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Abstract: While microelectrode arrays (MEAs) offer the promise of elucidating functional neural
circuitry and serve as the basis for a cortical neuroprosthesis, the challenge of designing and demon-
strating chronically reliable technology remains. Numerous studies report “chronic” data but the
actual time spans and performance measures corresponding to the experimental work vary. In this
study, we reviewed the experimental durations that constitute chronic studies across a range of
MEA types and animal species to gain an understanding of the widespread variability in reported
study duration. For rodents, which are the most commonly used animal model in chronic studies,
we examined active electrode yield (AEY) for different array types as a means to contextualize the
study duration variance, as well as investigate and interpret the performance of custom devices in
comparison to conventional MEAs. We observed wide-spread variance within species for the chronic
implantation period and an AEY that decayed linearly in rodent models that implanted commercially-
available devices. These observations provide a benchmark for comparing the performance of new
technologies and highlight the need for consistency in chronic MEA studies. Additionally, to fully de-
rive performance under chronic conditions, the duration of abiotic failure modes, biological processes
induced by indwelling probes, and intended application of the device are key determinants.

Keywords: neural interface; microelectrode array; intracortical; chronic; active electrode yield

1. Introduction

Neural interfaces have garnered tremendous interest in recent years due to their
ability to record from and stimulate neuronal populations. These devices have provided
an increased understanding of neuronal network dynamics underlying behavior and
enabled a variety of clinical applications ranging from controlling text and cursors on a
screen [1–3] to restoring lost motor and sensory functionality [4–9]. Neural interfaces for the
central nervous system range from completely non-invasive (e.g. electroencephalography
scalp electrodes), to epi/subdural electrocorticography arrays, to invasive intracortical
microelectrode arrays (MEAs). While these devices all have tradeoffs between resolution
of neural activity and invasiveness, intracortical MEAs have attracted significant attention
due to their ability to interface with individual neurons and neural ensembles, which when
coupled with recent advancements in computational capabilities, allows for a relatively
high level of specificity and volitional control [10].

Intracortical MEAs are characterized by electrodes with geometric surface areas that
are typically smaller than 10,000 µm2 [11], that record and/or stimulate from within the
cortex. Historically, these MEAs have been classified into three types of devices: microwire
arrays, fabricated planar arrays, and machined arrays. Microwires are comprised of a core
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conducting wire generally constructed from tungsten, stainless steel, iridium, or platinum,
and an insulator that typically consists of glass, parylene-C, polyimide, or Teflon. The
insulation is commonly removed/exposed at the tip to create the recording site.

Planar arrays are historically fabricated from a rigid silicon substrate using pho-
tolithographic techniques in which layers of conductive and nonconductive materials are
deposited in thin films to build up a planar structure. Conductive traces and electrodes are
often made from metals such as gold or iridium and are insulated using polymer coatings
similar to those used in microwires.

Machined arrays use a dicing, etching, and glass reflow process to mill a block of
silicon into a bed of penetrating needle-shaped shanks. Electrode material (often platinum
or iridium) is then deposited on the shanks, followed by an insulator that is etched away at
the tips to expose the recording sites, similar to microwires.

Regardless of the type, each of the MEAs suffers from reliability issues over long
periods of implantation. While there are both biotic and abiotic factors that influence relia-
bility [12–14], the neural interfaces field is exploring a wide range of approaches spanning
novel constituent materials and coatings [15–18] to ultrasmall dimensions [19–21] to phar-
macological interventions [22–24] to achieve chronic reliability. With rapid advancement in
MEA technology however, the question arises as to how to best contextualize and compare
both the performance of novel devices to other custom-built or conventional arrays, as well
as the duration for demonstrating this performance.

In this study, we performed a comprehensive evaluation of studies published within
the past 35 years that conducted experiments using intracortical MEAs where authors
claimed either “chronic” or “long-term” experimentation. We then compiled and analyzed
the data by correlating the corresponding timepoints within studies to a variety of metrics
to gain a better understanding of the criteria involved in determining chronic performance.
Furthermore, for studies involving rodents, the most widely used animal model for chronic
experimentation, we evaluated the utility of using active electrode yield as a means to
contextualize and compare the performance of novel and conventional MEAs. What
emerges is a consensus- and biologically-based rationale for chronic study duration, as
well as a performance metric guided by a decay rate that informs the evaluation of prior
work and the design of future MEA studies for fundamental and preclinical research.

2. Materials and Methods
2.1. Search Strategy

A systematic search was conducted to collect a representative sample of the chronic
intracortical MEA literature. The following search terms were used to identify articles in
Google Scholar, PubMed, and Web of Science: chronic, long-term, intracortical implantation,
microelectrode array, chronic MEA, brain interface, neural interface, and cortical electrode
array. Additional manual searches were performed using the references of articles that
were identified for inclusion in the study.

2.2. Inclusion/Exclusion Criteria

This study only included peer-reviewed articles that reported implanting a micro-
electrode array into the cortex of the brain for a “chronic” or “long-term” duration. A
microelectrode array was defined as a having an electrode geometric surface area of less
than 10,000 µm2 [11], thereby excluding many studies involving deep brain stimulating
electrodes. Studies were excluded if they reported a “semi-chronic” timepoint or if they
alluded to a chronic duration but did not provide an actual number of days/weeks over
which the study was conducted. Articles reporting the use of electrocorticography arrays
were also excluded as these devices typically lie on surface of the brain and do not penetrate
the cortex.
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2.3. Selection and Sorting of Studies

After the initial search, titles and abstracts were evaluated to determine relevance
to the study. Articles that passed the initial assessment and appeared likely to meet
the inclusion criteria were then analyzed using the full text. Emphasis was placed on
preclinical studies in order to better assess trends within academic and institutional research
environments. Once it was confirmed that the article met the inclusion criteria, pertinent
data was extracted and sorted by animal model, device used, and year published. The
“Animal Model” grouping was broadly split into 5 categories: (1) Mouse, (2) Rat, (3) Small
Animal (bird (finch/budgerigar), cat (domestic), guinea pig (domestic), pig (domestic),
rabbit (domestic)), (4) Non-human Primate, and (5) Human. The “Device Used” grouping
was divided into 4 categories: (1) Microwire, (2) NeuroNexus (planar arrays), (3) Blackrock
(machined arrays), and (4) Custom, i.e., any study that described in-house fabrication or
modification of commercially-available devices. This was done to intrinsically separate the
commercial devices by fabrication methods, dimensions, and applications, as these could
have a large effect on chronic duration. The “Year Published” grouping was conducted
in 5-year increments. The chronic time point was recorded as the researcher’s intended
experimental design duration. If none was explicitly stated, the time point at which the
majority of data collection ended. For example, there were multiple studies in which a
researcher continued to collect data somewhat indefinitely from one remaining animal to
determine how long physiological signals could be detected. If multiple time points were
reported (e.g., histological endpoints), the longest duration was recorded.

2.4. Active Electrode Yield

For studies involving the use of rodents, active electrode yield (AEY), defined as the
percentage of electrodes that recorded one or more identifiable units, was extracted at
the earliest and latest timepoints that the data were reported. AEY was chosen as the
representative performance metric due to its consistency in reporting, and similarity in
acquisition and calculation across studies, as opposed to measures such as signal-to-noise
ratio, electrochemical properties, and histological outcomes, which can vary drastically
between studies and devices [24–29]. As an example, consider the utility of SNR across
multiple studies. Kozai et al. (2017) defined SNR as PP/(2*σ) where PP is the average
peak-to-peak amplitude of an identified single unit and σ is the standard deviation or,
equivalently, the root mean square of the noise [30]. In contrast, Mols et al. (2017) defined
SNR as PP/(6*σ) whereas others may have quantified SNR in their analyses but not offered
a definition in the text (Luan et al., 2017) [31,32]. Curve fitting was conducted on AEY as a
function of post-implantation duration to determine decay rates associated with potential
decreases in device performance. A curve was considered “fit” if the Chi-Square tolerance
was below 1 × 10−9 and the adjusted R2 value exceeded 0.5.

3. Results

The initial search yielded approximately 300 articles, of which 158 articles (162 data
points) were ultimately chosen for inclusion in this survey. A few human studies were
included to provide a more complete overview of intracortical MEA use, but the vast ma-
jority of selected articles and the ensuing analysis focused on preclinical models originating
in North America. To examine trends in how the term “chronic” was used, articles were
grouped based on the animal model and device reported in the study, as well as the year
the study was published.

The animal model group was broken down by size and prevalence in research, re-
sulting in separate categories for mouse and rat, as well a “small animal group” for less
commonly used species. For studies that reported using multiple animal models, each
species was included as a distinct entry for data collection purposes, but did not affect the
overall total number of articles. A breakdown of the groupings can be seen in Figure 1 and
Table 1.
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Figure 1. Chronic durations based on animal species. The box is determined by the 25th and 75th
percentiles while the whiskers indicate 1.5 times the interquartile range. The minimum and maximum
are represented by asterisks while the horizontal line and small square within the box indicate the
median and mean, respectively. The numbers below each box and whisker plot reflect the number of
studies contributing to the plot.

Table 1. Chronic time point statistics based on model.

Metric (in Weeks) Mouse Rat Small Animal Non-Human Primate Human

Number of Studies 23 69 25 33 12
Mean 13.5 10.8 25.1 58.0 93.3

Median 12.0 8.00 14.3 31.9 61.0
Range 0.429–34.7 1.00–52.0 0.700–96.0 1.43–163 26.0–282

Standard Deviation 8.70 9.40 23.3 53.0 77.3

References [24,25,31–50] [16,22,26–
29,33,38,48,51–110] [111–135] [3,133,136–164] [1,4,7,165–173]

The rat model was the most common of the animal models with a relatively even
distribution among the mouse, small animal, and non-human primate group. The mouse
and rat models exhibited similar means and medians, whereas the remaining groups
displayed increasing chronic durations that scaled to the expected lifespan of the animal
model. The variation within each group was quite large, with standard deviations ranging
from 64-96% of the mean and medians that substantially differed from the means. This
widespread variation highlights the lack of established standards in the field regarding the
definition or use of the term “chronic” in this experimental context. Furthermore, the mouse,
rat, and small animal models all included studies that reported chronic durations that were
≤1 week, while the non-human primate group included a chronic time point that was
≤2 weeks, despite mounting evidence that the dynamic phase of the neuroinflammatory
response due to probe implantation may last for several weeks and the neuroinflammatory
response due to the MEA may continue for 8–16 weeks [12,14,65,77,174–176]. Interestingly,
the increase in animal model size and complexity also mapped to an increased average life
expectancy [177], suggesting that the demonstration and expectation of device longevity
and performance may be influenced by animal model selection (Supplementary Figure S1).
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The use of the term chronic was also explored as a function of the type of implant
used: Microwire, Neuronexus, Blackrock, or Custom. Figure 2 shows that the majority of
studies used custom-made devices in their experiments, with all groups reporting high
levels of variation similar to Figure 1.
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Figure 2. Chronic durations based on implanted device. The box is determined by the 25th and
75th percentiles while the whiskers indicate 1.5 times the interquartile range. The minimum and
maximum are represented by asterisks while the horizontal line and small square within the box
indicate the median and mean respectively. The numbers below each box and whisker plot reflect
the number of studies contributing to the plot.

It is worth noting that the means of each device group appear to correlate with differ-
ent animal models. The Neuronexus, Microwire, and Blackrock averages reflect the rat,
small animal, and non-human primate/human models, respectively. This is not surprising
for the latter, given that most of the work performed in non-human primates and humans
utilize the Blackrock array. When examining the medians however, the same trend is not
observed (Supplemntary Table S1). The Custom, Microwire, and Neuronexus groups all
reflect medians similar to that of the rat/mouse model. Additionally, the median of the Cus-
tom device group falls on the shorter end of the spectrum, on par with Microwires which
were traditionally used in acute experiments. This may be because custom devices are typi-
cally examined in a mouse/rat model which provides a low cost and well-studied means of
testing novel arrays. To this end, we also asked how the device used may influence the defi-
nition of a chronic duration in the mouse and rat model (Supplementary Tables S2 and S3).
Supplmentary Tables S2 and S3 confirm that custom arrays were in fact the most widely
used devices in the mouse and rat models. In the rat model, the means and medians were
comparable across Custom, Microwire, and Neuronexus arrays, indicating that custom
devices were not held to a different standard of chronic duration when compared to some
commercially-available devices. Blackrock devices in rats did exhibit a longer duration,
however. Additionally, there were no substantial differences observed in the mean or
median chronic duration when comparing the devices used in the mouse model.

Extending this analysis to the other animal models, a longer duration was observed
for small animal studies utilizing the Blackrock array as compared to the other array types
(Supplementary Table S4). The mean chronic duration for non-human primate studies were
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consistent, but the median did increase from Custom, to Microwire, to Blackrock arrays,
and for the human model there is insufficent data due to the blackrock array being almost
exclusievely used (Supplementary Tables S5 and S6). As seen in Supplementary Table S7
no trends were observed for chronic duration as a function of the study publication year;
furthermore, Supplementary Tables S8–S12 have data for chronic duration by publication
year for each animal model.

Additionally, It is possible that the country where the research was conducted may
influence durations of studies based on local social, ethical or legal considerations. We
investigated whether there were differences between chronic time points in different
geographical regions (Supplementary Tables S13–S16). We found that there was still
widespread variability within each of the geographical regions we reviewed (North Amer-
ica (0.4–282 weeks), Europe (0.7–30 weeks), Asia (4–98.6 weeks), Other (1–36 weeks)) with
comparable medians and/or means. The overwhelming majority of studies constituting
this review originated from North America (132/158) indicating that the trends observed
are unlikely to be influenced by country of origin.

In an effort to gain insight into array performance across device types and studies
over reported chronic duration, we extracted information related to recording performance,
i.e., the ability of the array to measure physiologically relevant signals. AEY is generally
reported as a percentage of electrodes that recorded one or more identifiable units and is
valuable as a recording metric because of its consistency between animal models (underly-
ing electrophysiology remains the same) and studies (calculated as a simple percentage), as
opposed to the numerous formulas used to calculate signal-to-noise ratio, as well as elec-
trochemical measurements that vary widely based on electrode dimension, roughness, and
material composition. Because AEY is not as widely reported in larger animal experiments,
and due to the high number of, and average duration similarities between, mouse and rat
studies, our analysis focused on a combined rodent model.

Figure 3A shows reported AEY measurements across different device types. Mi-
crowire, Neuronexus, and Blackrock arrays all exhibited a general decline in AEY over
time, with yields at or below 30% after 16 weeks post-implantation. Custom arrays, how-
ever, did not exhibit any discernible trend over time, with studies reporting AEY between
15–75% at Week 16, highlighting the widespread variance in the performance of custom
arrays. The distribution of Custom AEY appeared almost bimodal, with most yields falling
between either 15–25% or 65–75%.

We recognize that novel devices comprising the “custom” group may not have fully
mature fabrication processes. As a result, custom devices may have a lower fabrication
yield characterized by fewer functional microelectrode sites or entire devices that were
non-functional. Often, impedance measurements were used to qualify devices at an indi-
vidual channel basis [30,92]. For example, Luan et al. (2017) reported a fabrication yield
for connected microelectrode channels of 83% for the ultraflexible intracortical probes.
Likewise, Guan et al. (2019) reported that processing steps to produce neurotassel tech-
nology resulted in a device yield of >80%. In each case, studies excluded non-functional
microelectrode sites and, in some cases, entire devices when evidence indicated that the
custom probes exhibited physical defects [32,46].

The stark difference in performance at similar timepoints is likely, in part, due to the
various fabrication techniques and material composition used across studies, emphasizing
the need for methodology to aid in the direct comparison of novel arrays. To this end, we
investigated the use of curve fitting as a means to calculate the decay rate of AEY. Because
our goal was to evaluate a standardization method for comparison of novel devices, we
focused our curve fitting analysis on Neuronexus and Blackrock arrays (n = 24), the current
standards for commercially-available MEA technology, and the most widely used and
directly comparable devices across studies. Several fitting models were tested on the
commercially-available AEY distribution including single and two-phase exponential
decays, with the linear model providing the best fit. The linear model resulted in an
adjusted R2 value of 0.67 and a Pearson’s R of −0.83, indicating a strongly negative
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correlation between AEY and time (as expected) with a model fit that far exceeded chance
(Figure 3B). The linear fit produced an initial AEY value of approximately 75% and slope of
−2.2 percent/week, suggesting that these commercially-available devices can be expected
to exhibit a relatively high level of performance early on in a study, but may experience a
decline of approximately 50% in performance over the course of 16 weeks.
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4. Discussion

In this study, we report how researchers define the term “chronic” in intracortical
microelectrode array applications. To our knowledge, this is the first systematic review on
the use and interpretation of chronic duration in this field to date. By analyzing literature
across various animal models and devices, this study highlights how variable the use of
“chronic” or “long-term” is. For example, we see studies from North America tend to have
longer time points than the rest of the globe (Table S14). This may be due to differences in
regulations affecting study duration or animal models used in each region. Although the
mean time point for North America may be skewed to longer durations by a few studies,
the median is similar to the European studies used in this review. Together this accounts for
most of the studies observed. Additionally, the median time point appears to be converging
over the last decade. However, there is a large range of timepoints noted as chronic across
studies. It is noteworthy that the majority of the studies, but not all, have durations that are
at least 8 weeks in duration consistent with a biologically relevant timepoint. This reaffirms
the need for a common interpretation so comparisons between studies for evaluating the
long-term performance of this technology are possible. Moreover, our evaluation of the
decay rate of AEY, an electrophysiological performance measure common to many MEA
studies, may be useful in helping to contextualize the long-term performance of novel
arrays by serving as a generalizable standard of comparison.

4.1. Intended Application and Abiotic Considerations

The primary function of intracortical MEAs is to serve as a gateway into the nervous
system, interfacing with the body to enhance our understanding of the underlying physiol-
ogy and enable applications in motor and sensory functional improvements. In chronic
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experimentation, it is therefore of paramount importance to first characterize the long-term
use of these devices based on their intended application and the ability of the device to
perform as expected throughout the duration of anticipated use. Given the ever-increasing
number of ways in which this technology could be utilized, intended application in this
context can be broadly generalized and divided into two categories: basic science and task
performance. For studies aiming to answer questions regarding the fundamental science
underlying physiology (e.g., foreign body response, plasticity, molecular pathways, etc.),
the chronic duration of the experiment will largely be determined by the time course of
the physiologic occurrence in question. Furthermore, these types of studies are typically
carried out in a rodent model due to its low cost and well-studied nature, so chronic
duration may also be influenced by the animal model selection as well. For studies that aim
to evaluate the use of MEAs to aid in performing specific tasks however (e.g., control of
neuroprostheses, moving a computer cursor, or functional electrical stimulation), one could
argue that the rehabilitative nature of these applications necessitate chronic durations that
ideally last the lifetime of the patient. Given the current limitations of this technology
though [12–14,178], it is unrealistic to expect MEAs to maintain functionality for this long.
What may be a more useful approach in determining chronic durations is to partially
base them on the limitations themselves. MEA failure modes can be categorized as either
biotic, abiotic, or a combination of both. This study does not go into detail about abiotic
failure modes (see [13,39,82,179]), but given the myriad materials, geometries, fabrication
methods, and surgical techniques involved in implementing MEAs, it becomes increasingly
difficult to pinpoint a chronic duration based on this metric alone, signifying that a range
of durations may be necessary to account for the vast differences between devices.

For research in which the primary purpose is to demonstrate long-term device func-
tionality (electrophysiological or electrochemical), it may be prudent to include a perfor-
mance metric component alongside the experimental duration rationale. Similar to the AEY
decay rate evaluated in this study (Figure 3), using comparable device- or animal-specific
decay curves may provide a means by which to interpret the success of new technology,
irrespective of material composition, geometries, or fabrication methods. Furthermore,
utilizing these performance-based metrics in combination with experimental duration
rationale may also aid in the interpretation of the performance of novel technology when
compared to commercially-available devices.

4.2. Biological Considerations

The biological neuroinflammatory response to the implanted device is believed to be a
major source of intracortical microelectrode failure, and should be considered, in part, in the
definition of the time course of deployment within a living system. The biological response
to intracortical microelectrodes is well-characterized, but many of the relationships between
device performance and the dynamic and changing environment adjacent to the implanted
microelectrodes remains unknown. In brief, it is well-known that there are at least two
phases of the foreign body response, acute and chronic. The acute phase of inflammation is
defined by the exudation of fluids and plasma proteins, as well as the migration of leuko-
cytes to the site of injury [180]. In general, acute inflammation typically only lasts from
minutes to days in response to most medical device implantation. However, with respect
to intracortical microelectrodes, the blood-brain barrier adds a unique dynamic. Several
researchers have demonstrated that the blood-brain barrier remains leaky to both serum
proteins and leukocytes as long as the intracortical microelectrodes remain implanted, sug-
gesting that acute inflammation never completely subsides [85,181–183], despite the onset
of a chronic inflammatory response and glial scar formation [184]. Due to the dual existence
of both acute and chronic inflammatory states around the intracortical microelectrodes,
and the regular micromotion of the microelectrode relative to the adjacent tissue [185–187],
there is a continued foreign body response that persists through the indwelling period, al-
though relatively static and consistent in their processes [188], meaning there is no sudden
dynamic or drastic shift in their behavior barring any externally-triggered stimulus. The
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point at which the biological response reaches what is essentially a steady-state, should
therefore be the minimum time point at which the evaluation of a device is considered
chronic. Numerous articles reporting analysis in a rodent model found strong evidence that
reduced blood-brain barrier integrity and neuroinflammation that were acutely caused by
vascular disruption, transitioned to a sub-chronic phase at 6 weeks that was characterized
by endogenous tissue events [77,85,188–190]. Furthermore, these studies suggested that
this response reaches a steady state at 12–16 weeks post implantation but varies largely
based on the design and materials composition of the individual microelectrode [191].

5. Conclusions

Based on the literature survey, there is a large variation in the duration of studies that
investigate the chronic performance of implanted MEAs. A focused evaluation of rodent
studies that utilized commercially-available devices revealed that there is a consistent
decay rate in AEY that may serve as a benchmark for comparing emerging technology. It is
important to recognize that AEY does not capture the consistency of individual units over
time. For this reason, AEY is necessary but perhaps insufficient to predict reliability for
brain computer interface implementations that require unit consistency. Expanding on prior
work that suggests that a minimum 12–16 week indwelling period may be sufficient for
the assessment of chronic performance, the addition of a suitable performance metric such
as AEY decay rate might aid in the contextualization and interpretation of the long-term
functionality of this technology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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