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ABSTRACT A growing elderly population suffering from incurable, chronic conditions such as dementia
present a continual strain on medical services due to mental impairment paired with high comorbidity
resulting in increased hospitalization risk. The identification of at risk individuals allows for preventative
measures to alleviate said strain. Electronic health records provide opportunity for big data analysis to
address such applications. Such data however, provides a challenging problem space for traditional statistics
and machine learning due to high dimensionality and sparse data elements. This article proposes a novel
machine learning methodology: entropy regularization with ensemble deep neural networks (ECNN), which
simultaneously provides high predictive performance of hospitalization of patients with dementia whilst
enabling an interpretable heuristic analysis of the model architecture, able to identify individual features
of importance within a large feature domain space. Experimental results on health records containing
54,647 features were able to identify 10 event indicators within a patient timeline: a collection of diagnostic
events, medication prescriptions and procedural events, the highest ranked being essential hypertension. The
resulting subset was still able to provide a highly competitive hospitalization prediction (Accuracy: 0.759) as
compared to the full feature domain (Accuracy: 0.755) or traditional feature selection techniques (Accuracy:
0.737), a significant reduction in feature size. The discovery and heuristic evidence of correlation provide
evidence for further clinical study of said medical events as potential novel indicators. There also remains
great potential for adaption of ECNN within other medical big data domains as a data mining tool for novel
risk factor identification.

INDEX TERMS Deep learning, dementia, electronic health records, feature selection, hospitalization,
machine learning, risk factors, weight regularization.

I. INTRODUCTION
Dementia: a decline in mental ability severe enough to
interfere with daily life. The primary cause of which being
Alzheimer’s diseases making up 60-80% of cases [1]–[4].
Other causes include vascular dementia, thyroid problems
and vitamin deficiencies [5]. Current estimates indicate
47.5 million individuals living with dementia in the world

with predictions showing the figure to triple by 2050
[6], [7]. Around 100,000 individuals with dementia die each
year [8], with a worldwide cost of 818 billion US Dollars
in 2015 [9].

Dementia poses a significant increase in risk due to con-
tinued degradation of mental ability. As such, coupled with
a generally higher level of comorbidity as compared to
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individuals with no dementia, it is often associated with
adverse health outcomes resulting in higher rates of institu-
tionalization and hospitalization [10]–[12], followed by lower
survival rates [13]–[15]. Accordingly, the prediction of poten-
tial hospitalization of individuals with dementia allows for the
identification of high-risk individuals in need of pre-emptive
or preventative care.

With such a vast domain encompassed by the medical and
social services potentially experienced by a patient, big data
of such nature will invariably suffer from the curse of dimen-
sionality, resulting in data domains consisting of upwards of
thousands of dimensions. Consequent data sparsity follows
behind as population size is vastly outpaced by the required
sample size needed to maintain statistical significance for the
size of feature space. For example, with over 100,000 poten-
tial medical event codes within the predominantly used
ICD-10 system [16], healthcare data poses a significant
challenge for the traditional statistical approaches generally
applied within health informatics [17]. The use of such data
within general predictive machine learning approaches poses
additional challenges on interpretability and application on a
human level. Without a reduction of feature size to a man-
ageable size, the practicality of such approaches will remain
outside of medical application, and firmly within the confines
of academic interest.

To address such challenges, this article proposes a novel
methodology for predicting hospital admission for individu-
als with dementia whilst simultaneously performing feature
reduction on a sparse, high-dimensional dataset of medical
events. The proposedmethodology includes the use of a mod-
ified snapshot ensemble methodology originally proposed
by [18] through the inclusion dynamic learning rate (LR)
scheduling to produce a novel training methodology. The use
of integrated entropy regularization [19], originally proposed
for support vector machine (SVM), is also proposed with an
adaption towards deep neural networks (NNs) used as the
baseline modelling methodology within this study, hence-
forth referred to as ECNN.

By performing feature selection in parallel with classi-
fication training, selection of features can be focused on
identifying effective discriminative features relevant primar-
ily to the required task at hand. Being generic electronic
health records of patient history without any direct rela-
tionship to dementia analysis or diagnosis, the reduction
of the hundreds of thousands of potentially unrelated med-
ical events to only a handful minimizes the number of
redundant variables in need of further clinical or statisti-
cal study in identifying potential risk factors. The collec-
tion of electronic health records via the Secure anonymised
information linkage (SAIL) data-bank [20] allows for the
linkage of anonymized patient records across the vari-
ous healthcare providers such as general practice (GP),
in/out-patient hospital records, population deprivation, etc.
This provides the potential of novel research applications
involving the entirety of a patient time-line from birth to
death.

II. RELATED WORK
Various studies have gone on to explore common causes of
hospitalization within the population of dementia sufferers
with a focus on clinical study and survey data with limited
population scope. Kalisch et al. [21] identified, through a
retrospective cohort study, a significantly increased risk of
hospitalization for demented individuals when taking two or
more anticholinergic medications with an adjusted incident
rate ratio of 2.58. Chan et al. [22] follows a similar line of
investigation indicating that 53.4% of cases of hospitalization
of the elderly due to adverse drug events were preventable
due to non-compliance or omission of indicated treatments.
Phelan et al. [23] identified causes of hospitalization such as
bacterial pneumonia, congestive heart failure, dehydration,
duodenal ulcer and urinary tract infection as being signifi-
cantly higher among thosewith dementia. Naalwala et al. [24]
provides similar conclusions while also including causes such
as bronchopneumonia. Bynum et al. [10] provides a more
extensive list of hospitalization causes whilst also identify-
ing the number of comorbidities as a consistent association
with the odds of hospitalization. Toot et al. [25] establishes
factors such as behavioral problems including agitation and
wandering as well as changes in daily living routine to have
an increased risk of hospitalization for people with dementia.

While the studies mentioned have provided informative
results, the resulting causes of hospitalization all refer to a
root cause in hindsight of the actual hospitalization event.
Little research has been performed on identifying influential
risk factors and clinical events from previous health records
in an attempt to predict patient hospitalization. Related fields
of research such as dementia diagnosis decision support sys-
tems have seen comparatively greater interest in the use of
big data machine learning (ML) approaches. The resulting
methodologies created from such fields of study provide great
opportunity for adaptation into data mining and risk factor
analysis.

Advances of information technology have led to a marked
increase in information collected on patients in healthcare
services. With surges in concepts of big data within other
fields of research, ML applications are moving towards the
forefront for data analysis. ML approaches within the field
of medical informatics has already been ongoing with cur-
rent research involving ML within dementia greatly focusing
on early diagnosis with great success. The majority of the
existing applications are based upon the analysis of magnetic
resonance imaging (MRI) scan data which show impressive
predictive performance. Marthotaarachchi et al. [26] uses a
single PET & MRI scan to identify individuals with pro-
gressive mild cognitive impairment (MCI) as opposed to
stable MCI. Through the use of a random forest (RF) and a
novel random under-sampling methodology to resolve imbal-
anced class distributions, classification accuracy of 84% on
a set of 273 patients was reported. Wolf et al. [27] tries
to classify between individuals of MCI and full dementia
based upon correlations between volume ratios of various
brain regions. Brain regions were identified using boundary
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guided region growing whilst final classification was per-
formed using a logistic regression model to reported accuracy
of 78%. Lao. et al. [28] uses a novel mass preservation
transformation methodology on MRI scans in addition to
wavelet decomposition and SVM to classify between brain
atrophy categories to produce a final accuracy of 87% over
153 patients. There exists several other studies involvingMRI
based dementia diagnosis [29]–[31]. The reliance on MRI
scans for such methodologies, provides limited application
in dementia diagnosis due to expense and availability of MRI
technology [32]. As such, much akin to the established diag-
nosis procedure for dementia, cheaper more readily avail-
able methodologies such as Neuropsychological assessments
remain the primary tool for initial mass screening.

Accordingly, Neuropsychological assessments such as the
commonly used Mini Mental State Exam (MMSE) are used
regularly as predictors for a ML based approach to patient
screening [2], [33]. Maroco et al. [32] provides a thorough
comparison of several ML methodologies including linear
discriminant analysis (LDA), logistic regression (LogReg),
SVM, RF and NN on a dataset of 10 neuropsychological tests
with a sample size of 400 patients. With the task of classi-
fying patients as having MCI or Dementia, results showed
SVM with the largest overall classification accuracy. Mean-
while, more niche examples of ML within Dementia have
shown highly remarkable results such as identifying semantic
dementia patients through the use of natural language pro-
cessing on descriptions of images made by demented and
non-demented patients by Garrard et al. [34]. Using a naive
Bayes multinomial algorithm, Garrard was able to classify
dementia patients with an accuracy of greater than 90%.

Making use of limited datasets, the existing studies have
provided encouraging results in dementia diagnosis. With
further advances in information technology, the potential for
large scale data analysis within medical informatics is appar-
ent. Several major limiting challenges exist however; first and
foremost being data protection and ensuring the privacy of
an individual on a large scale. Secondly, with the timeline of
an individual expanding across a range of discrete health and
social service providers; the accurate, effective linkage of the
various service database systems still presents as an ongoing
research challenge [35], [36].

III. METHOD
The proposed method, ECNN, consists of a four-stage
pipeline: initial training using entropy weight regulariza-
tion, snapshot ensemble training and aggregation, feature
importance grouping and ranking, backward-stepwise feature
selection & validation for risk factor analysis. The proceed-
ing section presents initial data preprocessing following the
individual pipeline stages in detail.

A. DATA PREPROCESSING
ECNN emphasizes the use of patient records consisting of GP
read codes over a time period of multiple years. More detail
of the experimental dataset is presented in section IV. All

FIGURE 1. Exploded view of a perceptron contained within a NN
architecture consisting of an input, hidden, and output layer. Also shown,
are the forward pass formulae for producing overall model loss using an
example mean squared error loss function. Additionally,
back-propagation formulae are also shown, used for updating network
parameters, perceptron weight, s and bias b. To note, is the propagation
of remaining error being passed back up each perceptron layer via partial
derivatives,

δCi
δbl

k
and

δCi
δwl

jk
for weight and bias respectively.

unique read codes were one-hot encoded as individual fea-
tures with each patient sample indicating total occurrence of
read code over the relevant time-period (see section IV). Data
normalization of feature vectors to the range [0, 1] provides
the final high-dimensional, sparse dataset for initial training.
Class labels for samples are simply standard classification
indicators, the set of {0, 1} indicating a positive or negative
instance of any hospitalization event after official diagnosis
of dementia as indicated within patient records.

B. DEEP NEURAL NETWORKS
The foundational architecture of ECNN is the deep NN, com-
monly used in a wide selection of disciplines and research
domains [37]–[42]. The remainder of this section provides a
quick overview of NNs, highlighting the strengths over tradi-
tional statistical and machine learning methodologies already
commonly in use within the health informatics domain.

Given an input space, X ∈ Rn×p comprised of n samples
containing p features: NNs consist of multiple layers of per-
ceptrons, each aggregating the given input space through a
weighted and biased sum before being mapped to an activa-
tion function. The result of which provides a final activation
output shown in the following equation:

al=1k = σ

 p∑
j=1

wlja
l−1
j + blj

 ,
a0j = Xj (1)

where weight, w and bias, b are trainable parameters trans-
forming each input feature vector, Xj before summation
and transformation using activation function, σ to provide
the indexed perceptron k’s, activation result a within the
first layer, l. The vector of activations, al are passed as
the input vector for the subsequent layer of perceptrons.
A deep NN constitutes an architecture containing multiple
preliminary embedding layers between the input and output
layer allowing for non-linear transformations and subsequent
embeddings of the original data space. Each snapshot NN
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within the overall ECNN architecture consists of a 2 hidden
layer architecture containing 50 and 30 perceptrons accord-
ingly. Perceptron counts were chosen using a simplistic grid
search hyper-parameter optimization algorithm to provide
best model performance.

Training consists of the minimization of the cross entropy
cost function:

min
ŷ
[−(y log(ŷ)+ (1− y) log(1− ŷ))+ λf (w)] (2)

based on the forward-pass and back-propagation methodol-
ogy to adjust model parameters in (1), regularized by the
λ weighted function f (w); where ŷ is the model probability
output and y, the classification target. Said regularization will
be the aforementioned entropy weight regularization function
examined in Section III-C.

C. ENTROPY WEIGHT REGULARIZATION
As mentioned previously, dimensionality and sparsity are
the main challenges of data analytics using electronic health
records. With data dimensionality potentially numbering in
the hundreds of thousands and individual observations hav-
ing perhaps tens of values, the leveraging of such data in
producing an effective predictive model whilst maintaining
comprehensibility is a hard prospect.

Traditional dimensionality reduction pipelines such as
principal component analysis (PCA), relying on orthogonal
transformations of the dataset, suffers on a comprehensibility
standpoint. After said orthogonal transformation into the new
embedding space, with axes not necessarily parallel to the
original feature space axes and based off orthogonal vectors
of most variance, each of the resulting orthogonal dimensions
or principal components become fully dependent on every
original feature.

After the removal of low-variance principal components,
the traditional methodology for PCA dimensionality reduc-
tion, a transformation back into original feature-space would
result in a information loss across multiple features due to
the aforementioned dependence. Consequently, the selection
of a single principal component of high-importance would
transform into a vector spanning across the entire feature
space. Subsequent selection or ranking of individual read
codes for clinical significance would thus become highly
impractical.

Furthermore, a final application involving the use of such
dimensionality reduction methodologies will still require the
evaluation of every medical event within a patient time-line.
Another major disadvantage of such methods is the apparent
disconnect between dimensionality reduction and prediction.
PCA bases dimensionality reduction on the variance of a
dataset and as such performs reduction without any feedback
as to its effectiveness.

The method proposed below seeks to solve both issues.
By performing feature selection during the training of the
predictive model, feedback on the performance of the pre-
dictive model based upon the reduced features can be fed

back into selecting features relevant to the trained task at
hand. In addition, reduction will be performed directly on
feature dimensions and as such, allows for the direct removal
of redundant events within a patient time-line.

This article proposes a novel adaption of the entropy regu-
larization technique, originally proposed by Zhou et al. (3)
for SVM models, towards the NN architecture. The mea-
sure of information entropy defines the potential information
content of a data source or the unpredictability of a certain
state occurring. As such, within a probability mass func-
tion, P(X ), of a binary variable, X , the information entropy
of said variable will approach zero where the probability
mass function approaches near certainty of one or the other
action. The information entropy is highest at the midpoint,
P(X ) = 0.5, where the probability of either action is exactly
equal. Consequently, this property of information entropy
can be leveraged into enforcing weight sparsity within our
methodology.

By incorporating entropy regularization based on the
bounded weights of the first layer of the NN within the
cost function, weight updates will seek to minimize entropy,
thus driving said first layer weights towards {0,1}. The orig-
inal cost function seeks to push weights in either direc-
tion towards improving predictive accuracy. With a linear
activation function, weights approaching zero will filter out
activation signals whilst weights approaching one will remain
unaltered. Entropy regularization will emphasize the need to
push weights towards boundary extremes. The combination
of the aforementioned functions will result in activation sig-
nals of importance being driven towards one whilst redundant
signals in the scope of predictive performance will be pushed
towards zero and thus filtered out. The resulting weight
matrix will be of a sparse form consisting of only activation
signals which contribute to the model prediction.

f (w) = −λ
JK∑
jk

wjk log(wjk ) (3)

where W 1
jk is the weight representing the connected edge

between the k-th multilayer perceptron (MLP) in layer l and
the j-th MLP in layer l − 1. The hyper-parameter, λ is a
regularization coefficient to fine-tune the balance between
predictive performance and weight sparsity. Consequently,
weights close to zero will map to θ = 0 while highly
positive weights will map towards θ = 1. The resulting sparse
weight matrix of the first layer will act as a filter, removing
inconsequential connections between MLPs within the first
and second layer. By evaluating this matrix, the resulting
input features can be categorized into three types shown in
ascending order of importance:

In reference to the traditional cross entropy cost function
for overall prediction cost minimization:

C = −(y log(ŷ)+ (1− y) log(1− ŷ))+ λ0f (w) (4)

where model prediction, ŷ are driven towards
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1) DISCONNECTED
Features whose weighted connections have been driven close
to zero are completely excluded from the remaining model
and as such, are non-meaningful features for classification.

2) PARTIALLY CONNECTED
Features where only some weighted connections have been
driven close to zero. Consequently, these features exhibit
element-wise sparsity and as such remain partially used.

3) FULLY CONNECTED
Features whose weights exhibit non-sparsity indicates a
favorable feature which remains in use for the remainder of
the model.

By selecting favorable features whose associated weights
are large whist being fully or partially connected allows
for redundant features to be removed. Through associating
feature selection based upon parameters within the predic-
tive model during training, feature selection can be tailored
towards selecting features which favor heavily into the overall
predictive performance.

D. SNAPSHOT ENSEMBLES
The training procedure used involved the use of a modified
snapshot ensemble training procedure proposed by Huang
et al. [18] allowing for multiple ensemble NNs to be gen-
erated through training a single model. Ensembles comprise
of periodic model snapshots taken during training. Diversity
between each model snapshot is encouraged through specific
LR scheduling between each snapshot. Specifically, a cyclic
cosine function [43] repeating based on set training iterations:

α(t) =
α0

2

(
cos

(
π mod

(
t − 1, d TM e

)
d
T
M e

)
+ 1

)
(5)

where the LR, α, is dictated by scaling the original LR, α0,
based off the current epoch, t’s position within the shifted
sub-cosine function. Each of the M number of cosine func-
tions is spread equally along to the total epoch count, T .
The resulting LR progression over a cosine cycle resembles

a rapidly descending LR from an initial large value, gradually
reducing in gradient to a set iteration and an assumed model
convergence at local minima. At which point, model param-
eters are saved as a single ensemble snapshot before a large
spike in LR is introduced to repeat the cosine cycle. Said LR
spike ‘‘dislodges’’ the model from the local minima allowing
for descent into a potentially new local minima and resulting
new unique ensemble model.

The resulting unique snapshot sub-models form a large
combined final model for use in the testing stage. Final
predictions are formed from the combined predictions of each
snapshot model based off the combined average.

The result of which, as indicated by Huang et al., pro-
vides superior model accuracy and generalizability with sim-
ilar training durations as compared to traditional momentum
based learning rate schedulers. Such behaviour additionally

provides potential to encourage divergent sparse first layer
weights in combination with the aforementioned entropy
weight regularization (See Fig. 6). The result of which, pro-
vides diverse feature combinations for analysis.

E. FEATURE RANKING & SELECTION
Features can be categorized based upon the sparse weight
matrix into three categories as detailed in section III-C.
An evaluation metric was designed as shown in (6) called
Feature Sparsity Importance to provide the capability to rank
and identify possible features. Overall, feature ranking is
based off the perceptron weight parameters directly associ-
ated to each feature between the input and first hidden layer
of each snapshot using the following equation:

Rk =
|W 1

k | − σ
2(|W 1

k |)

max(|W 1
k |)

(6)

where |W 1
k | is the mean absolute weight on a column by

column basis representing the mean weight associated with
feature k . A higher mean absolute weight will generally
indicate a feature of higher importance. In order to account for
element-wise sparsity within the weight matrix, the variance
of the absolute weights, σ 2(|W 1

k |), is also taken into account:

σ 2(W l
k ) =

∑J
j (w

l
jk − w

l
k )

2

J − 1
(7)

where a high value indicates high element-wise sparsity and
vice versa. The maximum mean absolute weight used within
the denominator ensures a non-dimensional value normalised
to 0, 1. The feature sparsity importance metric will evalu-
ate fully connected features with high mean and low vari-
ance highly, partially connected features with high mean and
high variance lower and finally disconnected features of low
mean and low variance to a value near zero indicating low
overall importance to the predictive model. Feature impor-
tance values from each snapshot model were averaged to
obtain the final Feature Sparsity Importance value for use in
thresholding.

Feature thresholding can be performed using various
schema. Methodologies such as selecting based off a 95%
importance cut-off would provide an effective adaptive
threshold emphasising predictive performance. Such a cut-off
would however produce a 107 feature subset, whilst a signifi-
cant reduction, would still remain cumbersome in an appli-
cation standpoint. A simple top k = 10 cutoff threshold
provides a rather naive threshold policy, however coinciden-
tally, as shown in Fig. 3, a normal distribution fitted across
a feature importance histogram highlights the predominance
of low importance features whilst 10 features lie high outside
the three standard deviation range. As such, these features are
selected as the subset for further analysis.

Such feature ranking within the original data space
contrasts highly with traditional statistical modelling tech-
niques such as PCA or LDA requiring orthogonal trans-
formation into an embedding space for dimension ranking.
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As such, ECNN enables a direct interpretable ranking of
individual medical events as predictive indicators of future
hospitalization.

IV. EXPERIMENT
The dataset population was extracted through the SAIL
data-bank which consists of linked and coded patient records
catalogued from various primary and secondary health ser-
vices provided by the Welsh NHS, UK. Accordingly, data
coverage encompasses the majority of the Welsh population,
a total of 3 million individuals [44].

The Primary Care GP dataset (GP) contains individual
medical records obtained from the various primary care prac-
tices around Wales. Every individual contains timestamped
records of various events ranging from prescribed medication
to lab test results to diagnoses coded as NHS read codes. The
Patient Episode Database for Wales (PEDW) dataset com-
prises of attendance and clinical information for all hospital
admissions within Wales. A continuous period of treatment
for an individual can be traced from entry to diagnosis to
hospital transfer, if any, to treatment to exit. Information such
as date of birth, gender, area of residence, deprivation score,
etc. are provided if available for both datasets.

TABLE 1. Table Containing Read Codes Associated With a Positive
Dementia Diagnosis.

Data preparation involved the selection of all patients with
a positive diagnosis of dementia based upon NHS read codes
as indicated in Table 1 [45]. Of note is the hierarchical nature
of said read codes allows for a general broad consolidation of
dementia diagnosis for simplification. Such examples include
codes such as ‘E00..’ indicating all variations of code values
possible on positions containing the decimal point. In practice
however, there is inconsistent inclusion of both categorical
and sub-categorical read codes within the dataset. As such, all
categorical and sub-categorical read codes for dementia were
included to ensure thorough consideration of all indicated
dementia patients.

The overall dataset consists of the medical history from
1908 to 2017. However, dataset distribution by year as shown
in Fig. 2, indicates the vast majority of patient events dis-
tributed between 1982 to 2015. As such, patients and cor-
responding records have been limited to the aforementioned
time window. The selected population variation results in
a gender split of 34.9% male and an overall mean age

FIGURE 2. Graph indicating distribution of patient and event counts
aggregated by year across the GP and PEDW datasets used for evaluation.
As shown, the majority of patients and events span across a timeframe
between 1982 to 2015. Of note, is the non-linear correlation between
patient count and event count highlighting an increased frequency of
recorded events over the years.

of 91.8 and a standard deviation of 10.50. The generally older
population characteristic of our dataset provides opportunity
for analysis into an especially more vulnerable age range
of the general population more prevalent to dementia and
resulting hospitalization or institutionalization.

Further statistical population characteristics are shown in
table 2.

TABLE 2. Statistical Characteristics of Sampled Population.

The resulting dataset consists of 59,298 patients diagnosed
with dementia. Patient time-lines were selected one year
before dementia diagnosis up to hospital admission if at all.
An individual patient history, or sample within the input
dataset consists of a frequency table counting number of
times specific medical events occur in a one year lead up
to first hospitalization event. With a formatting similar to
traditional one-hot encoding, the feature set comprises of all
possible unique medical events which have occurred within
the considered population resulting in 54,649 unique features
or event codes. Whilst, the sum total frequency of all occur-
ring medical events with in the population totals 52.5 million
events, with a single individual medical history only using
a small subset of said unique events, a significantly sparse
dataset is produced, effectively highlighting the challeng-
ing extent of high dimensionality and data sparsity inherent
within patient medical histories constructed into datasets for
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TABLE 3. Full Feature Set Classification Results.

MLmodelling. Consequently, such dataset properties provide
an excellent opportunity for verification of ECNN.

As mentioned previously, the evaluation criteria for our
methodology will be in predicting whether a dementia
patient stays within a GP setting with minor accidents and
events (condition negative) or whether a patient is admitted
into a hospital setting due to major accidents or continued
degradation of mental ability (condition positive). This will
be indicated through a lack of hospital data throughout a
patient’s time-line. The resulting patient dataset split consists
of 30,178 patients admitted to hospital and 29,120 patients
which remained within a GP setting.

A comparative evaluation between a similar traditional
classification model with capability for feature ranking, RF
was performed using the exact same dataset. Feature rank-
ing on RF was produced through the use of traditional out-
of-bag error comparison to perturbed datasets [46]. Addi-
tional comparative evaluation was also performed with a
baseline methodology through a subset of 10 random features
selected amongst the original overall feature-set via random
number generator.

V. RESULTS
Experimental evaluation can be categorized into three dis-
tinct categories: predictive performance using the full dataset
(section V-A), analysis of model characteristics to produce a
feature ranking (section V-B), and final evaluation of feature
ranking and selection against baseline methods (section V-
C. All experimentation was cross-validated using a 5 fold,
traditional k-fold validation paradigm. In which, three folds
are designated as the training set, one for validation and one
for final testing in a cyclic sequence; repeated twice over. The
resulting 5 × 2 test fold sequences of results are aggregated
and presented within the remainder of this section.

A. FULL FEATURE RESULTS
The performance of ECNN as a pure classification model
was assessed on the full set of features in comparison to a
traditional classification methodology with combined feature
ranking capability, RF. The intuition of such an assessment,
in combination with section V-C, being the evaluation of the
validity of resulting feature rankings from ECNN.

Results are presented in table 3 showing aggregated pre-
dictive performance across various metrics with T-test to

distinguish significance between the two methodologies.
As shown, ECNN provides significant improvements (<0.05
P-value), around 5%, in true negative rate (TNR) and positive
predictive value (PPV) compared to RF whilst maintaining
insignificantly near similar performance in true positive rate
(TPR) and negative predictive value (NPV) resulting in an
overall superior model performance in accuracy. A major
consideration however, is the larger variation in predictive
performance of ECNN as compared to RF. Such variation
was found during testing to be caused in part from the
use of entropy regularization settling into perhaps a sub-par
local minima of sparse weights producing inferior performing
model snapshots affecting overall stability during the final
prediction aggregation of the ensemble models.

The resulting overall performance improvement over RF
however, comes with a major compromise of training com-
plexity and duration as is standard in a comparison of RF
to NN trade-offs. With a significant difference between RF
and ECNN of 44 seconds to 2 hours average training dura-
tion respectively, such vast differences highlights the greatest
disadvantage of ECNN and deep NN complexity overall.
However, with a significant improvement in both predictive
performance and feature ranking capability, as shown in
section V-C, such performance may justify the differences in
training times.

B. FEATURE SELECTION
Within this section, we will present and analyse the resulting
ensemble snapshots using the aforementioned feature ranking
metric presented in section III-E.

As shown in Fig. 3, entropy regularization was able to
successfully separate the majority of layer weights into
a sparse filter mapping of values close to zero and one.
Fig. 5 alternatively provides a heatmap representation of the
sparse first layer weights of each snapshot ensemble model
produced. As seen, each ensemble mostly resembles each
other with subtle differences highlighted in Fig. 6 showing
normalized difference of first layer weights between each
pair of ensemble models. As such, snapshot ensembles are
shown to successfully dislodge settled weights to generate
new feature maps. Of note is how weight variance between
ensembles centers around specific features; as opposed to
across layer 2 nodes or a combination of both. Consequently,
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FIGURE 3. Histogram of features over mean importance factor across all
snapshot ensembles of a randomly selected cross-validation run. As seen,
the majority of features are normally distributed (µ = 0.0777, σ = 0.0265)
around a low overall feature sparsity value, indicating the majority of
features introduced to ECNN are of low importance in prediction of
hospitalization. Unable to be effectively shown, due to graph scaling
constraints, 10 features lie outside 3 standard deviations of the
distribution, shown in table 4.

such behaviour can be interpreted as high feature variance
between ensembles indicating uncertainty of feature impor-
tance whilst low variance indicates a convergence of such
features into a stable configuration of importance.

The proposed feature ranking metric was applied to the
first layer weights of each ensemble and aggregated into a
single normalized feature importance value for each indi-
vidual feature. Fig. 3 indicates the distribution of features
across the feature importance spectrum. As seen, the majority
of features form a normal distribution low on the feature
importance metric with mean, µ = 0.0777, and standard
deviation, σ = 0.0265; whilst several features lie high on
feature importance outwith the normal distribution by greater
than three standard deviations. Consequently, these 10 outlier
features were selected as the subset of important features used
for continued further analysis, in addition to subset predictive
performance testing in section V-C.
These 10 medical events, summarized in table 4, form

a varied collection of medical diagnoses, medication pre-
scriptions and procedural events. Qualitative analysis and
literature review of the identified medical events show effec-
tive feature selection from ECNN with every event occur-
rence being either positively associated to an increased
hospitalization risk or present an entirely novel or inconclu-
sive association.

In regards to established direct risk factors identified by
ECNN, a literature review is presented highlighting each pos-
itive correlation. As shown, a diagnosis of essential hyperten-
sion or idiopathic hypertension was identified as the highest
ranked feature with an average importance factor of 0.481,
vastly exceeding the exhibited normal feature distribution
mentioned previously. Of course, such a correlation between
hypertension and hospitalization incidence has already been

FIGURE 4. Shown, is the log scaled histogram of final model weights of
the first layer of a randomly selected model within cross-validation.
As seen, the vast majority of weights have converged to values close to
{0,1} in response to the proposed entropy weight regularization.
As mentioned, a comparatively small set of weights (an order of
magnitude less than successfully separated) show a non-perfect
separation towards either extreme. Further analysis of said weights
indicate belonging to specific features, contributing to the ultimate
variance between each ensemble, as highlighted in Fig. 6.

shown to exist through cohort studies [47], [48]. Previous
literature have also studied several other risk factors identi-
fied by ECNN. In regards to the second most highly ranked
event, prescription of Adcal-D3 - calcium and vitamin D
supplements, under the assumption of a resulting vitamin D
or calcium deficiency in the individual, studies have shown
general increase in hospitalization risk for the elderly from
resulting co-morbidities [49] in addition to direct potential
risk [50], [51]. Influvac, a flu vaccine, the third highest
ranked event, regularly prescribed to highly at risk elderly
individuals, highlights established risk factors of influenza on
functional decline within the elderly [52]. Additionally, blood
glucose lab tests for potential diabetes and simvastatin, pre-
scribed for high blood cholesterol are further established risk
factors for general hospitalization risk in the elderly demented
population [48]. Osteoarthritis, a condition with a common
prescription of Ibugel [53] - a gel based ibuprofen medication
identified as 7th on the list, is also widely regarded as a
hospitalization risk factor of the elderly [54].

Prescription of Serc-16 tablets, prescribed for Ménière’s
disease, presents an interesting secondary indicator of hos-
pitalization risk. With symptoms of vertigo, titinnus, and
hearing loss - Ménière’s disease associates with increased
fall risk in the elderly [55] resulting in indirect risk of
hospitalization.

As shown, the identification of already established risk
factors by ECNN demonstrates effective risk factor recog-
nition, highlighting the potential for further clinical analysis
on the remaining medical events for potential correlations.
Of the remaining event indicators: Social group 3 - skilled,
occurrence of nightmares and encounter between GP and a
third party in regards to the patient; little or inconclusive
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TABLE 4. Top 10 Event Codes Ranked In order of Importance as Determined by ECNN.

studies have attributed such events as a precursor to hospital-
ization. Van de Vorst et al.indicates no statistical significance
for hospitalization risk between mid-tier socioeconomic sta-
tus, generally associated with a skilled individual, and high
or low-tier status. There was however, positive significant
correlation from low to high-tier status [56]. Nightmares
have potential to be associated with symptoms of delirium,
the result of which, hospitalization risk is increased [57];
however, such a generic medical event with multiple asso-
ciations to various conditions would require further study
to be presented as an indicator on it’s own. Finally, third
party encounter addresses a wide range of situations involv-
ing reports by individuals related to the individual suf-
fering from dementia. Whilst it has been established that
dementia detection is predominantly reliant on self-reporting
or by relatives [58], no literature was found studying
hospitalization resulting from non-emergency third party
reports.

Linear independent correlations between the identified
medical events to hospitalization incidence was analysed
through Pearson’s correlation and reported in table 4. Inter-
estingly, there seems to be little correspondence between r
value and ECNN ranking and in some cases, little statis-
tical significance. Such behaviours indicate a distinct lack
of independent linear correlations on individual risk fac-
tors. Tests on modelling hospitalization prediction using NN
and RF on the individual, identified features provide no
discriminative capability; requiring all 10 features to pro-
duce predictive performance indicated in section V-C. Such
observation hints at the capability of the underlying NN
architecture of ECNN being able to formulate non-linear
relationships between features, consequently being unable
to produce individually discriminative medical events. The
extraction and interpretation of non-linear combinatorial rela-
tionships between features remains an open avenue for fur-
ther research of great benefit within the medical informatics
field.

FIGURE 5. Heat map of individual weights of the first layer across the five
snapshot ensemble models of a single cross-validation run where yellow
hot are values close to 1 and purple cold are values close to 0. As seen,
most weights have converged to values close to {0,1} indicating the
success of entropy regularization. Rough patterning between each heat
map indicates a potential pattern in variation between each ensemble.
As similarities and differences between each ensemble weight matrix are
difficult to see, Fig. 5 provides a clear indication of the feature-wise
variation.

C. REDUCED FEATURE-SET PREDICTIVE PERFORMANCE
Several comparisons were evaluated to determine feature
selection performance. The reduced subset of features pro-
duced by ECNN were used to train on various standard
classification methodologies as a comparison to the full
dataset. The top 10 features ranked by RF, shown in table 5,
were also used as a baseline comparison of a traditional
effective feature selection procedure while a random 10 fea-
ture selection was also evaluated to provide an indicator
of dataset baseline predictability. The results are shown in
table 7.

In a direct pair-wise comparison of predictive perfor-
mance of feature ranking based on ECNN versus RF for
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FIGURE 6. Shown, is a complete comparative heat map matrix of the absolute differences in weights between the first hidden layer of every
possible pair of the 5 produced snapshot ensembles. Colour values are mapped so that yellow hot represents values close to 1 whilst purple
cold represent values close to 0. Left-top to right-bottom diagonals show weight difference between the same ensemble and are thus
irrelevant for analysis. Of note, the vertical patterning for each heat map indicates any weight differences between snapshot pairs are focused
on specific individual features across all snapshot pairs. This suggests a convergence in importance factor for the vast majority of features
with a small but consistent subset of edge-case features producing variation amongst the snapshot ensembles.

TABLE 5. Top 10 Event Codes Ranked in Order of Importance as
Determined by Random Forest.

each of the baseline NN and RF classification models shows
generally superior performance using features ranked by
ECNN. Highlighted by a 4.1% improvement in F1 score
between RF and proposed when using a NN baseline classi-
fication model and a 1.4% improvement using a RF baseline
classification model.

A definitive superior baseline model in an application
standpoint for our feature subset use case however, is not as
clear cut; with RF providing superior TNR with comparable
accuracy scores and NN providing overall best F1 score

and accuracy. In consideration of an application based
hospitalization warning system, NN provides the superior
NPV and as such, the superior screening type test for high
risk demented patients.

In regards to the baseline random feature selection pro-
cess, both feature selection methodologies produced results
significantly improved over that of random guessing. Of note
however, is the inability of NN in training an effective clas-
sification model when using the randomly selected feature
subset, with final inactive models producing continuous pos-
itive predictions resulting in a ‘superior’ TPR. Additionally,
RF also produced generally inactive models using the ran-
dom feature subset, swinging between continuous positive
or continuous negative predictions indicated by significantly
large standard deviations. As such, random feature subset
results do not provide an effective comparison of proportional
predictive performance as compared to non-random feature
selection methodologies but instead highlight the difficulties
of selecting small subsets of features able to adequately
model patient hospitalization.

In reference to table 6, feature ranking and selection using
ECNN shows a statistically significant improvement in over-
all predictive performance as opposed to the use of the full
feature dataset using a traditional logistic regression classi-
fication model. Said results highlight the challenges of such
a high-dimensional and sparse dataset and the advantages of
effective feature selection, enabling effectivemodelling of the
problem space in a significantly reduced subset of features.
Such complexity reduction is emphasised in the contrast of
average training durations with logistic regression trained on
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TABLE 6. Logistic Regression Comparison Using Reduced Feature Selection Results.

TABLE 7. ECNN and Random Forest Reduced Feature Selection Results.

the full set of features requiring 33 minutes whilst training on
a subset of 10 features requiring seconds.

VI. CONCLUSION
This study proposes a novel combination of methodologies
for the prediction of hospitalisation potential with patients
suffering from dementia. Using a novel adaption of snap-
shot ensembles to use a dynamically generated learning rate
schedule, in addition to an adaption of entropy weight regu-
larization for use with NNs and subsequent novel evaluation
of model parameters: we were able to identify 10 medical
events highly indicative of future hospitalization of demented
individuals out of an extremely high dimensional and sparse
dataset of 54,647 unique medical events. Comprising of diag-
nostic events, medication prescriptions and procedures, said
events were able to model and predict future hospitalization
to a performance equal (and in certain cases better) than that
of the full dataset. ECNN provides significant advantages to
statistical feature selection methods in interpretability and in
ML based modelling techniques in predictive performance.

The identification of said medical events, opens avenues
for the potential creation of early warning systems to iden-
tify demented individuals at high risk of hospitalization or
institutionalization. With multiple indications of nutritional
health being a major impact in hospitalization risk factor,
such information can be further investigated for potential

prevention through an emphasis in improved nutritional care
for dementia patients. Such examples highlight the many pos-
sibilities focusing on pre-empting and preventing hospitaliza-
tion through alteration of secondary care practices. Overall
contributions such as those indicated allow for a potential
reduction in critical healthcare utilization, itself a positive
advancement, whilst reducing risk in a statistically elderly
and vulnerable population through reduction in exposure to
hospital induced risk factors such as infection.

Multiple avenues exist for the improvement of ECNN as
future work. Most significantly would be the inclusion of
times-series based modelling methods able to acknowledge
the continually changing health of the individual patient over
time. Further avenues of improvement also include greater
statistical analysis of ranked features for improved ranking,
larger scale datasets extending coverage beyond the Wales
region currently handled by secure anonymised information
linkage (SAIL), and adoption of state-of-the-art deep learn-
ing modelling such as event code representation using word
embedding techniques for overall improved prediction per-
formance. Additional application can be considered through
the use of more novel modelling methodologies such as
evolutionary algorithms to at once compare predictive per-
formance whilst simultaneously providing feature reduction.

The collection of medical events highlight already estab-
lished risk factors for hospitalization indicating effective
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capability whilst novel events present opportunity for further
focused traditional clinical analysis as potential risk factors
and indicators. As such, ECNN provides future potential
for use within other medical informatics domains as risk
factor identification. The general nature of patient medi-
cal records, in conjunction with ECNN enables application
within other domains to provide interpretable, small-scale
indicators allowing for ease of identification of at risk indi-
viduals for pre-emptive care.
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