
GE 0.03495 0.001097 31.85 <0.0001
GE*WEL 0.00046 0.001095 0.42 0.6774
GE*ROI 2 −0.00294 0.003163 −0.93 0.3530
GE*WEL*ROI 2 0.01519 0.003343 4.54 <0.0001
CC 0.07599 0.001138 66.79 <0.0001
CC*WEL −0.00162 0.001133 −1.43 0.1535
CC*ROI 2 0.02279 0.003028 7.53 <0.0001
CC*WEL*ROI 2 −0.01512 0.003241 −4.67 <0.0001

Results are for network strength and include analyses for ROI 2. Main hypothesized interactions are highlighted in gray with significant effects bolded. Asterisks indicate interac-
tions between variables.
CC, clustering coefficient; GE, global efficiency; ROI 2, region of interest 2; WEL, Weight Efficacy Lifestyle Questionnaire.
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as GE increased the connection strength decreased. For CC in ROI 2,  
lower WEL scores were associated with a steeper slope (red line). 
Higher WEL scores (yellow line) exhibited a relationship comparable 
with areas outside ROI 2.

Discussion
In line with our first hypothesis, PFS scores of older adults with obe-
sity were strongly related to ROI 1 during the food cue visualization 
task, whereas there was no relationship of the PFS to ROI 1 during the 
resting state. Interestingly, whereas the PFS was unrelated to ROI 2,  
as hypothesized, the WEL was related to ROI 2 both in the resting state 
and during the cue visualization task. The results for ROI 1, supported 
by our prior research (15,16), underscore that the psychological con-
struct assessed by the PFS has its origin in complex interactions be-
tween multiple brain regions that are activated during visualization of 
desired food cues. This network involves both unconscious—sensory, 
motor, cognitive, and affective processes that are likely responsible for 
the intrusive quality of food craving—and conscious cognitive and af-
fective processes that serve to elaborate on these intrusive cues that fuel 
the desire for food consumption, a position consistent with Kavanagh’s 
Elaborated Intrusion Theory of Desire (33). ROI 1 is a network dom-
inated by interactions between the cerebellum, lateral sensorimotor 
areas (including face, mouth, and throat), posterior insula, and midante-
rior cingulate cortex, as well as the early visual cortex (8).

As we have previously postulated, ROI 2 captures top-down control that 
the attention network projects onto limbic regions known to be important 
in goal-oriented behavior (34,35). It encompasses a bilateral interact-
ing pattern between the executive attention network and hedonic/goal- 
directed network including the amygdala, hippocampus, and inferior 
insula (8). Prior research has shown that these limbic regions are impli-
cated in the obesity epidemic (36). Droutman et al. (37), consistent with 
work by others (38,39), argued that the anterior insula is an integrative 
interoceptive site connecting autonomic, affective, and cognitive pro-
cessing. Altered connectivity within this network ROI could adversely 
affect inhibitory control leading to behavioral dysregulation (40), pro-
cesses that are highly relevant to the construct assessed by the WEL (27).

It is important to understand the neuroscientific implication of the 
associations of network topology between the PFS and WEL. As 
indicated, the PFS was closely associated with connectivity of ROI 1.  

In the food cue condition, as PFS scores increased, the nodes with 
high CC had relatively weaker connections, whereas the nodes with 
high GE had relatively stronger connections. In such a situation, the 
high CC nodes would form distinct but weakly connected clusters. 
These clusters would coexist with strongly interconnected nodes 
with high GE. This is a so-called small-world topology (41) that 
supports regional and distributed information processing. As PFS 
scores decreased, the nodes with high CC became more strongly 
interconnected; in addition, the links between the nodes with high 
GE became weaker. Thus, when the lower PFS participants observed 
food cues, they had a more lattice-like communication pattern, which 
would lead to more information segregation with only limited inte-
gration across the network.

Interestingly, the slopes of the low PFS participants in these graphs 
within ROI 1 are like the slopes in these low PFS participants in the 
remainder of the brain, and the slopes do not change substantially 
between rest and food cues. It is the slope changes within the partic-
ipants with high PFS when confronted with food cues that drive the 
statistically significant findings. Research in the field of weight man-
agement in middle-aged and older adults has observed that reductions 
in PFS scores with treatment are related to the use of weight control 
strategies (25) and that the magnitude of change in PFS scores is related 
to the amount of weight lost with treatment (24).

The statistically significant associations between the WEL, network vari-
ables, and presentation state were within ROI 2, unlike the PFS whose 
significant relationships were in ROI 1. Also, unlike the PFS, findings 
for the WEL measure included significant associations in both the food 
cue and resting states. However, the direction of the effects of the WEL 
in ROI 2 depended on condition. In the rest condition, the participants 
with low WEL scores were in a more lattice-like configuration with seg-
regation of information compared with the participants with high WEL 
scores. However, when presented with food cues, the network character-
istics in ROI 2 flipped in the participants with low WEL scores, showing 
small-world topology compared with the participants with high WEL 
scores. Existing research with the WEL has observed improvement in 
cognitive control with weight loss treatment programs among younger, 
middle-aged, and older adults with obesity (18-20), with a clinical study 
of sleeve gastrectomy among middle-aged and older adults with obesity 
showing that change in WEL scores from presurgery to 16 weeks post-
surgery predicted weight regain 4.5 years later (42).

TABLE 5 Post hoc findings on topological characteristics of ROI 2 driven by WEL for food cue visualization state and resting 
state

Estimate (β) SE t-score P value

Food cue state
GE*WEL within ROI 2 −0.00992 0.003109 −3.19 0.0014
CC*WEL within ROI 2 0.00722 0.002681 2.69 0.0071
Resting state
GE*WEL within ROI 2 0.01565 0.003487 4.49 <0.0001
CC*WEL within ROI 2 −0.01673 0.003401 −4.92 <0.0001

Significant effects bolded.
CC, clustering coefficient; GE, global efficiency; ROI 2, region of interest 2; WEL, Weight Efficacy Lifestyle Questionnaire.
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In a recent review of the PFS (23), Espel-Huynh and colleagues sug-
gested that the PFS is related to disordered eating as found with bing-
ing and weight cycling. It is important to underscore that both the 
PFS and WEL tap into constructs involved in conscious processing. 
Because we have emphasized that behavior change in aging involves 

both conscious and nonconscious processes (43), a position strongly 
supported by our network analyses (8), we hypothesize that data from 
baseline fMRI scans collected during both the resting state and the 
food cue visualization task will predict weight cycling and weight 
regain over and above data from the PFS and WEL. Because both the 

Figure 2 Association of connection strength, network variable (global efficiency and clustering coefficient), Weight Efficacy Lifestyle 
Questionnaire (WEL), and ROI 2 in comparison with connection strength of the remainder of the brain (all brain regions outside of ROI 
2). Note that the WEL is a continuous variable, and the statistical analyses used the continuous variable in the model. However, to help 
clarify the statistical findings, we used upper and lower bounds of the scores to create a representation of those with higher and lower 
WEL scores (“High WEL” and “Low WEL” in the graphs). [Color figure can be viewed at wileyonlinelibrary.com]
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PFS and WEL have been shown to be responsive to behavioral weight 
loss (18,20,24,25) across life-spans, future research should examine 
both behavioral and pharmacological approaches to modifying activ-
ity in the ROIs that we have identified as central to weight loss in 
older adults (8), as well as whether targeting unconscious processes 
in the treatment of obesity (44) is essential for those who struggle 
with disordered eating because of the motivational power of food and 
poor top-down control essential to self-regulation in an obesogenic 
environment.

This study is not without limitations. These data are cross-sectional and 
can be generalized only to older adults who have obesity and are free of 
cognitive impairment. Furthermore, limitations in the sample size did 
not permit us to explore differences as a function of either sex or race. 
Notwithstanding these limitations, the results of this study represent a 
growing segment of the older adult population that contains valid can-
didates for weight loss because of the presence of multiple comorbid 
conditions.

Conclusion
The current study is both novel and innovative in that we employed two 
ROIs, those with the most influence in our prior predictive analyses 
of long-term weight loss, to investigate their relationship with the PFS 
and WEL. These analyses were conducted on an independent, broader 
sample of older adults with obesity involved in an ongoing study of 
weight regain. Clearly, each construct has critical links to distinct brain 
network topology. The results reinforce the fact that both the motive to 
pursue food and the ability to cope with the social/environmental de-
terminants of eating behavior involve complex conscious and noncon-
scious processes that involve communication across multiple regions 
of the brain. Of note, nonconscious processes have been given scant 
attention in the behavioral treatment of obesity.O
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