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Abstract: In this work, a personal thermal management (PTM) device based on single walled carbon
nanotubes (SWCNTs) functionalized polyester fabrics had been studied. Polyester fabrics were func-
tionalized with SWCNTs through coating method with poly (butyl acrylate) emulsion as the adhesive.
The SEM images exhibited that SWCNTs formed high-efficiently conductive networks due to the large
aspect ratio and uniform dispersion. A steady-state temperature of 40 ◦C was achieved at the input
voltage of 2.5 V within 7 s, which exhibited excellent electro-thermal performance. Even under
periodic heating-cooling conditions, heating system still displayed relatively stable temperature and
relative resistance, which could have potential application for wearable clothes.

Keywords: personal thermal management; single-walled carbon nanotubes; polyester fabrics; func-
tionalize; electro-thermal performance

1. Introduction

Wearable devices, with various functions as health care, as personal thermal man-
agement (PTM), had become ubiquitous in daily life [1–7]. Certainly, light, comfortable
and energy-efficient PTM devices are emerging and rapidly integrated into human lives.
PTM devices could regulate body temperature to a thermally secure and comfort state by
combining functional nano-materials with traditional textile, which could mitigate a vast
amount of energy during the heating process, even could be helpful for the global warming
and energy crisis.

Currently, different types of electro-thermal materials had been studied for using
PTM device. Traditional electro-thermal materials as Cu, Fe and Cr based alloy show high
thermomechanical properties, however some disadvantages such as low heating efficiency,
heavy weight and uncomfortable feeling are far from expectation [8,9]. The application
of indium tin oxide (ITO) with high conductivity is impeded due to the slow thermal
response and frangibility [10–13]. Therefore, the considerable efforts are being devoted
to the preparation of all kinds of excellent electro-thermal materials, such as metallic
nanowire [14], graphene [15–17], conductive polymers [18–20] and carbon nanotubes
(CNTs) [21,22].

CNTs had been discovered in 1991, with the properties of light, remarkable flexibility
and excellent mechanical performance [23–27]. Better yet, the large aspect ratios of CNTs
could shape 3-dimensional (3D) conductive networks, which greatly fit for the electrical en-
ergy converted into thermal energy with high-efficiently. From this viewpoint, CNTs could
present a compliant material for the preparation of personal thermal management device.
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Single-walled carbon nanotube (SWCNTs), with outstanding electronic and mechanical
performance, was most excellent and novel material among the CNTs family. Therefore,
SWCNTs could be worked as part of ideal electro-thermal devices.

In this work, we proposed the strategy of developing the SWCNTs functionalized
polyester fabrics as PTM device for heating system by coating method, while the heating
system exhibited excellent electrical conductivity and electro-thermal properties with
fast response and high stability, which could stable at 40 ◦C with 2.5 V, exhibit excellent
potential on the electro-thermal devices.

2. Experimental Section
2.1. Materials and Pretreatment

SWCNTs viscous solution was supplied by Suzhou Institute of Nano-tech and Nano-
bionics [28]. Polyester fabrics were obtained from Wujiang Fu Hua Weaving Co., Ltd.,
Suzhou, China. NaOH (chemical purity), butyl acrylate (chemical purity) and methacrylic
acid (chemical purity) was purchased from Guoyao Company, Beijing, China. Styrene,
primary alcobol Ethoxylate (AEO), sodium dodecyl sulfate, potassium persulfate and
sodium bicarbonate (all chemical purity) was purchased from TCI Company, Tokyo, Japan.

The polyester fabrics were immersed in 7 g·L−1 NaOH at 90 ◦C for 50 min to remove
the impurity, then the polyester fabrics were washed under water until neutral and dried
in an oven (Shanghai Jing Hong Laboratory Instrument Co.,Ltd, Shanghai, China) for
one night.

The PBA emulsion was synthesized by the polymerization of butyl acrylate, methacrylic
acid and styrene [29]. 2.04 g butyl acrylate, 0.87 g styrene and 0.07 g methacrylic acid was
first added into a 500 mL flask, and stirred for 20 min. After that, 0.11 g AEO and 0.08 g
sodium dodecyl sulfate was added into the flask and stirred to gain a pre-emulsion. Deionic
water and sodium bicarbonate was added into the flask and heated to 75 ◦C. Then 10 mL of
2 g·L−1 polymerization initiator potassium persulfate was dropped into the pre-emulsion
with the spread of 2 drop·s−1 and heated upon 80 ◦C for 30 min. The mixture was then
heat to 85 ◦C for 1 h, and adjust Ph to neutral with the temperature of 60 ◦C. The PBA
emulsion was collected after cool to the room temperature.

2.2. Fabrication of PTM Device

SWCNTs functionalized polyester fabrics were prepared by the coating method.
The SWCNTs was homogeneous coated on a polyester fabric along the conductive threads
by a mold with the length and width of 1 and 2.5 cm, and the coating concentration was
0.04 g·cm−2, respectively. Then, the sample was dried in a vacuum oven at 40 ◦C for
one night. After that, the PBA emulsion was coated on the surface of the SWCNTs layer
with the concentration of 16 µL·cm−2. Heating system equivalent model was exhibited in
Figure 1 and Scheme 1. As an advanced stretchable structure, the island-bridge design has
been widely explored for stretchable electronics, which could confine strains/de-formations
to the stretchable interconnects [30]. Basically, the 9 pieces of SWCNTs coated on a polyester
fabric (20 cm × 20 cm) were connected to a parallel circuit. Copper wire (0.2 mm) was used
as the circuit for heating system through the polyester in a serpentine shape.
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Figure 1. System concept with 9 pieces of SWCNTs connected via conductive threads (a) design
image, (b) sample image.

2.3. Characterization

The morphologies of carbon nanotubes functionalized fabrics were characterized
by a field emission Scanning Electron Microcopy (SEM; S-4800, Hitachi, Tokyo, Japan)
under high vacuum with the operation voltage of 3 kV. The Structure of SWCNTs was
observed by high resolution transmission electron microscope (HRTEM; FEI TECNAI
G20, FEI, Hillsboro, OR, USA). The SWCNTs dispersion was analyzed by testing Zeta
potential (Nano-ZS90, Malvern, Malvin, UK) at 25 ◦C. Raman spectra was collected using
a Micro-Raman Spectrometer (Labram Xplora, Horibajy, Paris, France) equipped with a 638
nm laser and a glass slide as substrate. Macroscopic morphology of coated surface of
polyester was acquired by a digital microscope (VHX-100, Keyence, Osaka, Japan) with
the magnification power of 150×. The electro-thermal experiments were examined under
constant temperature and humidity to evaluate the heating performance of the heating
system. The voltage was applied through a DC regulated power source (QJ6003S, QJE,
Ningbo, China) from 0 and 3 V, and the crocodile clip test wire linked the wire of heating
system to the power source. The resistance was measured using the digital multimeter
(17b+, Fluke, Everett, WA, USA). Thermal imager (T620 2.1, FLIR, Wilsonville, OR, USA)
was employed to monitor the surface temperature. The response time could be calculated
by the relationship between temperature and time during the heating state. The washing
stability was measured by the thermal performance with 0, 5 and 10 times washed fabric.

3. Results and Discussions
3.1. Morphology and Dispersion of SWCNTs

The as-used CNTs with distinct layer number of 1 was SWCNTs, which could be ob-
served from HRTEM image depicted in Figure 2a. The large aspect ratio of SWCNTs, which
had given contribution to the formation of the chain-like and 3D conductive networks
structure, could enrich the conduction pathway for electron transport and promote the long-
distance transport of electrons (Figure 2b). However, SWCNTs were easily wrapped around
by Van der Waals force owing to high specific surface. Then, the dispersion was measured
by zeta potential. The zeta potential of SWCNTs aqueous dispersion was −34 mV. It
indicated that the electron density accumulated on the surface was high and therefore pro-
duced large electrostatic force. It could greatly aid the dispersion of SWCNTs and facilitate
the formation of outstanding electrically conductive pathway. The interfacial resistance
was also reduced. It was contributed to acquire better electro-thermal performance.
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Figure 2. (a) HRTEM image of the microstructure of a SWCNT, (b) SEM image of SWCNTs conduc-
tive networks.

SWCNTs, an electro-thermal material, was combined with polyester as a coating to
form the heating system. From section SEM image of the coating fabric, the fracture surfaces
could be observed directly, the top layer was the SWCNTs layer with the PBA emulsion
(Figure 3a). Even though due to the concavo-convex of the fiber surface, the thickness of
the layer was not extremely uniform. However, compared with the electro-thermal test,
the SWCNTs emulsion layer was well-coated on the fabric surface. Due to the different
observation of SWCNTs emulsion surface, the image of the heating system surface without
emulsion was revealed by digital microscope in Figure 3b. The fabric could be observed to
be uniformly coated with SWCNTs, which ensured the homogeneity of heating process.
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3.2. Raman Spectra Analysis

Raman spectra had been observed to evaluate the SWCNTs coating on polyester
fabrics (Figure 4). The characteristic bands at 148 and 194 cm−1, were named as radial
breathing mode (RMB), which could be used as mark for single-walled. The peak at
1322 cm−1 was D-band that related to the defects and disorder of graphene sheets. [31]
Tangential band (G-band) located at 1590 cm−1 correspond to C-C stretching. G’-band
was Centered at 2630 cm−1, whose frequency shift was about twice as high as D-band,
but the generation of G’-band was independent of the defects of graphite layer. Further
calculated ID/IG ratio was 0.12 on the basis of Figure 4, which suggested a high crystallinity
of the SWCNTs.
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3.3. Electro-Thermal Performance

Figure 5a exhibited the current-voltage characteristics for the heating system. The lin-
ear relationship between current and voltage was consistent. The current was increased
with the voltage, and the correlation coefficient reach 0.99, which indicate the heating
system could keep resistance stability within the adjusted voltage range.
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Figure 5. Electro-thermal performance of heating system: (a) current as function of applied voltage,
(b) Tmax versus the applied voltages.

The electro-thermal behaviors were measured under the constant temperature and hu-
midity by inputting DC voltage between 0 and 3 V (Figure 5b). The conversion mechanism
could be explained by the fact that the migration of charge carriers in the system might
become accelerated due to the influence of external electric potential. These accelerated
electrons might collide in-elastically with phonons, impurities or defects presented in
the SWCNTs walls, which lead to the heat release [32,33].

The heating temperature was controlled at 40 ◦C due to the comfort for the human
body. The quadratic correlation of the maximum temperature (Tmax) and voltage were
presented in Figure 5b. The Tmax increased with the increasing voltage, which certificated
that the heating system had excellent electro-thermal property owing to the coating of
SWCNTs. Consequently, the eletro-thermal behavior of heating system prepared could be
controlled effectively by adjusting the input voltage. A steady-state temperature of 38 ◦C
was gained under 2.4 V, and it could promote to 43 ◦C by increasing the voltage up to
2.6 V. It could be inferred that the required temperature of 40 ◦C could be obtained around
the voltage of 2.5 V. Better heating performance could be obtained at lower voltage, which
demonstrates efficient and safety of the electro-thermal conversion of heating system.

The time-dependent temperature curves could be divided into three main regions in
Figure 6, the heating region, the steady region and the cooling region. The temperature
increased rapidly and reached the steady-state temperature of 40 ◦C with 2.5 V from
the room temperature. During this stage, only a small portion Joule heat was lost into
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the surroundings, and the most was used to heat the system. In the steady temperature
region, heat converted from electric energy was equilibrated with the heat that lost into
surroundings by convection and radiation, which based on the energy conversation law.
At last, heating system cooled rapidly to ambient temperature as the power source was
turned off at 200 s.
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electro-thermal response to the applied voltage.

The operational stability was an important parameter for the electric heating element
which determines the service life and market prospect. The cycling heating-cooling tests
were conducted to represent the long-term stable state. The tests were performed 10 times
under periodic input voltage of 2.5 V, with an on/off-ratio of 300 s (Figure 7a). In General,
the whole cyclic process maintained faster heating, cooling responses and steady-state
temperature fluctuated around 40 ◦C, which supported the view that the heating system
prepared has excellent repeatable electrical heating performance.
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Additionally, the electro-thermal stability was quantitatively measured by the relative
resistance R/R0 (R is the initial resistance, R0 is the resistance in different cycles) which
could reveal the electro-thermal reproducibility. Figure 7b exhibited that the Tmax and
R/R0 were slightly changed with the increasing cycle number. Initially, the Tmax rose
and the R/R0 decreased due to the warmup, and then remained stable in general during
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the heating-cooling cycles. consequently, it could be inferred that the heating system had
high thermal stability and advanced application prospect in PTM devices.

3.4. Washing Stability

The washing stability was measured by the thermal performance with the fabric
washed for 0, 5 and 10 times. The fabric was washed in a oscillating machine with a soap
concentration of 0.04 g·L−1 at a temperature of 40 ◦C for 30 min. The results were exhibited
in Figure 8. All of the fabric samples exhibit a rapid temperature response at the first
20 s while the stable temperature was about 40 ◦C. The fabric samples exhibit nearly
the same curve of the thermal performance, which proves that this system was quite stable
in the washing process.
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4. Conclusions

A personal thermal management device based on single-walled carbon nanotubes
functionalized polyester fabrics was successfully manufactured and the electro-thermal
performance was systematically investigated. The SEM image and zeta potential indicated
that SWCNTs were uniform dispersed, which reduce interfacial resistance and produced
better conductive networks. The excellent electro-thermal performance was also observed.
Heating system revealed an evidently rapid temperature response to the voltage, and in
the continuous heating-cooling cycles test, Tmax and R/R0 remained stable in general. In
brief, SWCNTs functionalized polyester fabrics, as the heating system, exhibited rapid
electro-thermal response and operational stability. Moreover, PTM could reduce individual
demand for power and lessen dependence on energy. From the aforementioned viewpoint,
SWCNTs functionalized polyester fabrics could be used for the intelligent heating clothing
with a controllable and safe temperature.
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