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Abstract: During the 20th century processed and ready-to-eat foods became routinely consumed
resulting in a sharp rise of fat, salt, and sugar intake in people’s diets. Currently, the global inci-
dence of obesity, raised blood lipids, hypertension, and diabetes in an increasingly aged population
contributes to the rise of atherothrombotic events and cardiovascular diseases (CVD) mortality.
Drug-based therapies are valuable strategies to tackle and help manage the socio-economic impact of
atherothrombotic disorders though not without adverse side effects. The inclusion of fresh fruits and
vegetables rich in flavonoids to human diets, as recommended by WHO offers a valuable nutritional
strategy, alternative to drug-based therapies, to be explored in the prevention and management
of atherothrombotic diseases at early stages. Though polyphenols are mostly associated to color
and taste in foods, food flavonoids are emerging as modulators of cholesterol biosynthesis, appetite
and food intake, blood pressure, platelet function, clot formation, and anti-inflammatory signaling,
supporting the health-promoting effects of polyphenol-rich diets in mitigating the impact of risk
factors in atherothrombotic disorders and CVD events. Here we overview the current knowledge on
the effect of polyphenols particularly of flavonoid intake on the atherothrombotic risk factors and
discuss the caveats and challenges involved with current experimental cell-based designs.

Keywords: mediterranean diets; CVD; lipoproteins; appetite; obesity; hypertension; inflammation;
gut metabolites; vascular health

1. Introductory Perspective and Focus

The 20th century brought massive changes to people’s lifestyle and eating habits.
Processed and ready-to-eat foods became routinely consumed resulting in a sharp rise
of fat, salt, and sugar intake in people’s diets. In consequence, the global incidence of
obesity, blood lipids, hypertension, and diabetes in the world’s population has escalated
in the past decades leading to an increased prevalence of cardio- and vascular- diseases
and related morbidity with atherothrombotic diseases. According to the World Health
Organization (WHO), cardio- and vascular diseases are already responsible for 17.5 million
(31%) deaths worldwide [1]. In recent years, deaths by non-communicable diseases have
decreased in Western countries due to improvement of healthcare services; however, in
the past four decades the worldwide obesity has tripled, the prevalence of diabetes among
adults (>18 yr) has nearly doubled and one in seven adults have hypertension [2]. In EU
alone, health expenditure with diet-related diseases is steadily increasing and accounted
for 7.8% of GDP in 2017 [3]. The deleterious impact of atherothrombotic diseases is likely
to rise in the future with (i) the expected ageing of the population; (ii) the co-morbidity
among the older population, where around 50 million EU citizens are over 65 years old
and estimated to suffer from two or more chronic conditions [3]; and (iii) most significantly
with the noticeable incidence of obesity and diabetes among children and young adults [2].

The dramatic socio- and economic impact of atherothrombotic disorders on our society
is largely due to its asymptomatic nature with the “silent” onset at early age and progress
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to plaque deposition in adulthood with detrimental impact to cerebral, coronary and
peripheral vasculature. At the moment, drug-based therapies are a valuable strategy to
tackle and help manage elevated blood lipids, raised blood pressure, and high blood sugar.
Individually most synthetic drugs are well-tolerated by the general population resulting in
an overall positive benefit/risk balance, but all drugs have adverse side effects particularly
if used in combination with others. For instance, statins are routinely prescribed but
the long-term effects remain under strict scrutiny [4–6]. Moreover, with the increasing
incidence of these pathologies in the general population and particularly in children
and young adults there are growing ethical concerns on whether these drugs should be
broadly prescribed to children considering the known side effects and the still unknown
long-term effects.

The adoption of healthier lifestyle and dietary choices with the inclusion of fresh and
unprocessed fruits, vegetables, nuts, and seeds rich in polyphenols typical of Mediterranean
and Nordic style Diets, as recommended by the World Health Organization (WHO), could
mitigate the deleterious effects of diet-related diseases and contribute to the sustainability
of national Health systems.

Polyphenols found in fruits, vegetables, nuts, seeds, and spices are a diverse group
of natural compounds with more than 8000 structures already identified ranging from
low molecular weight phenolic acids to high molecular weight proanthocyanidins [7–9].
Among the thousands of food polyphenols, these are typically divided in two main cate-
gories (Supplementary Figure S1), namely, (1) flavonoid-based compounds that include
flavanols, flavones, flavanones, and anthocyanins; and (2) non-flavonoid compounds
that include stilbenes, hydroxybenzoic acids, hydroxycinnamic acids, and tannin deriva-
tives [7–9]. Polyphenols in foods are responsible for organoleptic properties such as color
and taste [10,11] and particularly for conferring the bitter taste and astringent sensation in
fresh unripe foods [11–13]. The astringency associated to polyphenol-rich foods, perceived
as an unpleasant sensation, is often a restricting factor to the consumer´s choices with the
daily exclusion of fresh fruits and vegetables from people’s diet. Nonetheless, in Mediter-
ranean diets where polyphenol content can reach up to 1 g/day [14–16] polyphenols have
become obvious and valuable solutions to be explored in the prevention and management
of atherothrombotic diseases and other NCD (diabetes, obesity, and metabolic syndrome).
Moreover, from the consumer’s perspective there is an increasing desire for natural prod-
ucts which has sparked research surrounding the health benefits of food polyphenols
particularly focused on flavonoids.

Research on the biological effects of food flavonoids has boosted in the past 20 years
(Figure 1) and in recent years, in vitro cell studies revealed that the benefits of flavonoids
go beyond their antioxidant [17–21] and may also be involved in the regulation of appetite
and satiety [22–24], inhibition of glucose hydrolytic enzymes and uptake [25–28], lipid
metabolism and lipoprotein function [29–32], eNOS activity and vascular stiffness [33], and
endothelial health [34].

In view of the recognized health-promoting effects of dietary flavonoids as anti-
diabetic, anti-hypercholesterolemic, anti-thrombotic, and anti-inflammatory agents [35–37]
supports the notion that polyphenol-rich diets may serve as nutritional solutions able to
exert protective effects in diet-related pathologies (“personalized nutrition”) and as alter-
native and sustainable strategies to conventional drug-based therapies in the prevention
and management of atherothrombotic diseases.

This review describes the current knowledge on the role of polyphenols with em-
phasis on flavonoids on enzymes and proteins that actively participate in the regulation
of lipid metabolism, appetite and lipid accumulation, thrombus formation, and vascular
function and as nutritional solution tailored to prevent and manage the risk of atherothrom-
botic diseases. Finally, we discuss the limitations and challenges associated with current
experimental approaches in cell models.
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2. Role of Mediterranean Diet on Blood Lipids, Lipoproteins, and Their Functionality

Western-type diets rich in processed foods and fats have a deleterious impact on
people’s health leading to elevated cholesterol levels, increased obesity and raised blood
pressure contributing to the risk of cardio- and vascular complications later in life. However,
raised plasma cholesterol is only the “tip of the iceberg” as large-scale lipidomic studies
conducted in plasma samples during the past decade [38–47] have shown that additional
changes occur to lipoprotein’s lipid composition. The changes found were related not only
to predominant lipid classes such as cholesterol, TAG, and PC, but also to less abundant
classes such as sphingolipids (ceramides and sphingomyelins), plasmenyl-PE, sulfatides,
and cholesterol sulfate and phospholipids with low unsaturation degree supporting the
notion that lipid classes located both in the core and the surface of lipoproteins were
involved in lipoprotein’s increased atherogenicity [48].

The in vivo findings have been supported by in vitro studies where the lipid remod-
eling undergone by oxidatively modified lipoproteins may result in ApoB-100 protein
misfolding which is thought to increase the electronegativity at the surface of the particle
and lead to aggregation of particles and fusion events to endothelial proteoglycans [49–51].
Studies conducted on isolated human LDL bearing atherogenic chemically-(Cu(I), HOCl)
and enzymatically-induced modifications (LOX, PLA2, SMase) revealed dysfunctional
lipid composition when compared to native LDL [49,50,52,53]. Chen and colleagues (1997)
reported that the greater proportion of lysoPC lipids, a by-product of PLA2 activity, was
responsible for the impairment of endothelium-dependent vascular relaxation in hyper-
lipidemic patients [52]. The oxidative modification of surface lipids, promoted by the
inflammatory status of diet-related diseases (hyperglycemia, obesity, and hyperlipidemia),
contributes to the formation of oxidized phosphatidylcholines (oxPC) and the increased
atherogenicity of lipoproteins. It is now widely accepted that the oxidatively modified acyl
chains in oxPL protrude into the aqueous medium (“lipid whisker model” [54]) making
these structural motifs physically accessible to actively participate in signaling events.
While concentration ranges and spatial distribution of oxPC in lipoproteins in health and
disease are not yet known and have been largely overlooked by the scientific commu-
nity [55], at the biological level oxPC act as danger-associated molecular patterns (DAMP’s)
and contribute to the uptake of oxLDL by macrophages into the sub-endothelial space
with lipid accumulation in the vessel wall (“foam cells”) an early step in atherogene-
sis [56]. At the biophysical level, oxPC impact membrane packing and fluidity, lipid lateral
organization, permeability, and endothelial stiffness [57–59].

To date, although there is a clear understanding of the lipid imbalances to lipoproteins
and how these impact lipoprotein atherogenicity and loss of function, there is still limited
knowledge on the exact molecular mechanisms by which flavonoids in Mediterranean Diets
exert protective effects to lipoproteins and human health. As evidenced by epidemiological
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human studies, the adoption of polyphenol-rich diets and flavonoid supplementation to our
daily diets improves not only obesity markers (BMI, and abdominal circumference) but also
cardio- (blood pressure, heart rate, and carotid intima-media thickness) [60–64], vascular
(endothelin-1, and NO), and inflammatory markers (hs-CRP, IL-6, and IL-8) in patients
with diagnosed NCD, as well as blood lipid composition, namely, plasma cholesterol (total
cholesterol and LDL cholesterol) and plasma triglycerides [62,64–68], supporting the notion
that food flavonoids have a crucial role in the regulation of lipid metabolism during the
liver biosynthesis and intestinal lipid absorption.

In spite of the epidemiological evidences, a more comprehensive understanding of
how flavonoids travel in circulation, reach, and cross cells to be able to interact with
lipid metabolizing enzymes is vital to understand the benefits of polyphenol-rich di-
ets. Curiously, while the panel of circulating flavonoids in physiological conditions is
known [65,69–75] it is still poorly understood how flavonoids are transported in circulation
and their changes in disease. Evidences from the in vitro addition of resveratrol (non-
flavonoid) to plasma proteins suggest that polyphenols are preferentially distributed in the
lipoprotein fraction (d < 1.21 g/mL) rather than the lipoprotein depleted fraction [76]. This
may account for the observed resistance of lipoproteins to metal-catalyzed oxidative dam-
age after flavonoid supplementation. Studies with purified lipoproteins populations have
shown that incubation with flavonoids improved the antioxidant capacity of circulating
LDL against damaging radical-mediated modifications [77–79] thought to occur through
a synergism with lipophilic vitamins [80–82]. Studies have also shown that flavonoids
also interacted with membrane (surface) lipids by increasing polarizability and membrane
order during copper-induced oxidation [80] and with ApoB-100 protein which resulted in
the increase LDL uptake by macrophages [83]. Currently, there is a strong consensus that
flavonoids reside just below the lipid–water interface of lipid membranes [84–91], whereas
lipophilic antioxidants (e.g., beta-carotenoids and alpha-tocopherol) immerse deeper into
the bilayer providing the synergistic protection to the membrane against radical dam-
age [81]. To date, epidemiological and in vitro studies have pointed out towards a direct
association between polyphenol-rich diets and improved health outcomes by reducing the
burden of atherogenic lipoproteins. The following sections detail the current knowledge
on the effect of polyphenols on risk factors surrounding atherothrombotic diseases.

3. Role of Diet Polyphenols on Lipid Metabolism Enzymatic Systems

In humans, low density lipoproteins (LDL) are the main carriers of cholesterol for
delivery to peripheral tissues, whereas high density lipoproteins (HDL) transport choles-
terol back to the liver. In practice, the ratio of LDL cholesterol (LDL-C) to HDL cholesterol
(HDL-C) is a clinical marker widely used to stratify patients at risk of cardiovascular
diseases (CVD) events [92]. To cope with the rising incidence of high cholesterol levels
(hypercholesterolemia) in western countries and the increased risk of cardio- and vascular
complications, lipid-lowering drugs are widely prescribed targeting cholesterol biosynthe-
sis (e.g., statins or fibrates), cholesterol absorption (e.g., ezetimibe) or reverse cholesterol
transport (e.g., niacin and CETP inhibitors). Cholesterol homeostasis is vital for proper
cellular function and requires a complex cross-talk of many signaling pathways in different
cellular organelles designed to maintain normal levels of cholesterol [93]. The expression of
HMG-CoA reductase is tightly regulated by cholesterol which under high levels inactivate
the expression of sterol regulatory element-binding protein-2 (SREBP-2), a membrane-
bound transcription factor, and downregulates HMG-CoA reductase. The membrane
transcription factor (SREBP-2) also up-regulates cell-surface LDL receptor (LDLR), thus
mediating the endocytosis of cholesterol-rich LDL (LDL-C) and hepatic clearance of plasma
cholesterol. The levels of LDLR at the surface of cells are regulated by the proprotein con-
vertase subtilisin/kexin type-9 (PCSK9) by their involvement in the lysosomal degradation
of the hepatic low density lipoprotein receptors (LDLR) [94]. Reduced levels of PCSK9
mean more LDLR are recycled increasing the expression of LDLR on the surface of liver
cells, boosting LDL uptake and cholesterol clearance from circulation (Figure 2). Hence,
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any compounds able to impair the activity of these targets (HMG-CoA, SREBPs, LDLR,
and PCSK9) are crucial in maintaining cholesterol homeostasis.
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Figure 2. Intracellular and extracellular transport of cholesterol. Extracellular free cholesterol is
delivered to various cells via LDL. The LDL then interacts with the LDLR and enters the cells through
endocytosis. The free cholesterol is then dissociated from the receptor in the cell lysosome and the
unbound receptor is then recycled to the cell membrane for continuous removal of serum cholesterol.
However, these LDLRs undergo lysosomal degradation in the presence of PCSK9. The cholesterol is
then distributed within the cells for different functions. Intracellular cholesterol molecules are used to
maintain the membrane rigidity through lipid rafts or converted to CEs by ACAT in the endoplasmic
reticulum and stored as lipid droplets mediated by CETP. Furthermore, SREBP regulates intracellular
cholesterol synthesis and uptake between the endoplasmic reticulum and Golgi body. Intracellular
cholesterol homeostasis is maintained through ABCA1, SR-B1, LXR, and caveolins. The coupling
of P-gp to ABCA1 regulates cellular toxicity by transporting cytotoxic drugs or compounds to the
extracellular matrix. Therefore, ABCA1 is an important protein involved in MDR. In addition, MDR
occurs when there is an increase in caveolin (red arrow), which increases membrane cholesterol.
Extracellular cholesterol homeostasis is maintained by lipoproteins, HDL and LDLs. Cholesterol
is then cleared through HDLs (which interact with SR-B1) to be excreted by the liver or shuttled
by CETP from HDLs to the LDLs, which bind to LDLRs on hepatocytes for cholesterol clearance.
(Reprinted with permission from Wiley & Sons from Gu L, Saha TS, Thomas J, Kaur M. “Targeting
cellular cholesterol for anticancer therapy” published in FEBS J. (2019) 286, 4192–4208).

At present, although statins are popular lipid-lowering therapy they are counter-
indicated for patients with pre-existing liver disease. As an alternative to statins, PCSK9
inhibitors such as evolocumab (Amgen) and alirocumab (Sanofi and Regeneron) have been
developed to expand the panel of therapeutical strategies designed to lower cholesterol
levels. In fact, it has already been shown that the administration of PCSK9 inhibiting
antibody therapy to patients with established coronary heart disease (CHD) significantly
altered the lipid composition of plasma [95] without affecting inflammatory markers [96].
The changes observed to lipid composition were mostly attributed to decrease of lipid
cargo in LDL and increase lipid content in HDL populations due to marked changes to
sphingolipids (glucosylceramides, sphingomyelins, and ceramides) [95] lipid classes that
are strongly associated with CVD outcomes [97].

In view of the increasing consumer´s desire for natural products there is a huge effort
towards the implementation of nutritional strategies as alternatives to drug-based therapies.
Remarkably, several studies have already found that food flavonoids participate and are
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able to exert regulatory effect in several of the enzymes involved in the metabolism of
lipids. In fact, extensive work with both cell and animal models has shown that flavonoids
display an inhibitory effect at the cholesterol and fatty acid biosynthesis [29,30,32,98–100].
Flavonoids exhibit high binding affinities with HMG-CoA reductase with IC50 values
within the micromolar range [29,30,99,100]. Based on the IC50 values estimated (Table 1)
the inhibitory effect to HMG-CoA reductase is related to flavonoid structural features. In
silico computational approaches revealed that among 23 plant-derived compounds, rutin
(quercetin-glucoside) showed the highest binding affinity between 7 intermolecular H-
bonds with key Met534, Cys526, Gly532, and Gln814 that stabilized the flavonoid-protein
interaction [101]. Remarkably, while individual flavonoids exhibited hypocholesterolemic
properties in cell and animal models [30,98–100], studies with flavonoid extracts (mixtures
of compounds) obtained from grapefruit, apple, and blackcurrant fruits induced no change
to HMG-CoA reductase activity [29,102,103]. Noteworthy, apple polyphenol extract poor
in flavonoids (<5%) did not induce significant changes to HMG-CoA, SREBP-2, and LDLR
but did suppressed CETP activity [103].

Table 1. IC50 values of polyphenol compounds for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and
angiotensin I converting enzyme (ACE) activity.

Enzyme Polyphenol Compound IC50 Value (µm) Ref.

HMG-CoA reductase

Afzelin 80.1 [30]
Isoquercitrin 80.6 [30]
Roxyloside A 47.1 [30]

Quercetin gentiobioside 50.6 [30]

ACE

Apigenin K 196 [104]
Apigenin-7-O-glucoside 183 [104]

Luteolin 23 [104]
Quercetin 43 [104]

Quercetin-3-O-glucoside 64 [104]
Kaempferol 178 [104]

Gallocatechin 195.9 [105]
Catechin-3-O-gallate 113.0 [105]

Epicatechin-3-O-gallate 18.3 [105]
Epigallocatechin-3-O-gallate 37.4 [105]

Epigallocatechin-3-O-methylgallate 26.6 [105]
Cyanidin-3-O-glucoside 138.8 [30]

1,2,3,6-tetra-galloyl-glucose 101.4 [105]
1,2,3,4,6-penta-galloyl-glucose 73.1 [105]

5-(3,4,5-trihydroxyphenyl)-γ-valerolactone 2890 [106]
5-(3,5-dihydroxyphenyl)-γ-valerolactone 19590 [106]

4-hydroxy-5-(3,4,5-trihydroxyphenyl)-valeric acid 5410 [106]
4-hydroxy-5-(3,5-dihydroxyphenyl)-valeric acid 12120 [106]

5-(3,4,5-trihydroxyphenyl)-valeric acid 1510 [106]
5-(3,5-dihydroxyphenyl)-valeric acid 2380 [106]

5-(3-hydroxyphenyl)-valeric acid 3000 [106]

The regulatory effect of flavonoids occurs also at the cholesterol absorption level,
where work with flavones (luteolin, apigenin), flavonols (kaempferol, quercetin, and
quercetin-glucoside), flavanols (EGCG), isoflavones (genistein), and flavanones (hesperetin,
and nobiletin) have all shown to up-regulate the expression of LDL receptor (LDLR), a
plasma membrane glycoprotein in HepG2 cells [31,107–111]. The increased LDLR ex-
pression seems to be related to decrease of gene transcription of SREBP-2 [31,109–111]
though alternative mechanisms may be involved possibly via ERK signaling pathway [107].
Alternatively, Mbikay and colleagues (2014) proposed that the treatment with quercetin-
3-glucoside significantly inhibited sortilin expression at the mRNA and protein levels in
Huh7 hepatocytes [31].
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The involvement of flavonoids in cholesterol metabolism is also noticeable at tran-
scriptional level by regulating key transcription factors including SREBP-1 [32,112], SREBP-
2 [113], and PCSK9 [31,107,114,115]. Working with hepatic WRL and HepG2 cell lines,
Wong and colleagues (2015) found that luteolin (flavone) suppressed the expression of
SREBP-2 at concentrations as low as 1 µM [113]. This flavone also prevented the nuclear
translocation of SREBP-2 by partially blocking post-translational processing through in-
creased AMP kinase (AMPK) activation. At the transcriptional level, the mRNA and
protein expression of SREBP-2 were reduced after luteolin treatment [113]. Xanthohumol,
a prenylated flavonoid found in hops, suppressed SREBP-1 target gene expression in the
liver accompanied by a reduction of the mature form of hepatic SREBP-1 involved in
fatty acid synthesis [32]. Similarly, working with low micromolar concentrations of EGCG
(flavanol) [107], quercetin-3-glucoside (flavonols) [31], pinostrobin (flavanone) [114] and
a flavanone isolated from medicinal Chinese plant Sculletaria baiacalensis [115] flavonoids
were described to have an inhibitory effect on PCSK9 activity. In spite of the overall con-
sensus reported in the literature, not all compounds displayed the same activity suggesting
that flavonoid’s structural features have an impact on inhibitory activity [108,115].

4. Dietary Polyphenols as Regulators of Appetite, Tissue Fat Deposition and Obesity

In addition to the anti-cholesterolemic and anti-lipidemic effects mentioned above,
diets rich in fruits, vegetables and nuts may also control food intake and energy expenditure
by having a direct impact on the regulation of appetite hormones [116,117]. Gut hormones
such as cholecystokinin (CCK), glucagon-like peptide (GLP-1), and pancreatic peptide
YY3-36 (PYY) are satiety hormones released in the blood in response to food regulating
appetite and food intake via the “gut–brain axis” [118,119] and their levels are changed
upon flavonoid supplementation.

In vitro cell studies conducted in enteroendocrine STC-1 cells with flavanones (narin-
genin and hesperidin), flavones (apigenin and baicalein) and flavanols (quercetin, kaempferol,
and rutin) revealed that these flavonoids stimulated the release of cholecystokinin (CCK)
peptide in a concentration-dependent manner [22–24]. The same studies also reported
that the glycoside forms of flavonoids (naringin, hesperin, and rutin) did not stimulate the
release of CCK [22–24] though incubation of delphinidin-3-rutoside (anthocyanin) up to
100 µM did stimulate the secretion of GLP-1 in murine GLUTag L cell lines [120].

Remarkably, many of the flavonoids involved in the secretion of appetite hormones
were also reported to inhibit pancreatic lipase a key digestive enzyme responsible for the
hydrolysis of triglycerides into fatty acids. The inhibition of pancreatic lipase constitutes an
anti-obesity strategy as it decreases the absorption of lipids in the small intestine and likely
storage of excessive lipids by white adipose tissue [121–123]. From the extensive work
conducted so far on the inhibitory effect of flavonoids and non-flavonoids on lipase activity,
it is apparent that structure plays a pivotal role. Working with apple polyphenol extract,
Sugiyama and colleagues reported that catechins, chalcones and benzoic acids displayed
weak inhibitory activity whilst procyanidins exhibited the highest inhibitory effect [124].
As oligomeric procyanidins significantly inhibited lipase activity the authors also reported
that polymerization was an important factor in the inhibitory activity [124]. These findings
are in agreement with others, where among 54 (flavonoid and non-flavonoid) polyphenols
from Oolong tea leaves including flavan-3-ols, proanthocyanidins, theaflavins, theasinensis,
and hydrolysable tannins, Nakai and colleagues (2005) estimated the IC50 values and found
that oolongtheanin and theaflavins D and A displayed the strongest inhibitory effect against
porcine pancreatic lipase suggesting that galloyl residues were key structural features to
the lipase inhibitory effect [122]. Interestingly, in another study although tea catechins
(EGCG) displayed higher IC50 values when compared to caffeoylquinic dimers (DCQA)
found in coffee, DCQA exhibited higher stability during in vitro digestion reaching the
proximal intestine which could account for the inhibitory effect of DCQA towards lipase
activity [121].
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An alternative anti-obesity mechanism by which dietary flavonoids exert health
benefits seems to occur at the cell level by regulating the number and size of adipocytes
in adipose tissue (adipogenesis). Findings from cell studies show that flavonoids such
as EGCG [125] and juglanin [126] and non-flavonoids such as oleuropein and hydroxy-
tyrosol [127] inhibited preadipocyte differentiation and reduced adipogenesis in 3T3-L1
cells [125–127]. Supplementation with grape seed proanthocyanidins in animal models
not only reduced adipocyte size and increased adipocyte number in white adipose tissue
(WAT) but also improved levels of serum cholesterol and triglycerides by more than
20% in addition to glucose and insulin levels [128]. Zhu and colleagues (2017) proposed
that the strong inhibitory effect of EGCG compounds on preadipocyte differentiation
was attributed to the high affinity of catechins (ECG- and EGCG-type) to cholesterol in
lipid-rafts which decreased fluidity and the integrity of lipid-raft. The disruption at the
cell membrane level suppressed the mitotic clonal expansion process and the expression
of mRNA levels of PPARγ, C/EBPα, and SREBP-1c [125]. In another study, Wang and
colleagues reported that the reduction of adipogenesis was attributed to inhibition of
pro-adipogenic transcription factors (PPARα, PPARγ, C/EBPα, C/EBPβ, and SREBP-1c)
through SIRT1/AMPK signaling pathway [126].

While the molecular mechanisms by which flavonoids are able to regulate food intake
and tissue fat deposition are far more complex [129], it should also be highlighted that
short-chain fatty acids (SCFA), such as propionic acid formed from gut degradation of
flavonoids [130] are equally able to stimulate the release of satiety hormones [131,132]
leading to reduced weight gain, intra-abdominal adipose tissue distribution, and intrahep-
atocellular lipid content in overweight adults [132].

Overall, findings from in vitro cell studies have shown that diet flavonoids appear
to exert anti-obesity effect by multiple mechanisms namely by modulation of appetite,
adipocyte differentiation, size, and number.

5. Dietary Polyphenols in the Modulation of Platelet Activation, Cell–Cell Adhesion
and Thrombus Formation

The beneficial health effects of flavonoids abundant in Mediterranean-type diets
have, up until recently, been mainly related to their free radical scavenger ability and
anti-oxidant properties contributing to the maintenance of endogenous cellular redox
systems [20,133–137]. However, the involvement of flavonoids on the regulation of lipid
metabolizing enzymes (described in Section 3) with subsequent shaping and remodeling
of plasma and lipoprotein lipid composition [62,64–68] may be pivotal in the prevention
of atherothrombotic events. It is acknowledged that lipoproteins with deregulated lipid
composition (oxLDL) trigger the uptake by macrophages and lipid accumulation in the sub-
endothelial space leading to foam cell formation [138]. It has recently been reported that
lipoprotein’s lipid composition strongly controls aggregation and fusion events reporting
that LDL containing more surface sphingolipids and fewer phosphatidylcholines were
more prone to aggregation [50]. In another study, variations in core triacylglycerol (TAG)
levels influenced the structural stability of VLDL and lipid remodeling increasing the
susceptibility of lipoproteins to oxidative modification and fusion events [139]. In view of
this, the increased intake of polyphenol-rich foods may reveal to be an additional strategy
to control the potential for lipoprotein’s aggregation and fusion events.

The atheroprotective potential of polyphenol-rich diets in the modulation the lipid
composition of lipoproteins and their susceptibility to aggregatory events [50,139] may be
expanded to contemplate anti-thrombotic effects as several studies have already shown
that flavonoid treatment to human blood samples influences platelets activation (throm-
bocytes), cell–cell aggregation and subsequent clot formation (thrombus). Work with
flavanol (epicatechin), flavonol (myricetin), flavone (quercetin) and grape seed extract
led to an overall reduction of platelet function parameters as assayed by measurement of
platelet aggregation, thrombin formation, clot formation time, and clot firmness [140–143].
Flavanol treatment also led to decreased adenosine diphosphate (ADP)-induced platelet
aggregation, P-selectin expression, decreased platelet thrombin receptor (PAR)-activating
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peptide-induced aggregation and increased thrombin receptor-activating peptide-induced
fibrinogen binding resulting in the inhibition of platelet endothelial cell adhesion molecule-
1 (PECAM-1) [140,144,145]. Likewise, work with flavonoid gut metabolite protocatechuic
acid (PCA) on isolated human platelets selectively and potently inhibited high shear-stress
induced platelet aggregation though it did not inhibit platelet aggregation induced by
other endogenous agonists like collagen, thrombin, or ADP also important in pathological
thrombosis and normal hemostasis [146].

In addition to the anti-thrombotic and atheroprotective effect of flavonoid intake, the
anti-inflammatory effect reported after flavonoid supplementation may also aid and com-
plement the atheroprotective effect. There is an overall consensus that dietary flavonoids
are able to suppress the expression of surface pro-inflammatory mediators in cultured en-
dothelial cells such as ICAM-1, VCAM-1, IL-6 and MCP-1 in a structure- and concentration-
dependent manner [147–152] regardless of the inflammatory stimulus [151–158]. Results
obtained with anthocyanins (flavonoids) typically found in berries (grapes, blueberries,
strawberries, raspberries) showed that anthocyanins modulated the expression of genes
involved in cell–cell adhesion, cytoskeleton organization, or focal adhesion resulting in
decreased monocyte adhesion and transendothelial migration [154]. Although the majority
of studies has been conducted with flavonoids, the anti-inflammatory activity is also ex-
tended to gut flavonoid metabolites [153,156,158–161]. Lee and colleagues (2017) reported
that di-hydroxyphenyl-γ-valerolactone, known flavan-3-ols gut metabolites, prevented the
adhesion of THP-1 monocytes to endothelial cells in a dose-dependent manner by down-
regulating the expression of VCAM-1 and MCP-1 [156]. In another study, sub-micromolar
concentrations of phloroglucinaldehyde (PGA) and protocatechuic acid (PCA) inhibited the
production of inflammatory cytokines (IL-6) in cultured LPS-stimulated THP-1 monocytes
and macrophages [159].

In overall, the ability of food flavonoids to improve platelet function, inflammatory
status, and reduce adherence of blood cells to endothelial cells showcases the health benefits
of polyphenol intake to counteract the onset, development and progression of vascular and
thrombotic events.

6. Dietary Polyphenols in the Regulation of Blood Pressure and VASCULAR Homeostasis

The increased salt intake from processed foods in develop countries has escalated the
incidence of individuals with high blood pressure and increased risk of atherothrombotic
disorders. While blood pressure is regulated by a complex interplay of systems (i.e., sodium
and renin–angiotensin–aldosterone system), angiotensin-converting enzyme (ACE) and
nitric oxide (NO), other factors such as arterial stiffness and plaque calcification are equally
important factors for assessing vascular function and homeostasis. In fact, coronary artery
calcium score (CACS) quantified through imaging techniques is, together with clinical
and biochemical parameters (blood pressure, blood glucose, and lipids), used to identify
individuals at risk of developing cardiovascular diseases (CVD).

Based on the literature, it is evident that in addition to the anti-hypercholesterolemic,
anti-hyperlipidemic, and anti-obesity effects, flavonoid supplementation is able to reduce
blood pressure in hypertensive animal models [106,162,163]. The anti-hypertensive effect of
plant flavonoids is attributed to inhibition of ACE activity [29,30,104,105,163] and promote
the production of vasorelaxating factors (e.g., nitric oxide (NO) release) [162]. In a more
exhaustive study conducted on 17 flavonoids tested for the inhibition of ACE activity that
included flavanones, flavones, isoflavones, flavonols, and flavanols, all flavonoids inhibited
the activity of ACE in a dose-dependent manner with luteolin (flavone) exhibiting the
highest inhibitory effect (IC50 23 µM) [104]. In another study with catechins (flavan-3-ols)
showed that galloylated catechins exhibited the strongest inhibitory ACE activity (Table 1)
than non-galloylated catechins [106]. Complementary structure-activity relationship (SAR)
studies determined that the key structural features of tested flavonoids responsible for
ACE inhibition was the presence of an unsaturated 2–3 bond conjugated with a 4-oxo-
function, aside from the 3′,4′-catechol B-ring pattern [104]. Noteworthy, comparison of ACE
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inhibitory activity (Table 1) among several catechins (flavanols) and their gut metabolites
including valeric acid and valerolactone derivatives revealed that metabolization reduced
the inhibition ACE activity and hence the anti-hypertensive potential [106]. These findings
are in contrast with a similar study conducted with quercetin (flavonols) and quercetin gut
metabolites where the hydroxy-phenylpropionic acid (HPPA) exhibited higher inhibitory
ACE activity (Table 1) when compared to quercetin and its methyl derivatives (isorhamnetin
and tamarixetin) [164].

As radical scavengers, plant flavonoids also impact the nitrite–nitrate pathway and
enhance the production of NO by activation of inducible- and endothelial-nitric oxide
synthases (iNOS and eNOS). NO produced from L-arginine in a reaction catalyzed by the
nitric oxide synthase (NOS) is a known vasodilator that contributes to endothelial function.
Flavonoids have been reported to potentiate vascular function by the activation of endothe-
lial NO synthase [162,165,166] as well as by preserving the integrity of tight junctions and
promoting the expression of tight-junction proteins even under inflammatory conditions
averting the expression of claudin-2 by inflammatory cytokines [167]. Álvarez-Cilleros
found that gut microbial flavanol metabolites increased NO production in human endothe-
lial cells (EA.hy927) after the treatment with 10 µM of 3,4-DHPA or with a mix of that
metabolite with 2,3-dihydroxybenzoic acid (2,3-DHB) and 3-hydroxyphenylpropionic acid
(3-HPPA) [34]. These findings are in agreement with others reporting that pre-treatment of
glucose-challenged human aortic endothelial cells with micromolar amounts (≤5 µM) of
quercetin-3-glucuronide (Q3G), piceatannol (PIC), and 3-HPPA preserved NO production
even under glycotoxic conditions [168].

Interestingly, and although less studied, microbial flavonoid metabolites such as
propionic and butyric acid known as short chain fatty acids (SCFA) [130] are also key mod-
ulators of membrane permeability and epithelial barrier function [169,170] and regulators
of blood flow [171,172]. The formation of SCFA derived from flavonoids seems to expand
the already known beneficial effects of flavonoids, and thus an additional benefit to the
implementation of polyphenol-rich diets in the resolution of chronic inflammatory and
atherothrombotic disorders.

In summary, aside from coffee where its intake increases the risk of developing hy-
pertension in individuals carrying the 1F allele in CYP1A2 genotype [173], flavonoids
included in Mediterranean-type diets (wine, chocolate, tea, and berries) and their metabo-
lites display vasoprotective, vasorelaxant, and anti-hypertensive effects improving vascular
homeostasis and health.

7. Polyphenol Rich-Diets in the Management of Atherothrombotic Diseases: Current
Challenges and Future Directions

Dietary polyphenols, while not essential for life, exert health beneficial effects to
humans. Though initially the health benefits were mainly attributed to flavonoids intrinsic
antioxidant properties [20,133,136] research conducted in the past decade shows that the
benefits associated to polyphenol-rich diets are not just limited to their strong antioxidant
capacity contributing to improved plasma redox status [34,174–176] but have an array of
other benefits. For instance, polyphenols display anti-diabetic properties due to the inhibi-
tion of hydrolytic enzymes responsible for glucose degradation and uptake [25,26,28,177],
hypocholesterolemic and hypolipidemic properties by the inhibition of lipid metabolism
enzymes [29–32,109], anti-obesity effects by the regulation of satiety hormones and food
intake [22–24], anti-thrombotic effects by the inhibition of platelet activation and cell–cell
aggregation [140–143]; as well as anti-hypertensive and vasoprotective effects by the regula-
tion of ACE and eNOS [30,162–164] contributing to ameliorate the risk of atherothrombotic
events and CVD mortality.

Despite the effort to improve our understanding on the relationship between dietary
choices and health outcomes, a direct casual effect still remains elusive. The reason behind
this may be related to the fact that in most cases researchers have adopted experimental
conditions (e.g., tested compounds and concentrations, incubation periods, and cell culture
conditions) that are far from those mirroring (patho)physiological conditions, and findings
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reported so far have little relevance to improve our understanding on the role of polyphenol-
rich diets in the prevention and management of atherothrombotic diseases.

7.1. Ingested Polyphenols vs. Circulating Polyphenols: Issues of Metabolization and the
Occurrence of Metabotypes

Most of our current knowledge on the health benefits of polyphenol-rich diets comes
from in vitro experiments conducted with individual polyphenols [24,30,31,100,104,109,
111,123,126,127,178,179]. However, though the type and amount of ingested flavonoids
is directly related to food processing steps and the consumer’s daily choices, flavonoids
are ingested not as individual compounds but as mixtures containing dozens of com-
pounds with different structural features. Further, while the inclusion of flavonoid mix-
tures (extracts) in cell-based experiments would be more realistic, upon ingestion dietary
flavonoids are rapidly metabolized and in vivo they occur as phase II conjugates (e.g.,
methyl, glucuronide, or sulfate derivatives) and gut metabolites (phase III metabolism)
rather than in their precursor form. In this sense, the inclusion of flavonoid metabolites
in cell-based studies would be physiologically more relevant rather than the inclusion of
flavonoid-rich extracts. Strangely, to date the in vivo metabolization reactions have not
been taken into consideration in the many studies investigating the effect of flavonoids on
the anti-hypercholesterolemic, anti-hyperlipidemic, anti-hypertensive, anti-obesity, anti-
aggregation, and anti-inflammatory properties [99,100,102,109,111,115,121,123,126,127].

Moreover, our current knowledge on the profile of flavonoid metabolites in circulation
derives from screening studies on plasma samples collected from healthy normocholes-
terolemic, normoglycemic and normotensive individuals [65,69–75] while the panel and
cargo of plasma flavonoid metabolites under pathophysiological relevant conditions (e.g.,
hypercholesterolemia and hyperglycemia) remains elusive. Screening studies focused
on deciphering the flavonoid metabolites signature in inflammatory-related conditions
(hypercholesterolemia and hyperglycemia) is crucial to better understand the effect of
polyphenol-rich diets on endothelial and vascular function. Recent metabolomic stud-
ies conducted with urine samples collected in individuals after fruit supplementation
evidenced the predominance of specific polyphenol metabolites [71,74,75] and of spe-
cific metabolic signatures—metabotypes—in spite of the inherent human genetic inter-
individual and microbiota variability. Although findings from these studies were conducted
in individuals in “good health” [71,74,75] and were limited by the low sampling included
(n = 20), the identification of metabotypes in plasma samples in disease conditions has
not yet been addressed. In view of this, clustering of individuals depending on their
metabotypes to explain flavonoid effects has been overlooked when conducting in vitro
cellular studies. It is foreseen that this may certainly impact the concept and design of
personalized nutrition guidelines.

7.2. Cell Culture Conditions Mimicking Pathophysiological Conditions

The current knowledge on the beneficial health effects of flavonoids derives mainly
from in vitro cell-based studies carried out under “healthy” normolipidemic and normo-
glycemic conditions. Evaluating the cell’s response to flavonoid intake in health has little
relevance towards the improved understanding of polyphenol-rich diets in the prevention
and management of atherothrombotic diseases.

Only a handful of studies investigated the role of flavonoids in glucose-challenged
human umbilical vein endothelial cell (HUVEC) cells [27,150,180–183]. Though flavonoids
induce a protective effect under supra-physiological concentrations of glucose by reduc-
ing the expression of ICAM-1, VCAM-1, and E-selectin [150] inhibiting the production
of chemotactic MCP-1 protein, the effect of flavonoid metabolites at physiologically rele-
vant conditions of hypercholesterolemia and hyperglycemia remains largely overlooked.
Interestingly, pre-treatment of human aortic cells with quercetin-3-O-glucuronide, piceatan-
nol or 3-(3-hydroxy-phenyl)propionoic acid (flavonoid microbial metabolites) prior to
high-glucose induced stress prevented elevations in reactive oxygen and nitrogen species
in response to high glucose and preserved insulin stimulated increases in NO produc-
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tion [168]. Researchers should make an effort to work under cellular conditions that best
mimic pathophysiological conditions and include other oxidative stress-related stimuli
likely to occur in inflammatory conditions such as oxPC that impact on endothelial barrier
properties [57,184] and oxysterols reported to regulate cholesterol biosynthesis [185].

7.3. Polyphenol In Vitro Chemical Stability and In Vivo Residence Time

Most of in vitro experiments found in the literature describing the effect of flavonoids
on the modulation of anti-hypercholesterolemic, anti-hyperlipidemic, anti-hypertensive,
anti-obesity, anti-aggregation, and anti-inflammatory effects in HepG2 cells use 24 h incu-
bation periods [20,31,107,110,111,168,186,187] which is excessively long bearing in mind
the poor chemical stability displayed by flavonoids and non-flavonoids in neutral aqueous
solutions [178,188–191]. Under neutral conditions such as those selected for cell-based
studies flavonoids degrade within the first hour of incubation, with some showing com-
plete degradation after 10 min of incubation [190] resulting in significant losses of the
parent compound and the co-existence of unmetabolized, metabolized and breakdown
products. In view of this, it is questionable whether the measured effect is due to the
parent compound or any of the other newly formed (de)conjugated or breakdown species.
To mitigate this, it is crucial that cell biologists insert an additional HPLC-MS step in
their experimental design to accurately identify and confirm the predominant compound
present in the cellular media responsible for the measured effect.

Similarly, cell-based studies conducted with flavonoid metabolites for long incubation
periods (>18 h) far exceed the in vivo residence time of flavonoid metabolites in humans
and do not reflect physiological conditions. Pharmacokinetic studies have shown that
the residence time in circulation hardly exceeds 1–2 h and 6 h for phase II and phase III
flavonoid metabolites, respectively, before reaching basal levels [69,192].

7.4. Integration of Biological Findings with Biophysical Experiments

Based on the literature available, evidences so far support that, despite their poor antioxi-
dant potential [19,20,149,193], flavonoid metabolites possess anti-inflammatory, anti-diabetic,
anti-adhesive, anti-aggregation, and vasoprotective effects [34,152,153,156,160,164,194] hold-
ing great potential to mitigate the risk factors of cardio- and vascular complications in
western-type diets.

Nevertheless, and in spite of the extensive in vitro research carried out so far, a more
comprehensive understanding of how ingested flavonoids travel and reach cells to be able
to interact with lipid metabolizing enzymes, reactive oxygen species (ROS) detoxifying
systems and vasoprotective enzymatic systems is still elusive. It is widely known that
flavonoids interact with lipid bilayers affecting the membrane dynamics and biophysi-
cal properties [87,180,195,196]; however, the molecular mechanisms by which flavonoids
trigger the biological response remain unclear. The notion that the biological response
may be triggered by polyphenol–lipid biophysical interactions is an emerging concept that
is gaining increasing popularity. For instance, EGC-type compounds were reported to
cluster near cholesterol-rich regions in model membranes which prevented the differentia-
tion of pre-adipocytes [125]. In another study, resveratrol was found to accumulate near
sphingomyelin- and cholesterol-enriched membrane regions (lipid rafts) which then trig-
gered activation of downstream intracellular signaling cascade [197]. Moreover, membrane
fluidity in HUVECs lost under hyperglycemia conditions was restored after incubation
with quercetin, curcumin, and epigallocatechin gallate [180].

To date, the role of flavonoid metabolites on the lipid metabolism (HMG-CoA, SREBP-
2, LDLR, and others) remains undeciphered, particularly whether flavonoid metabolites
directly interact to membrane transcription factor SREBP-2 and membrane protein LDLR
or whether flavonoid metabolites interact with membrane lipids and affect the membrane
dynamics (organization, fluidity, and packing) affecting indirectly the conformation of
membrane proteins and factors. This is particularly crucial considering that apical leaflet
of epithelial membranes are cholesterol-rich regions [198] and the affinity of flavonoids
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decreases with increasing cholesterol content [199]. The inclusion of biophysical data is
even more relevant, bearing in mind that advanced lipid end-products (oxPC) formed
during inflammatory-related pathologies (hypercholesterolemia and hyperglycemia) are
known to affect the membrane’s fluidity, permeability, and endothelial stiffness [57,200,201]
and potentially impact the permeation and transport of flavonoid metabolites across the
epithelial barrier.

8. Conclusions

Fresh fruits and vegetables typical of Mediterranean and Nordic eating habits are rich
in bioactive flavonoids and as such have become obvious sources to explore as nutritional
strategies to prevent atherothrombotic diseases and manage the risk of CVD.

Findings from in vitro cellular studies are unveiling the multiple health-promoting
benefits of polyphenol-rich diets by the modulation of cholesterol biosynthesis, appetite
and food intake, with anti-hypertensive and vasoprotecting effects, inhibition of platelet ac-
tivation, cell–cell adhesion, inflammatory response, and thrombus formation substantiating
the improvement in blood lipids and lipoprotein redox status reported in clinical trials and
thus effective players in reducing the risk of atherothrombotic events. The reported effects
strengthen the use of polyphenol-rich diets as valuable nutritional solutions to prevent
atherothrombotic events and help manage the risk of CVD in individuals who have not yet
developed symptoms (primary prevention).

However, the associated astringency and bitter taste characteristic of polyphenol-rich
foods which is often a restricting factor for the inclusion of fresh fruits and vegetables in
people’s diet is challenging to the effective implementation of healthy polyphenol-rich
strategies. Added research to the modulation of food acceptance factors (taste, texture, and
aroma) may boost the development of functional and tasty polyphenols-enriched foods
and the adoption of polyphenol-rich diets.
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AMPK 5′-adenosine monophosphate-activated protein kinase
BMI body mass index
CCK cholecystokinin
CETP cholesteryl ester transfer protein
CE cholesteryl ester
CVD cardiovascular disease
CYP1A2 cytochrome P450 1A2
DCQA dimers of caffeoylquinic acid
ECG epicatechin gallate
EGCG epigallocatechin-gallate
eNOS endothelial nitric oxide synthase
EU European Union
iNOS inducible nitric oxide synthase
GDP gross domestic product
GLP-1 glucagon-like peptide 1
HDL high-density lipoprotein
HMG-CoA hydroxy-methyl-glutaryl coenzyme A
HOCl hypochlorous acid
hs-CRP high-sensitive C reactive protein
HUVEC human umbilical vein endothelial cell
IC50 half maximum inhibitory concentration
ICAM-1 intercellular adhesion molecule-1
IL-6 interleukin 6
IL-8 interleukin-8
LDL low density lipoprotein
LDLR low-density lipoprotein receptor
LOX lipoxygenase
LPS lipopolysaccharide
LXR liver X receptor
MCP-1 monocyte chemoattractant protein-1
MDR multidrug resistance
NCD non-communicable diseases
NO nitric oxide
OxLDL oxidised low density lipoprotein
oxPC oxidised glycerophosphatidylcholine
oxPL oxidised glycerophospholipids
PC glycerophosphatidylcholine
PCA protocatechuic acid
PCSK9 proprotein convertase subtilisin/kexin type 9
PE glycerophosphatidylethanolamine
PECAM-1 platelet endothelial cell adhesion molecule-1
PGA phloroglucinaldehyde
P-gp P-glycoprotein 1
PLA2 phospholipase A2
PPAR peroxisome proliferator-activated receptor
PYY pancreatic peptide YY3-36
ROS reactive oxygen species
SCFA short-chain fatty acids
SIRT1 sirtuin-1
SR-B1 scavenger receptor, class B type 1
SMase sphingomyelinase
SREBP sterol regulatory element binding protein
TAG triacylglycerides
VCAM-1 vascular cell adhesion molecule-1
VLDL very low density lipoprotein
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