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Allogeneic stem cell transplantation (alloSCT) is utilised to cure haematological
malignancies through a combination of conditioning regimen intensity and
immunological disease control via the graft versus tumour (GVT) effect. Currently,
conventional myeloablative chemotherapeutic or chemoradiation conditioning regimens
are associated with significant side effects including graft versus host disease (GVHD),
infection, and organ toxicity. Conversely, more tolerable reduced intensity conditioning
(RIC) regimens are associated with unacceptably higher rates of disease relapse, partly
through an excess incidence of mixed chimerism. Improvement in post-alloSCT
outcomes therefore depends on promotion of the GVT effect whilst simultaneously
reducing conditioning-related toxicity. We have previously shown that this could be
achieved through BCL-2 inhibition, and in this study, we explored the modulation of
JAK1/2 as a strategy to lower the barrier to donor engraftment in the setting of RIC. We
investigated the impact of short-term treatment of BCL2 (venetoclax) or JAK1/2
(ruxolitinib) inhibition on recipient natural killer and T cell immunity and the subsequent
effect on donor engraftment. We identified striking differences in mechanism of action of
these two drugs on immune cell subsets in the bone marrow of recipients, and in the
regulation of MHC class-II and interferon-inducible gene expression, leading to different
rates of GVHD. This study demonstrates that the repurposed use of ruxolitinib or
venetoclax can be utilised as pre-transplant immune-modulators to promote the
efficacy of alloSCT, whilst reducing its toxicity.
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INTRODUCTION

Allogeneic stem cell transplantation (alloSCT) is used to cure a
range of haematological malignancies in part through the
induction of the graft versus tumour (GVT) response mediated
by engrafted donor immunity (1). Myeloablative conditioning
(MAC) regimens have been the mainstay of allogeneic
transplantation and produce reliable donor T cell engraftment
but are associated with transplant-related toxicity and graft-
versus host disease (GVHD), which collectively contribute to a
transplant-related mortality of 20% in most series (2). In order to
mitigate these toxicities in older patients or in those with
comorbidities, a range of reduced-intensity conditioning (RIC)
regimens have been employed over the last 20 years of alloSCT
practice and now accounts for nearly two thirds of all transplant
conditioning regimens (3, 4). However, RIC is often associated
with mixed donor cell chimerism and a concurrent reduction
in the GVT effect (5–7). Therefore, novel approaches to
conditioning are required to enhance and maintain donor
engraftment and GVT effect following RIC, whilst avoiding the
toxicity and mortality rates associated with MAC.

We have previously shown that following RIC, residual
recipient immunity acts as a barrier to donor engraftment that
can be overcome by the addition of targeted therapy to RIC
regimens (8, 9). Importantly, the brief pharmacological
inhibition of BCL2 using venetoclax prior to RIC in mice
resulted in depletion of residual recipient immunity and
subsequent rapid donor cell engraftment in most recipients.
Additionally, an absence of inflammatory cytokine production
and avoidance of GVHD onset was observed, whilst the GVT
effect against acute myeloid leukaemia (AML) was maintained
(8). The Janus Kinase (JAK) 1/2 inhibitor ruxolitinib first showed
its ability to profoundly decrease inflammatory cytokines in the
treatment of myelofibrosis (10), and was the first drug to be
approved by the FDA for the treatment of steroid-refractory
GVHD (11, 12) via reduction of inflammatory cytokine
production by T, NK and dendritic cells [reviewed by (13)].
Ruxolitinib has been established as an important and safe
component of salvage therapy for the treatment of steroid-
refractory acute GVHD (14, 15).

Based on our observations that donor engraftment and anti-
tumour efficacy of alloSCT following RIC can be enhanced
through venetoclax-induced depletion of residual recipient
immunity, we hypothesised that suppression of inflammatory
cytokines using ruxolitinib may also lower the engraftment
barrier in RIC and result in similar post-alloSCT outcomes. In
this paper we explored the effects of ruxolitinib in a RIC alloSCT
model and compared the mechanisms to those observed in a
venetoclax-containing RIC regimen.
MATERIALS AND METHODS

Experimental Mice
Experimental mice were specific-pathogen-free (SPF) and all
animal work was conducted with standard operating
Frontiers in Immunology | www.frontiersin.org 2
procedures approved by institutional animal ethics committees.
The alloSCT experiments were performed either at the Biological
Research Facility of the Victorian Comprehensive Cancer Centre
(VCCC) or the Bioservice Department of the Walter and Eliza
Hall Institute of Medical Research (WEHI). IL-15 KO (16) mice
with C57BL/6 background were bred and used at WEHI. All
mice used as recipients for transplantation were 6-14 weeks of
age when the experiments were set up. BALB/c donors were
purchased at 6-8 weeks of age, and sex-matched to the recipients.

The MHC-mismatched allogeneic SCT (alloSCT) model used
mice with C57BL/6 background (H-2Kb) as recipients and
BALB/c (H-2Kd) allogeneic donors. Recipients (n=6/group)
received split-dose total body irradiation (TBI) by a cobalt-60
irradiator, of either myeloablative (MAC) (2 × 550 rad) or
reduced intensity conditioning (RIC) dose (2 × 400 rad)
delivered two hours apart. 7.5 x106 bone marrow (BM) cells
and 1 x106 T cells (splenic CD4+ T cells and CD8+ T cells mixed
in a 2:1 ratio) from BALB/c donors were intravenously injected
into recipients at least two hours after irradiation. AlloSCT
recipients were monitored regularly for body weight and
clinical scores based on posture, activity, and eye appearance
[scores of 3 for each, adapted from (17)], and were humanely
killed once 20% of initial body weight loss or clinical scores of 4
were reached. Donor haematopoietic cell engraftment examined
the donor:recipient (H-2Kd/H-2Kb) ratio within peripheral
blood. Donor cell engraftment and cell profiles within organs
were also analysed at the experimental endpoint.

Chemical Compounds
The BCL2 inhibitor venetoclax and JAK1/2 inhibitor ruxolitinib
(SelleckChem, Houston, TX) were used to treat C57BL/6 WT
mice for two days prior to alloSCT. Venetoclax (100 mg/kg) and
its vehicle (60% phosal R 50 PG (Merck, Germany), 30%
polyethylene glycol (PEG) 400 (Merck, Germany), 10%
ethanol) were administered by oral gavage once daily for two
days, with a cumulative total dose of 4 mg. Ruxolitinib (180 mg/
kg) and its vehicle (2% DMSO, 30% PEG 300 (Merck, Germany),
ddH2O) were administered twice a day by oral gavage for two
days, with a cumulative total dose of 14.4 mg.

GVHD Histology
Recipient rectum and colon tissue without stool were preserved
in 10% neutral buffered formalin (Merck, Germany), and
Haemotoxylin and Eosin (H&E) staining and digital images via
a 20x slide scanning were processed by the Histology
Department of WEHI. Histology scores were given to the gut
tissues according to the number of apoptotic cells, mucosal
integrity, and lymphocyte infiltration (each scored out of 3), by
an independent, blinded pathologist.

Graft Versus Tumour Model
Wild type C57BL/6 mice were inoculated with 0.8 × 106 (mixed
lineage leukaemia) GFP+ MLL-AF9 acute myeloid leukaemia
(AML) cells. After 8 days, mice were treated with ruxolitinib (180
mg/kg) by oral gavage twice daily for two days. The following day
mice were irradiated with RIC and injected with 7.5 x106 BM
cells and 1 x106 T cells from BALB/c donors. Mice were
September 2021 | Volume 12 | Article 749094
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monitored regularly for body weight, clinical scores, donor cell
engraftment and AML burden in the blood, and were killed after
21 days post alloSCT.

Flow Cytometric Analysis
Peripheral blood samples were collected with or without EDTA
to separate blood cells and plasma/serum, which were stored at
-20°C for cytokine analysis. Single cell suspension of splenocytes,
peripheral blood, BM and liver cells (purified using a 33.75%
Percoll R Density Gradient (GE Healthcare, Sweden), were
resuspended in FACS buffer (PBS + 2% FCS) after red blood
cell lysis. Cells were mixed with FACS buffer containing 1/100
mouse Fc blocking antibody (purified Rat anti-Mouse CD16/
CD32, 2.4G2, BD Biosciences, San Jose, CA) and specific
antibody cocktail on ice for 30 minutes. After unbound
antibodies were washed away, cells were fixed in 2%
paraformaldehyde and analysed on a BD LSRFortessaII (BD
Biosciences). The following antibodies were used to identify
donor cells (H-2Kd; e450, SF1-1.1.1), recipient cells (H-2Kb;
PE, AF6-88.5), leukocytes (CD45; BV611, 30-F11), T cells (CD3;
BV785, 17A2), CD4+ T cells (CD4; BUV805/APCe780, GK1.5),
CD8+ T cells (CD8a; PerCP-Cy5.5/PE-Cy7/BUV395, 53-6.7),
memory T cells (CD44 and CD62L; APC-Cy7, IM7; PE-Cy7,
MEL-14), B cells (CD19; BV711, ID3), myeloid cells (CD11b and
Ly6C/G; BUV395, M1/70; APC, RB6-8C5), NK cells (NK1.1,
NKp46 and CD49b; BV650, PK136; PECy7, 29A1.4; BB700,
HMa2), mature NK cells (CD11b and CD27; BV605, M1/70;
APC-e780; LG.7F9), ILC1s (NK1.1, NKp46 and CD49a; BV650,
PK136; PECy7, 29A1.4; BV711, Ha31/8). All mAbs were from
BD Biosciences, except for CD27, H2Kd and NKp46 (Thermo
Fisher, Waltham, MA).

FlowJo (BD Biosciences, San Jose, CA) analysis was used to
identify NK (NK1.1+CD3-), cNK (NKp46+CD49b+), ILC1s
(NKp46+CD49a+), CD4 (CD3+CD4+) and CD8 (CD3+CD8+)
T cells, B cells (CD19+), and granulocytes (CD11b+Ly6G+).
Phenotypic subsets were characterised by the expression of the
following cell surface markers: M1Mature (CD11b+CD27+), M2
mature (CD11b+CD27-) and immature (CD11b-CD27+) NK cells,
naive (N; CD44-CD62L+); central memory (CM; CD44+CD62L+);
effector memory (EM; CD44+CD62L-) CD4 and CD8 T cells; and
virtual memory (VM; CD8+CD44+CD62L+CD49d+) T cells.

Cytometric Bead Array
Plasma/serum samples from specific timepoints post-alloSCT
were tested using the Cytometric Bead Array (CBA) Mouse
Inflammation Kit (BD Biosciences, San Jose, CA) as per
manufacturer’s instructions. The CBA was analysed using
FCAP Array v3.0 Analysis Software (BD Biosciences, San
Jose, CA).

Gene Expression Analysis
Total BM RNA was extracted from cohorts of mice (n=3-4) days
1, 3 and 7 post-drug treatment or from untreated controls using
the Qiagen RNeasy Kit (Qiagen, Venlo, The Netherlands). Gene
expression was determined using the NanoString Mouse
PanCancer Immune Profiling Panel (NanoString Technologies,
Frontiers in Immunology | www.frontiersin.org 3
Seattle, WA) as per manufacturer’s instructions. All raw data was
reviewed, and all samples in downstream analysis had no quality
control flags and detection of at least 20% of probes. All
experiments were normalised and analysed using nCounter
Advanced Analysis (version 2.0.115; NanoString Technologies).

Statistical Analysis
Statistical analysis was conducted using, unpaired T test, Mann-
Whitney unpaired T test, Ordinary One-Way Anova Holm-
Sidak’s multiple comparisons test, and Pearson’s Correlation
coefficient as indicated, using GraphPad Prism V9.2.0 (San
Diego, CA). Significance is indicated as follows: p<0.05(*),
p<0.01(**), p<0.001(***), p<0.0001(****).
RESULTS

Recipient NK and CD8+ T Cells Regulate
Donor Cell Engraftment and Onset of
Acute GVHD
NK cells present an engraftment barrier in RIC treated mice (9),
and NK cell survival is dependent on IL-15 signalling (18, 19). To
explore the outcome of alloSCT in recipients in which the
engraftment barrier was absent, we compared C57BL/6 WT
mice transplanted using MAC compared with IL-15 KO mice
transplanted using RIC. IL-15 KOmice lack mature NK cells and
also have 10-fold fewer immature NK cells compared to WT
mice (Supplementary Figures 1A, B). Within 3 days post
alloSCT, IL-15 KO recipients developed rapid weight loss
(Figure 1A) and high clinical GVHD scores (Figure 1B), and
had to be killed by day 6 due to hyperacute GVHD. Donor cell
engraftment was greater than 80% by day 6 post-transplant, and
was accompanied by elevated IFNg and IL-6 levels, and high
GVHD histology scores in the gut (Figures 1C–E). Therefore,
while IL-15 KO successfully removed the recipient-derived
engraftment barrier, it was at the cost of unmitigated donor T
cell expansion, cytokine production and onset of severe,
fatal GVHD.

Ruxolitinib Treatment Combined With
RIC Reduces T and NK Cells and Allows
Full Engraftment
To compare the levels of immune depletion during conditioning,
we first investigated NK and T cell depletion post conditioning in
WT and IL-15 KO mice. Mice were left untreated or given a
MAC or RIC irradiation dose, and killed 4 days later to examine
the absolute NK or CD8+ T cell numbers remaining in the BM.
WT mice irradiated with RIC or MAC had a significant decrease
in NK cells compared to untreated mice, but were still 10-fold
higher than in untreated IL-15 KOmice (Figure 2A). In contrast,
RIC or MAC treated WT mice had CD8+ T cell numbers similar
to IL-15 KO untreated mice, and RIC treatment of IL-15 KO
mice almost ablated both NK and CD8+ T cells in the BM
(Figure 2B). In order to pharmacologically replicate the IL-15
KO phenotype, WT mice were treated with the JAK1/2 inhibitor
September 2021 | Volume 12 | Article 749094
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ruxolitinib and RIC, resulting in a reduction of NK and CD8+ T
cell numbers comparable to those in untreated IL-15 KO mice.

Next, we determined if transient inhibition of JAK1/2 was
able to replicate the lowered engraftment barrier seen in the IL-
15 KO mice, while maintaining the GVHD control of the WT
mice. Depletion of recipient immunity using combination
ruxolitinib and RIC was well tolerated, with minimal weight
loss and low clinical scores recovering within 2 weeks post-
alloSCT (Figures 2C, D). Mice treated with ruxolitinib and RIC
engrafted by 7 days post-alloSCT, unlike vehicle and RIC treated
mice which rejected the graft (Figure 2E). After 14 days post-
alloSCT, over 80% of ruxolitinib treated mice had engrafted with
donor cells, which was comparable to the MAC treated cohort,
and was maintained at 70 days (Figures 2E, F). In comparison,
the mice treated with vehicle and RIC uniformly rejected the
graft and were killed on day 14 upon developing increasing
clinical scores due to anaemia (Figures 2D, E). Donor cell
engraftment in ruxolitinib treated mice was associated with
moderate IFNg and low IL-6 levels in the plasma at day 7
post-alloSCT, which abated by day 14 (Figure 2G). Mice killed
at 70 days post-alloSCT did not develop the early gut GVHD
(Figure 2H) that was seen in the IL-15 KO mice, however
between day 30-50 post-alloSCT skin GVHD developed in
approximately 25% of mice treated with ruxolitinib and RIC,
which was not observed in WT mice treated with MAC
(Figure 2I). Mice with skin GVHD had to be killed due to
ulceration of the skin which developed after localised fur loss on
the hind flanks.
Frontiers in Immunology | www.frontiersin.org 4
We previously established a pre-clinical model in C57BL/6
WT mice of AML (MLL-AF9) matched to the BALB/c allogeneic
donor haplotype (H2kd+), to examine the effect of venetoclax
treatment with RIC on donor cell engraftment and subsequent
GVT effect (8). In this study, ruxolitinib treatment improved
GVT responses compared to vehicle treated controls, with some
mice showing tumour control comparable to MAC treated mice
(Figure 2J). The level of tumour response strongly correlated
with the level of donor cell engraftment, with mice that had full
engraftment showing complete tumour control, whereas mice
that rejected the graft or had mixed chimerism (5-90% donor
cells) had impaired GVT responses (Figures 2J, K). Overall, this
suggests that transient inhibition of JAK1/2 signalling reduces
the engraftment barrier presented by residual recipient NK and T
cells, allowing full donor engraftment, whilst improving GVT
and decreasing priming of acute GVHD onset.

Donor Cell Engraftment Is Dependent on
Recipient Pre-SCT Conditioning
Our previous work has shown that pre-treatment of alloSCT
recipients with short-term pharmacological inhibition of BCL2
(venetoclax) in combination with RIC permits rapid donor
cell engraftment in a high percentage of mice, without graft
rejection or GVHD (8). Approximately 80% of WT mice
administered venetoclax for two days immediately prior to RIC
and alloSCT obtained donor cell engraftment within 14 days,
however approximately 40% of venetoclax-treated mice
developed graft rejection after an initial period of donor
A B

D EC

FIGURE 1 | IL-15 KO + RIC alloSCT recipients develop hyperacute GVHD. C57BL/6 WT mice were irradiated with MAC, and IL-15 KO mice were irradiated with
RIC, followed by alloSCT. Mice were monitored daily for (A) body weight and (B) clinical scores, and (C) donor cell engraftment and (D) plasma cytokine
concentrations of IL-6 and IFNg on days 3 and 6. (E) Mice were killed on day 6 post-alloSCT, and GVHD histology was conducted on gut tissue. Statistical analysis
was performed using Mann-Whitney unpaired T test. *p < 0.05, **p < 0.01.
September 2021 | Volume 12 | Article 749094

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Davis et al. Targeted Conditioning Improves Donor Engraftment
A B

D

E F

G IH

J K

C

FIGURE 2 | Ruxolitinib treatment in combination with RIC mediates rapid and long-term donor cell engraftment, and permits GVT responses. Untreated WT and IL-
15KO mice were compared to WT mice treated with RIC or MAC; or WT mice treated with ruxolitinib prior to RIC, or IL-15 KO mice treated with RIC. Mice were
killed four days after receiving irradiation, and the absolute number of (A) NK cells (NKp46+CD49b+) and (B) CD8 (CD3+CD8+) T cells in BM were compared
between different cohorts of mice (n=3-9/group). C57BL/6 WT mice were treated with ruxolitinib or vehicle for two days, and the following day treated with RIC and
alloSCT. Another cohort of untreated WT mice was treated with MAC and alloSCT. Mice were monitored for (C) body weight and (D) clinical scores up to 70 days
post alloSCT. (E, F) Donor cell engraftment (H2Kd+ cells) was monitored on days 7, 14, 28, 35 and 70 post-alloSCT in blood samples (n= 18, data combined from
3 independent experiments). (G) Plasma cytokine concentration of IFNg and IL-6 was measured in blood samples collected on days 7 and 14 post-alloSCT. (H) Mice
were killed 70 days post-alloSCT, and GVHD histology was conducted on gut tissue. (I) Incidence of development of skin GVHD in ruxolitinib+RIC mice compared to
untreated+MAC alloSCT recipients (n=15). Mice were injected i.v. with MLL-AF9 tumour cells, and 8 days later were treated with ruxolitinib or vehicle for two days,
and the following day treated with RIC and alloSCT. Another cohort of untreated WT mice was treated with MAC and alloSCT (n=12/treatment group, data combined
from 2 independent experiments). (J) Mice were killed 21 days after alloSCT, and tumour burden was measured as a percentage of MLL-AF9+ cells in the BM.
(K) Tumour burden was compared to donor cell engraftment between the untreated+MAC, vehicle+RIC and ruxolitinib+RIC cohorts 21 days after alloSCT. R2 value
indicates the correlation between tumour burden and donor cell engraftment in ruxolitinib+RIC alloSCT recipients. Statistical analysis was performed using Ordinary
One-way Anova Holm-Sidak’s multiple comparisons test (A, B), Mann-Whitney unpaired T test (E–J), and Pearson’s Correlation coefficient (K). *p < 0.05, **p < 0.01,
***p < 0.001, **** p < 0.0001.
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engraftment (Figure 3A (8). In contrast, over 80% of ruxolitinib-
treated alloSCT recipients retained long-term donor engraftment
(Figures 2F and 3A).

To understand the mechanism of recipient immune cell
inhibition with venetoclax and ruxolitinib, WT mice were
treated for two days with either venetoclax, ruxolitinib, or their
respective vehicles, and then killed on day 1, 2, 3, and 7 to profile
immune cell subsets in BM, spleen and liver. In contrast to
ruxolitinib, venetoclax treatment rapidly depleted NK cells,
including conventional (NKp46+CD49b+), immature (CD11b-
CD27+), and M1 (CD11b+CD27+) and M2 (CD11b+CD27-)
mature NK cells from the spleen and liver, and most strikingly
from the BM (Figures 3B–F, Supplementary Figure 2A).
Furthermore, venetoclax rapidly depleted CD8+ and CD4+
naïve (CD62L+CD44-) and CD8+ central memory (CD62L+
CD44+) T cells in the BM, spleen and liver (Figures 3G–L,
Supplementary Figure 2B). Therefore, BCL2 inhibition affected
recipient immune cell function by rapidly depleting, most
Frontiers in Immunology | www.frontiersin.org 6
notably in the BM, CD8+ naïve and central memory T cells,
CD4+ naïve T cells and NK cells, whereas JAK1/2 inhibition had
no significant impact on immune cell subsets.

Venetoclax and Ruxolitinib Differentially
Affect MHC-II and IFN Gene Expression
The absence of change in cell subsets in ruxolitinib treated mice,
despite the improved engraftment seen when these mice are used
as alloSCT recipients, suggested that ruxolitinib may supress
immune cell function rather than directly deplete immune cells
as seen with venetoclax. Therefore, gene expression analysis was
performed on BM samples from venetoclax, ruxolitinib, vehicle
treated, and untreated C57BL/6 WT mice collected at days 1, 3
and 7 post-treatments, to examine which immune pathways were
impacted by drug treatment. Several MHC-II genes were
differentially affected by venetoclax or ruxolitinib treatment,
including H2-DMb2, H2-Ab1, H2-Eb1, H2-Aa, H2-Ob and
CD74 (Figure 4A). Venetoclax downregulated relative gene
A B

D E F

G IH

J K L

C

FIGURE 3 | Donor cell engraftment is dependent on recipient pre-alloSCT irradiation dose and treatment with BCL2 or JAK1/2 inhibitors. WT mice were treated
with venetoclax or ruxolitinib, or their respective vehicle for two days. The following day mice were treated with RIC and alloSCT. (A) Donor cell engraftment (H2kd+
cells) was measured in the blood at day 21 post-alloSCT. WT mice were treated with venetoclax or ruxolitinib, or their respective vehicle for two days. Mice (n=3-4/
group) were killed on days 1, 2, 3, and 7, and BM was harvested and analysed by flow cytometry for the absolute number of (B–F) NK cells (NK1.1+CD3-), cNK
(NKp46+CD49b+), M1 mature (CD11b+CD27+), M2 mature (CD11b+CD27-) and immature (CD11b-CD27+) NK cells; (G–L) naive (N; CD44-CD62L+); central
memory (CM; CD44+CD62L+); effector memory (EM; CD44+CD62L-) CD4+ and CD8+ T cells. Data is representative of 3 independent experiments. Statistical
analysis was performed using unpaired T test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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expression of MHC-II genes, in contrast to ruxolitinib treatment
which resulted in MCH-II upregulation. The expression of the
interferon (IFN) genes Rsad2, Ifit3, Ifnb1, Ifna1, Oas2, Isg15,
Klrb1 and Ifng were also altered after drug treatment
(Figure 4A). Both venetoclax and ruxolitinib treatment
downregulated Rsad2 expression which encodes Radical S-
adenosyl methionine domain containing 2 (Rsad2) protein, an
IFN-inducible virus inhibitory protein involved in CD4+ T cell
activation (20) (Figure 4B). Klrb1 encoding killer cell lectin-like
receptor subfamily B member 1 (KLRB1), which inhibits IFNg
production by NK cells (21), was upregulated by both venetoclax
and ruxolitinib treatment (Figure 4C). As described above, H2-
DMB2 and CD74 expression were downregulated by venetoclax,
and upregulated by ruxolitinib (Figures 4D, E). The MHC-II-
associated genes regulate antigen expression, and therefore likely
alter alloantigen presentation in the intestinal epithelium after
alloSCT (22). Subsequent flow cytometry analysis confirmed that
cell surface MHC-II expression on BM CD19+ B cells, and the
percentage of B cells expressing MHC-II was decreased for
several days in venetoclax-treated mice, compared to untreated
or vehicle treated mice, whereas expression of MHC-II increased
in ruxolitinib-treated mice (Figures 4F, G). Furthermore, the
changes to MHC-II expression were replicated in total BM
CD45+ cells, as compared to each vehicle control (Figure 4H).
Collectively, the differential effects of venetoclax and ruxolitinib
on both cell type and gene expression demonstrate that these
drugs work via different mechanisms and therefore lead to
different impacts on transplant outcome when combined
with RIC.
Frontiers in Immunology | www.frontiersin.org 7
DISCUSSION

Successful donor engraftment in an alloSCT recipient requires
that the conditioning regimen adequately suppresses recipient
immunity to prevent donor cell rejection. This is reliably
achieved in most recipients with intensive MAC regimens but
at the cost of mortality and morbidity (2). Conversely, RIC
regimens are safer, but associated with a higher incidence of
mixed chimerism, increased rates of graft loss and poorer
induction of the GVT effect with a resultant excess of relapse
and poorer overall survival (5–7). Augmentation of existing RIC
regimens has not been associated with improved outcomes, and
strategies directed at improved donor T cell engraftment and
promotion the GVT effect have been advocated (23).

We hypothesised that donor engraftment and subsequent
GVT rates achieved by RIC could be improved by additional
suppression of recipient immunity through either lymphocyte
depletion or cytokine inhibition with either BCL2 or JAK
inhibition. Similarly, we reasoned that by avoiding the tissue
damage and inflammatory cytokine production associated with
MAC and further suppressing JAK/STAT dependant cytokine
production, in particular IL6, the rates of GVHD onset may be
reduced in alloSCT recipients (24, 25).

In this study we first examined how the absence of recipient T
and NK cells due to IL-15 deficiency would impact on donor cell
engraftment following RIC. The resulting hyperacute, lethal gut
GVHD observed in IL-15 KO recipients indicated that residual
recipient immunity is necessary to prevent uncontrolled donor
homeostatic T cell proliferation, activation and inflammatory
A B D E

F G H

C

FIGURE 4 | Venetoclax and Ruxolitinib differentially affect MHC class-II and IFN-inducible gene expression. WT mice were treated with venetoclax or ruxolitinib, or
their respective vehicle for two days. Mice (n=3-4/group) were killed on days 1, 3, and 7, and gene expression was determined from BM RNA using the NanoString
Mouse PanCancer Immune Profiling Panel. (A) Heat map of relative gene expression of H2-DMb2, H2-Ab1, H2-Eb1, H2-Aa, H2-Ob, CD74, Tap1, Rsad2, Klrb1 and
Isg15 from venetoclax and ruxolitinib-treated mice. Relative expression of Rsad2, Klrb1, H2-DMB2 and CD74 (B–E) was compared between venetoclax or
ruxolitinib-treated mice and their respective vehicle on day 1 post-treatment. The geometric mean of MHC-II expression on CD19+ B cells (F), percentage of CD19+
B cells expressing MHC-II (G), and the fold-change of MHC-II expression on total CD45+ BM cells from venetoclax or ruxolitinib-treated mice was compared to each
vehicle control group (H). Statistical analysis was performed using Mann-Whitney unpaired T test (B–E), and unpaired T test (F–H). *p < 0.05, **p < 0.01.
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cytokine production. Given the role for residual post-
conditioning recipient immunity in controlling donor
engraftment, we hypothesised that a brief period of venetoclax
or ruxolitinib treatment added to RIC would provide a sufficient
period of immunosuppression to promote donor engraftment,
whilst not full removing the regulator function of residual
recipient immunity. We identified that venetoclax rapidly
depleted naïve and central memory CD4+ and CD8+ T cells,
NK cells, and VM T cells in the BM, spleen and liver, and we
have previously demonstrated that the combination of
venetoclax and RIC results in donor engraftment and GVT
without the onset of GVHD (8). The incorporation of
ruxolitinib into RIC of WT alloSCT recipients also resulted in
NK and CD8+ T cell depletion in BM similar to that induced by
MAC, and resulted in similar donor engraftment rates and
associated GVT responses as seem with the MAC and
ventoclax + RIC combination. However, unlike venetoclax +
RIC, the ruxolitinib-containing RIC regimen did not fully avoid
the onset of chronic GVHD as skin chronic GVHD was observed
1-2 months after alloSCT.

Further exploration of the venetoclax or ruxolitinib treatment
of alloSCT recipients identified significant differences in gene
expression within the BM of recipient mice. Reduced MHC-II
expression was observed in the BM following venetoclax
treatment prior to alloSCT. In contrast, MHC-II expression
increased in the BM of ruxolitinib treated mice, whilst IFN
gene expression decreased transiently. Ruxolitinib therapy for
two days prior to transplant was insufficient to suppress IFNg
expression in the first 7 days post alloSCT (Figure 2G). The
variation between the gene expression changes seen between
venetoclax and ruxolitinib therapy is important as IFNg-
dependent MHC-II expression in recipient tissues and
subsequent activation of donor CD4+ T cells is now recognised
as a key priming event in the onset of GVHD (22) and may
explain, in part, why ruxolitinib + RIC treated recipients
developed late skin GVHD.

In our model, despite the early IFNg cytokine rebound
observed after ruxolitinib-containing RIC and the high levels
of donor cell engraftment achieved by this regimen, acute GVHD
was not observed. This likely reflects the absence of GVHD-
promoting gut inflammation that is associated with MAC. These
observations suggest that by avoiding gut toxicity through the
use of ruxolitinib + RIC, acute GVHD will not be primed even
following high levels of donor T cell engraftment. Although other
contributors to the prevention of GVHD onset including
ruxolitinib-induced decrease in dendritic cell activation (26)
cannot be excluded. The potential for ruxolitinib therapy to
reduce inflammatory cytokine production has resulted in pilot
studies exploring its ability to improve engraftment, avoid
GVHD, and replace conventional GVHD prophylaxis (27). To
date, studies of this approach have been small and although
associated with likely lower rates of GVHD, ongoing ruxolitinib
therapy may be limited by viral activation and post-transplant
cytopenias (28, 29). In contrast, our approach of transiently
lowering the engraftment barrier by a short exposure of
ruxolitinib prior to donor cell infusion may provide an
Frontiers in Immunology | www.frontiersin.org 8
opportunity to optimise donor engraftment, maintain GVL
and avoid GVHD onset, whilst avoiding the toxicity of
continuous ruxolitinib exposure.

Overall, whilst either of the targeted therapies venetoclax or
ruxolitinib are able to promote increased donor engraftment in
the setting of RIC and thereby avoid the toxicity and GVHD-
priming effects of MAC, the mechanism of action of venetoclax
including its ability to reduce MHC-II expression, added to RIC
seems best placed as the combination to take forward for clinical
application in order to realise the GVT benefits of alloSCT, whilst
avoiding GVHD.
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Supplementary Figure 1 | IL-15 knockout mice have reduced NK and CD8+ T
cells in the bone marrow. Untreated IL-15KO mice and WT C57BL/6 mice aged 8-
12 weeks (n=6) were killed and cell profiles of BM were tested by flow cytometry. (A)
The absolute number of NK cells (NKp46+CD49b+), ILC1s (NKp46+CD49a+), CD4
(CD3+CD4+) and CD8 (CD3+CD8+) T cells, B cells (CD19+), and granulocytes
(CD11b+Ly6G+) were compared betweenWT and IL-15 KOmice. (B) The absolute
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number of mature (CD11b+CD27+/-) and immature (CD11b-CD27+) NK cells,
naive (N; CD44-CD62L+); central memory (CM; CD44+CD62L+); effector memory
(EM; CD44+CD62L-) CD4 and CD8 T cells; and virtual memory (VM; CD8+CD44+
CD62L+CD49d+) T cells were compared between WT and IL-15 KO mice.
Statistical analysis was performed using Mann-Whitney unpaired T test.

Supplementary Figure 2 | Venetoclax treatment decreases NK and CD8+ T cells
in the BM, spleen and liver. WT mice were treated with venetoclax or ruxolitinib, or
their respective vehicle for two days, were killed the following day and the BM,
spleen and liver was harvested and analysed by flow cytometry for the absolute
number of (A) NK and (B) CD8+ T cells. Data is representative of 3 independent
experiments. Statistical analysis was performed using Mann-Whitney unpaired
T test.
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13. Zeiser R, Socié G. The Development of Ruxolitinib for Glucocorticoid-
Refractory Acute Graft-Versus-Host Disease. Blood Adv (2020) 4(15):3789–
94. doi: 10.1182/bloodadvances.2020002097

14. Jagasia M, Perales MA, Schroeder MA, Ali H, Shah NN, Chen YB, et al.
Ruxolitinib for the Treatment of Steroid-Refractory Acute GVHD (REACH1):
A Multicenter, Open-Label Phase 2 Trial. Blood (2020) 135(20):1739–49.
doi: 10.1182/blood.2020004823

15. Zeiser R, von Bubnoff N, Butler J, Mohty M, Niederwieser D, Or R, et al.
Ruxolitinib for Glucocorticoid-Refractory Acute Graft-Versus-Host Disease.
N Engl J Med (2020) 382(19):1800–10. doi: 10.1056/NEJMoa1917635

16. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, et al.
Reversible Defects in Natural Killer and Memory CD8 T Cell Lineages in
Interleukin 15-Deficient Mice. J Exp Med (2000) 191(5):771–80. doi: 10.1084/
jem.191.5.771

17. Nunamaker EA, Anderson RJ, Artwohl JE, Lyubimov AV, Fortman JD.
Predictive Observation-Based Endpoint Criteria for Mice Receiving Total
Body Irradiation. Comp Med (2013) 63(4):313–22.

18. Huntington ND, Puthalakath H, Gunn P, Naik E, Michalak EM, Smyth MJ,
et al. Interleukin 15-Mediated Survival of Natural Killer Cells Is Determined
by Interactions Among Bim, Noxa and Mcl-1. Nat Immunol (2007) 8(8):856–
63. doi: 10.1038/ni1487

19. Delconte RB, Kolesnik TB, Dagley LF, Rautela J, Shi W, Putz EM, et al. CIS Is
a Potent Checkpoint in NK Cell-Mediated Tumor Immunity. Nat Immunol
(2016) 17(7):816–24. doi: 10.1038/ni.3470

20. Qiu LQ, Cresswell P, Chin KC. Viperin Is Required for Optimal Th2
Responses and T-Cell Receptor-Mediated Activation of NF-KappaB and
AP-1. Blood (2009) 113(15):3520–9. doi: 10.1182/blood-2008-07-171942

21. Carlyle JR, Martin A, Mehra A, Attisano L, Tsui FW, Zúñiga-Pflücker JC.
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