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We developed and tested the feasibility of computational fluid modeling (CFM) based on dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) for quantitative estimation of interstitial fluid pressure (IFP)
and velocity (IFV) in patients with head and neck (HN) cancer with locoregional lymph node metastases.
Twenty-two patients with HN cancer, with 38 lymph nodes, underwent pretreatment standard MRI, including
DCE-MRI, on a 3-Tesla scanner. CFM simulation was performed with the finite element method in COMSOL
Multiphysics software. The model consisted of a partial differential equation (PDE) module to generate 3D
parametric IFP and IFV maps, using the Darcy equation and K trans values (min�1, estimated from the
extended Tofts model) to reflect fluid influx into tissue from the capillary microvasculature. The Spearman cor-
relation (r ) was calculated between total tumor volumes and CFM estimates of mean tumor IFP and IFV.
CFM-estimated tumor IFP and IFV mean 6 standard deviation for the neck nodal metastases were 1.73 6
0.39 (kPa) and 1.82 6 0.9 � (10�7 m/s), respectively. High IFP estimates corresponds to very low IFV
throughout the tumor core, but IFV rises rapidly near the tumor boundary where the drop in IFP is precipitous.
A significant correlation was found between pretreatment total tumor volume and CFM estimates of mean tu-
mor IFP (r = 0.50, P=0.004). Future studies can validate these initial findings in larger patients with HN
cancer cohorts using CFM of the tumor in concert with DCE characterization, which holds promise in radia-
tion oncology and drug-therapy clinical trials.

INTRODUCTION
In solid tumors, interstitial fluid pressure (IFP) is elevated
owing to increased permeability of abnormally formed tumor
blood vessels and a lack of functional lymphatic removal
pathways (1, 2). Elevated IFP serves to nullify the hydrostatic
pressure differential between vasculature and the intersti-
tium, hampering extravasation of drug into the tumor (3).
Previous studies have shown that elevated IFP is known to

have serious implications for the effective delivery of anti-
cancer drugs (4–6).

Elevated tumor IFP has been invasively assessed in pre-
vious clinical and preclinical studies and is not routinely
measured in clinical practice (7–10). The commonly accepted
gold standard procedure for acute measurement of IFP is the
wick-in-needle (WIN) method, which was established by
Fadnes et al. (11) in rats. A previous report (12) attests its
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performance under different levels of hydration in dogs. In
clinical settings, Gutmann et al. (8) observed high IFP values
in head and neck (HN) tumors using the WIN technique
(0.53–4.39 kPa [4–33mmHg]). Use of these direct methods is
limited to measuring IFP in locations where the tumor can be
accessed easily. The development of a noninvasive method to
estimate IFP as a surrogate biomarker in HN tumors, based on
dynamic contrast-enhanced (DCE) MRI, can be a significant
step forward if it can be incorporated into the early assess-
ment of tumor response to therapy.

Multimodal therapy in various combinations of surgery,
radiation, or chemotherapy is used in the management of HN
cancers, depending on the primary site and TNM stage (13–
15). For nasopharyngeal carcinoma (NPC), treatment options
include neoadjuvant chemotherapy (NAC), as it has high inci-
dence of distant metastatic disease (16). Concurrent chemora-
diation is the main approach for nonsurgical treatment of
locoregionally advanced HN cancers (17–19). RECIST v1.1 is
the commonly used guideline tool to assess patient response to
treatment and is limited by usage of bidimensional lesion
measurements on anatomical imaging (20). It may be insight-
ful to include positron emission tomography (PET) metabolic
criteria (PERCIST) (21), which requires an additional fluoro-
deoxyglucose (18F-FDG) PET scan. MRI can provide both ana-
tomical and functional results, which can be used to model
tumor IFP estimates (22, 23).

DCE-MRI uses low-molecular-weight gadolinium-based
contrast agents (CAs) to measure the influx of CA across the
capillary wall (24). Pharmacokinetic modeling of the DCE data
provides physiologically relevant biomarkers of perfusion and
permeability for clinical endpoints such as prognosis and pre-
diction of response in HN cancers (25, 26). For estimates of IFP
in clinical HN settings, there is a need to develop computa-
tional fluid modeling (CFM) methods that use noninvasive
techniques, such as DCE-MRI, and may help to understand the
mechanisms of drug or radiation dose delivery in relation to
tumor IFP (27), of particular relevance in regions not readily
accessible by WIN.

CFM studies based on DCE-MRI, although in early stages
of development, have introduced a noninvasive approach to-
ward assessing IFP in preclinical settings (23, 28, 29) and in
clinical studies on brain tumors (22, 30). The method imple-
mented in the aforementioned studies all use K trans, influx of
CA, as an input in the Starling equation of fluid exchange
accounting for both osmotic and hydrostatic pressure, and
capillary hydraulic conductivity (23, 28, 31). The CFM
assumes a porous medium to simulate interstitial fluid trans-
port through tumor tissue extracellular space (pores). To the
best of our knowledge, application of CFM to explore IFP in
clinical HN cancers is yet unexplored, where the aforemen-
tioned modeling method has the potential to help treating
physicians determine optimal radiation treatment dose for
tumor control and/or assess early treatment response of
novel targeted therapies, which are unmet challenges to date.

The purpose of the present clinical study is to develop and
test the feasibility of quantitative CFM estimation of IFP and IFV
from DCE-MRI in patient with HN cancer with locoregional
lymph node (LN) metastases.

METHODS
Patient Studies
The institutional review board approved and granted a waiver
of informed consent for this retrospective clinical study, which
was compliant with the Health Insurance Portability and
Accountability Act. A total of n = 22 patients (male, 21;
female, 1) with HN squamous cell carcinoma were enrolled
between June 2014 and October 2015. Twenty patients were
human papillomavirus–positive (HPVþ) and 2 were HPV-neg-
ative (HPV�); all had neck nodal metastases with histologi-
cally proven squamous cell carcinoma. Patient characteristics
are given in Table 1. Figure 1 shows the workflow pipeline
steps for the CFM presented in this study.

DCE-MRI Data Acquisition
MRI studies were performed using a neurovascular phased-array
coil on a 3-Tesla (T) scanner (Ingenia; Philips Healthcare; The
Netherlands). The standard magnetic resonance (MR) acquisition
parameters were as follows: multiplanar (axial, coronal, and sag-
ittal) T2-weighted (T2w), fat-suppressed, fast spin-echo images
(repetition time [TR] = 4000milliseconds; echo time [TE] =
80milliseconds; number of averages [NA] = 2; matrix=256 � 256;
slice thickness = 5mm; field of view [FOV] = 20–24cm), and multi-
planar T1-weighted (T1w) images (TR = 600 milliseconds; TE = 8
milliseconds; NA = 2; slice thickness = 5mm; matrix=256� 256;
FOV = 20–24cm). Standard T1w and T2w imaging were followed
by multiple flip angle T1w imaging (to measure precontrast T1 [ie,
T10]), and dynamic T1w imaging.

Precontrast T1w images were acquired using a fast spoiled
gradient recalled (SPGR) echo sequence with acquisition parame-
ters as follows: TR = 7milliseconds; TE = 2.7milliseconds; flip
angles u = 5°, 15°, 30°, and single-excitation; NA = 1, pixel
bandwidth = 250Hz/pixel, FOV = 20–24 cm2, 256� 128 matrix
zero-filled to 256� 256 during image reconstruction.

Dynamic acquisition was performed with parameters identi-
cal to precontrast T1w imaging using a flip angle of 15° as

Table 1. Patient Characteristics E

Characteristic Value (%)

Number of patients 22

Number of LN 38

Mean age (years) 59

Range (years) 44�69

Sex

Male 21 (95)

Female 1 (5)

Location of Primary Tumor

Base of tongue 15 (68)

Oropharynx 5 (23)

Unknown 2 (9)

HPV Status

Positive 21 (95)

Negative 1 (5)
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mentioned above. Antecubital vein catheters delivered a bolus of
0.1mmol/kg gadolinium-based clinically approved contrast at
2mL/s, followed by saline flush using an MR-compatible pro-
grammable power injector (Spectris; Medrad, Indianola, PA) after
acquiring the first 5–6 precontrast images. The entire node was
covered contiguously with 5-mm-thick slices, zero gap, yielding
8–10 slices and 40 or 60 phases were acquired with �8-second
temporal resolution. Total acquisition time was�8minutes.

DCE-MRI Pharmacokinetic Analysis
The signal intensity in a voxel, measured from a SPGR T1w ac-
quisition, is given by the following equation (32):

S tð Þ ¼ M0 sinðu Þ e�TER�2 tð Þ 1� e�TRR1 tð Þð Þ
1� cos uð Þe�TRR1 tð Þ� � [1]

where S(t) is the voxel signal intensity at time t,M0 is the equilib-
rium magnetization of the protons, u is the flip angle, TR is repe-
tition time and TE is echo time. R1(t) (R1 = 1/T1) and R2

*(t) (R2
* = 1/

T*2) are the time courses of longitudinal and transverse relaxation
rates, respectively.

For the R1(t) calculation, TE � T2
*, and so approximating

e�TER�
2ðtÞ � 1, then Equation [1] becomes the following equation

(33):

S tð Þ ¼ M0 sinðu Þ 1� e�TRR1ðtÞ

1� cosðu Þe�TRR1ðtÞ

 !
[2]

The solution for the relaxation rate R1 (t) follows from
Equation [2] and is given by:

R1 tð Þ ¼ 1
TR

ln

1� S tð Þcos uð Þ
M0sin uð Þ

 !

1� S tð Þ
M0sin uð Þ
� �

0
BBBB@

1
CCCCA [3]

In the limit of fast water exchange, the change in water pro-
ton relaxation rate (ie, DR1 ¼ ðR1 � R10Þ [s�1]) owing to CA
relaxivity, r1 = 4.0 [(mM)�1s�1], is linearly related to the tissue
CA concentration, Ct (mM) as follows:

R1 tð Þ ¼ R10 þ r1Ct tð Þ ! DR1 tð Þ ¼ r1CtðtÞ; [4]

where R10 is the precontrast longitudinal relaxation rate.
The extended Tofts model (ETM) is based on a 2-compart-

ment model (vascular space and extravascular extracelluar space
[EES]). The ETM expression for modeling Ct(t) is given by the fol-
lowing equation (24):

CtðtÞ ¼ K trans
ðt
0

e�kep t�tð ÞCp tð Þdt þ vpCpðtÞ [5]

where, K trans (min�1) is the volume transfer constant of CA, Cp(t)
is the time-course of plasma CA concentration, which is called
arterial input function (AIF). The rate constant describing CA
back-flux into the vascular space from the EES is defined as
kep : K trans/ve, where ve and vp are the volume fractions of the
EES and blood plasma, respectively.

Individual AIF for each patient was determined from an
algorithm that uses cross correlation to rate arterial voxel time
series in comparison with an ideal AIF signal. Signal from arterial
voxels with strongest similarity to ideal AIF was averaged to be
used for each patient AIF (34). Regions of interest (ROIs) on
tumors were contoured manually by an experienced neuroradiol-
ogist on a late phase of the T1w DCE images using ITK-SNAP
(35). The extent of necrosis was evaluated by the same neuroradi-
ologist on T2w and postcontrast T1w MRI, reflecting tumor het-
erogeneity. The total tumor volume was calculated on T2w
images for the 38 neck LN metastases of the 22 patients.

T10 values were calculated from multiple flip angle precon-
trast T1w images (36). The time course of tissue concentration
data, CtðtÞ, was fitted (Equation [5]) using a nonlinear curve

Figure 1. Workflow for magnetic resonance imaging (MRI)-based computational fluid modeling (CFM) simulations. The
patient undergoes a magnetic resonance (MR) examination with dynamic contrast-enhanced imaging. The images are
contoured by a neuroradiologist on all slices to properly demarcate the 3-dimensional tumor structure. The images are
then processed through extended Tofts model (ETM) using MRI-QAMPER software. A representative patient’s individual-
ized arterial input function (AIF) and tissue signals are plotted here. The ETM K trans map is generated and incorporated
into the simulation, along with the 3-dimensional mesh of the tumor region of interest (ROI). Finally, the CFM solves the dy-
namical equation to generate estimates of interstitial fluid pressure (IFP) in the tumor mesh domain.
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fitting technique that minimizes the sum of squared errors (SSEs)
between model fit and data. The fitting procedure produces para-
metric maps of K trans, ve, and vp, and parameter estimation values
were bounded in the fitting routine as follows: K trans [ [0, 5]
(min�1), ve, and vp [ [0, 1]. Automation of AIF findings, quantita-
tive pharmacokinetic analysis of DCE-MRI data, and generation
of parametric maps were performed using in-house MRI-
QAMPER software (Quantitative Analysis Multi-Parametric
Evaluation Routines) approved by NCI Quantitative Imaging
Network for Technical Benchmark (December 2019) written in
MATLAB (The MathWorks, Inc., Natick, MA), as detailed in
Paudyal et al. (37).

CFMMathematical Model
The fluid mechanics of the system are given by the Navier–
Stokes hydrodynamic equation. The mass-balance describing the
continuity of flow (1/s) in and out of interstitial space with source
and sink conditions gives a generalized description of fluid ve-
locity from forces acting on, within, and between mass elements
(38).

r
@u
@t

þ u � ru

� �
¼ �rpi

þ r �m ruþ ruð ÞT � 2m
3

r � uð ÞI
� �� �

þ m

K
uþ F [6]

Where u is the fluid velocity vector (m/s), pi is the (interstitial)
fluid pressure (Pa), K is the permeability of the porous membrane
(m2, describing the packing of the extracellular matrix), r is the
interstitial fluid density (kg/m3), m is interstitial fluid viscosity
(Pa*s), additional forces acting on the fluid volume element may
be represented as F (N), and I and T are the notation for the iden-
tity matrix and the transpose of the operator, respectively.

Fluid movement through space is approximated with low
Reynolds number flow (39) and modeled under assumption of
steady-state velocity. Neglecting both friction within fluid
and exchange of momentum between fluid and solid phases,
the case of an incompressible fluid (r � u ¼ 0) in the Navier–
Stokes equation (Equation [6]) simplifies to Darcy’s law

where interstitial fluid velocity (IFV) is related to the gradient
in IFP (rpi):

rpi ¼ �m

K
u [7]

This Darcy velocity u describes bulk fluid movement within
the interstitial space and expresses velocity as the gradient of in-
stantaneous pressure, proportional to the local hydraulic conduc-
tivity KH:K

�
m
:

u ¼ �KHrpi [8]

Fluid source-sink assumptions are as follows: fluid can enter
the interstitium via the vascular compartment (f v); fluid is
drained from the system via lymphatic pathways (f L) (1).

r � u ¼ f v � f L [9]

Blood flow transport f v across capillary walls was regulated
according to the Starling law (1, 31):

f v ¼ LP
S
V

pV � pi � s T p V � p ið Þð Þ [10]

Where LP is the hydraulic conductivity of the capillary
wall, or vessel permeability, S/V is microvascular surface
area per unit volume,pV is the blood pressure in the microves-
sel, pi is IFP, p V is osmotic pressure in microvasculature, p i

is osmotic pressure in interstitial space, and s T is the osmotic
reflection coefficient.

Lymphatic drainage of fluid is assumed to be available in
normal tissue outside of the metastatic LN (40, 41), dependent on
the difference between local interstitial pressure,pi;and pressure
of the lymphatic system, pL and the lymphatic clearance rate,
LpLSL

�
V :

f L ¼
LpLSL
V

pi � pLð Þ in normal tissue
0 in tumor

8<
: [11]

In the subsequent sensitivity analysis, we observe the change
in IFP profile if we create a simulated sink, or removal, term in
the tumor.

Table 2. Tissue and Vascular Parameters Used in Simulations E

Parameter Unit Description (# References) Value

Lp m Pa�1 s�1 Vessel permeability (1, 23) 2�10�11 (tumor)
3�10�12 (normal)

LpLSL/V Pa�1 s�1 Lymphatic filtration coefficient (23) 1�10�7

K m2 Pa�1 s�1 Hydraulic conductivity (23) 1.9�10�12 (tumor)
3.8�10�13 (normal)

S/V m�1 Microvascular surface area per unit volume (1, 47) 2�104 (tumor)
7�103 (normal)

pV Pa Microvascular pressure (59) 2,300

p i Pa Osmotic pressure in interstitial space (1, 46, 47) 3,230 (tumor)
1,330 (normal)

pV Pa Osmotic pressure in microvasculature (46) 2,670

sT Unitless Average osmotic reflection coefficient for plasma (1, 50) 0.82 (tumor)
0.91 (normal)
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Combining Equations [9], [10], and [11], the continuity
equation (becomes):

r � u ¼ LP
S
V

pV � pi � s T p V � p ið Þð Þ � LpLSL
V

pi � pLð Þ
[12]

Numerical values for physical parameters were based on the
default selections from prior literature, listed with references in
Table 2.

Computational FluidModeling
As mentioned above, the influx of fluid through the capillary
wall to the interstitial space is described by the continuity equa-
tion, consisting of the source and sink terms. The ETM-derived
K trans is incorporated into the Starling equation (Equation [11]),
and scaled by the mean tumor value, <K trans> to account for the
heterogeneous bulk vascular influx (23, 28). The final expression
for the continuity equation (Equation [12]) in terms of the de-
pendent variable interstitial pressure, pi:

�KHr2pi ¼ K trans

<K trans>
LP

S
V

pV � pi � s T p V � p ið Þð Þ
� �

� LpLSL
V

pi � pLð Þ [13]

The continuity partial differential equation (PDE)
(Equation [13]) was implemented using the COMSOL CFM
simulation PDE module. Solving (Equation [13]) provides the
basis for estimation of pi and 3D parametric maps of IFP and
IFV.

The physiological 3D mesh model was generated from
each patient’s T1w DCE tumor images. The contoured tumor
ROIs in the model were converted to binary masks and
extended by 10 pixels to represent normal tissue around tu-
mor. The ROIs for tumor with normal surrounding tissue were
resliced to be 1 mm3 isotropic in MATLAB using the NIfTI
toolbox (42), and converted to stereolithography (STL) file
format. STL files were imported into the simulation software

and interpreted as boundary meshes for the model. In the
present study, a simplified geometry was used to represent a
complex LN tumor structure. On imaging, intranodal tumor
necrosis is observed, which is a mix of tumor necrosis, kera-
tin pooling, fibrous tissue, edema, viable tumor cells, and
possibly hemorrhage (43). Usually, a localized group of nodes
is present in an expected nodal draining area for a specific
primary tumor (43). Once extracapsular extension has
occurred, the LN tumor can extend to invade surrounding tis-
sue (43, 44).

ETM-estimated K trans maps were resliced to matching
space to ensure accurate spatial interpolation (45), and con-
verted from units of min�1 to s�1 to carry out calculations in
standard SI units; the K trans values were interpreted in
COMSOL as a scalar field over the mesh domain. The K trans

field values were normalized by the mean K trans value in the
tumor ROI (23). Numerical values for physical constants in
normal and tumor tissue were respectively assigned to the
appropriate regions of the 3D STL domain mesh, as given in
Table 2. These physiological values are taken from those pre-
viously cited in literature (1, 23, 46, 47). To generate IFP
maps, a stationary solution of the PDE in Equation [13] was
computed on the 3D extended domain ROI, and a no-flux
condition was implemented at mesh boundary edges.

Simulation was conducted using the general coefficient
form PDE module in a commercial multiphysics software
package (COMSOL Inc., Stockholm, Sweden) which uses finite
element method to solve PDE equations.

IFP and IFV Sensitivity Analysis
A sensitivity analysis was performed by parameter variation in
the CFM models to test the influence on IFP and IFV estimates as
detailed in a preclinical setting (23). The parameter values in the
CFM were sequentially varied in separate simulation runs: vessel
permeability (in normal and tumor tissue, Lp), lymphatic clear-
ance (LpLSL/V in normal tissue and tumor), and ratio of hydraulic
conductivity (allowing KH,tumor to vary relative to KH,normal). The
range of high and low values was chosen to scale 2� and 0.5�

Figure 2. T1-weighted postcontrast image of patient #1 with right lateral neck nodal metastasis (yellow outline) (A); T1-
weighted (T1w) postcontrast image with overlaid ROI for analysis (green denotes normal tissue, red denotes viable tumor
tissue, blue denotes necrotic core) (B); K trans map of tumor ROI (C); preview of the imported geometry mesh of the tumor
(blue) for patient #1 for CFM (D).
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relative to the baseline value (Table 2). Values were assigned
([LpLSL/V]t/[LpLSL/V]n,baseline = 0.125 and 0.5) to study the effect
of fluid clearance from the tumor region (either via lymphatics or
vascular reabsorption).

Statistical Analysis
Spearman correlation coefficient (r ) was calculated between the
total tumor volume and CFM estimates of IFP and IFV. The
results were reported as mean 6 standard deviation. In addition,

Figure 3. Visualization of IFP and
interstitial fluid volume (IFV) maps
as estimated by simulation in
patient #1, 2, 3, and 4. The pro-
files were calculated along the lines
drawn on the corresponding maps.
Row 1: T1w postcontrast image
(inset: T2w view of tumor) (V1 =
14.26 cm3, V2 = 25.20 cm3, V3 =
31.27 cm3, V4 = 28.80 cm3); Row
2: Estimated IFP map of tumor and
surrounding normal tissue (mean tu-
mor pressure �P1= 1.73kPa, �P2 =
2.05kPa, �P3 = 2.09kPa,�P4 =
1.77kPa); Row 3: IFP profile along
a vertical bisector line (tumor
boundary denoted by dashed line);
Row 4: Estimated IFV map of tumor
and surrounding normal tissue
(mean tumor velocity �u1 = 1.60 -
�10�7m/s, �u2 = 1.80�10�7m/
s, �u3 = 1.67�10�7m/s, �u4 =
1.51�10�7m/s); Row 5: IFV pro-
file along vertical bisector line, with
tumor boundary (dash).

Computational Fluid Modeling of Pressure in Head and Neck Cancer

134 TOMOGRAPHY.ORG I VOLUME 6 NUMBER 2 I JUNE 2020



heterogeneity measures from the histogram were calculated as
skewness and kurtosis. A P-value < .05 was considered statisti-
cally significant.

RESULTS
All 22 patients with HN cancer underwent MRI pretreatment
(pre-TX), and 38 neck LN metastases were analyzed. Out of the
22 patients, 10 patients had 	2 metastatic nodes. Figure 2 shows
the acquired MR images of a representative patient (patient #1)
with a right lateral LN (total tumor volume = 14.26 cm3).

The CFM estimation maps of IFP and IFV are shown in
Figure 3 for representative patients #1, 2, 3 with and 4 with HN
cancer. The presence of cystic necrosis for the nodes in patients
#1 and 4 was evidenced by hypointense signal in postcontrast
T1w images and hyperintensity in the T2w images. In contrast,
the nodes of patients #2 and 3 did not exhibit necrosis on imag-
ing. The subtle differences in IFP and IFV profiles are evident for
the necrotic tumors.

In Figure 3, mean IFP (pmean) for the cystic node in patient
#1 was 1.73 kPa with maximum IFP at tumor core pmax =
2.23 kPa; the IFP profile demonstrated slowly changing pressure
with little curvature throughout the tumor core. The resulting
IFV profile for patient #1 (IFV / gradient of IFP, by the Darcy
law) results in negligible velocity throughout the tumor core. The
estimated pmean and pmax for the metastatic node in patient #2
was 2.05 kPa, and 2.64 kPa, respectively. Values of pmean and
pmax for patients #3 and 4 were 2.09, 1.65 kPa (pmean) and 2.67,
2.04 kPa (pmax), respectively. In the IFP profiles of patients #2
and 3 with non-necrotic tumors, a moderate curvature is seen,
and the resulting IFV is more variable and elevated in the tumor
core.

Table 3 summarizes the mean(6 standard deviation) values
for total tumor volume (cm3), K trans (min�1), IFP (kPa), and IFV
(m/s) obtained from the LN metastases. The mean total tumor
volume for the 38 nodes was V=15.83610.80 cm3 ranging
from 1.36 to 40.02 cm3.

Figure 4 exhibits the scatter plot of pre-TX total tumor vol-
ume versus mean CFM-estimated IFP. Significant correlation
(Spearman) was found between pre-TX total tumor volume and

the mean IFP (r = 0.5, P= .004). No significant correlation was
found between mean tumor IFV and total tumor volume (r =
�0.1, P= .5).

Figure 5 shows the of IFP and IFV profiles from the sensitiv-
ity analysis as carried out for representative patients #1 and 2.
The parameter with the greatest effect on amplitude of IFP values
was the tumor vessel permeability (Lp). For the necrotic tumor in
patient #1, changes to parameters affected the magnitude of IFP
but the shape and slope of the IFP field did not vary greatly and
hence had little influence on the internal IFV. The non-necrotic
node in patient #2 showed greater IFP sensitivity to all changes
in parameters, with more variability in the magnitude of pre-
dicted IFV, and maintaining IFV appreciably higher.

DISCUSSION
This is the first feasibility study to apply CFM using DCE data to
estimate IFP/IFV in HN LN metastases. A 3D mesh tumor ROI,
derived from the contours on DCE imaging, and the continuity
partial differential equation (to) describe the physiological proc-
esses (Starling law and Darcy law), were combined and solved
with the finite element method (COMSOL Multiphysics comput-
ing environment) using the 3D K trans values. The K transvoxel val-
ues in the CFM were normalized by the mean K trans values in
each tumor ROI. CFM-generated IFP and IFV maps depict hetero-
geneity within the tumor, stemming from incorporation of K trans

to inform fluid influx rate variability from the spatial CA extra-
vasation, similar to Pishko et al. (23).

The CFM-estimated mean tumor IFP showed a moderate but
significant correlation with the total tumor volume at pre-TX.
This finding is in good agreement with previous clinical studies
in HN, cervical, and breast cancer that directly measured IFP by

Figure 4. Plot of total tumor volume, calcu-
lated from T2-weighted image, and mean tu-
mor IFP as estimated by COMSOL simulation,
for all pretreatment neck lymph node (LN) me-
tastases. A significant correlation between tu-
mor volume and the mean intratumor pressure
is found (r = 0.5, P= .004).

Table 3. Summary of DCE-MRI Ktrans- and
CFM-estimated IFP and IFV from 22 Patients with
Head and Neck Squamous Cell Carcinoma

Parameter (Unit) Value (Mean 6 SD)

Total Tumor Volume (cm3) 15.83 6 10.80

Ktrans (min�1) 0.02 6 0.02

Interstitial Fluid Pressure
(IFP [kPa])

1.73 6 0.39

IFP Skewness �0.48

IFP Kurtosis 3.10

Interstitial Fluid Velocity
(IFV [310�7 m/s])

1.82 6 0.89

IFV Skewness 0.79

IFV Kurtosis 3.84
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using an invasive WIN method (8, 48, 49). Across different tumor
types, the mean IFP value may vary but the relationship between
IFP and tumor volume still holds (8, 48, 49). IFP is elevated
within the tumor and decays sharply at its boundary, and in
accordance with the Darcy law, IFV attains a maximum value
at the tumor boundary and movement is directed outward
from the tumor (1, 50, 51). Most of the high-velocity fluid
movement exists near the periphery of the tumor owing to a
precipitous fall-off of pressure (52). Tumors with mild-to-
severe necrotic fractions in their interior, as in patients #1
(severe) and 4 (mild), tend to quickly reach maximum IFP,
starting off a gradual plateau and varying less inside the tu-
mor compared with patients #2 and 3, which attained a central
local maximum of pressure within the core (Figure 3). The
physical impact of cystic necrosis on the IFV is shown in these
contrasting profiles. The variability of IFP in the non-necrotic
tumor in contrast to necrotic tumor may lead to a significant
change in IFV of tumor core.

Sensitivity analyses illustrated the influence that tissue-de-
scriptive parameters, such as hydraulic conductivity, KH, or the
effectiveness of lymphatic vessels, have on estimates of IFP and
IFV in the CFM. The analysis also assesses the stability of the
results, in spite of estimated values from literature. In the core of
the necrotic node, IFV was not changed from the baseline despite
changes to the model parameters. In contrast, the IFV in the node

with a large viable fraction showed greater tendency for variation
depending on parameter values. Differing from the conditions of
the main analysis, we considered lymphatic functionality for the
tumor core. Tumor drainage introduces a distinct change in curva-
ture of both patients’ IFP profiles and is the only factor that intro-
duces variability to IFV values in the core of the necrotic tumor. In
the patient with necrotic tumor, increasing hydraulic conductivity
ratio KH,t/KH,n has no noticeable effect from baseline value, but in
the non-necrotic case, a lower-ratio KH,t/KH,n results in lower over-
all IFP with the greatest IFV compared with all other parameter
changes. In contrast, for the non-necrotic tumor, a lower lym-
phatic clearance in normal tissue has no impact on IFP/IFV from
baseline, but it effectively increases the IFP in the necrotic tumor.
In general, any fluid delivered into a tumor will be mostly reliant
on diffusive transport or be trapped owing to the approximately
zero internal IFV. Intravenous drug delivery effectiveness may be
affected by the presence of necrotic core and clearance mecha-
nisms therein.

The effect of mesh resolution or partitioning size on result-
ing finite element method simulations was shown to be minimal.
CFM studies in Pishko et al. (23) and Magdoom et al. (53) reana-
lyzed the same preclinical DCE data set using different quantiza-
tion schemes for the mesh; their result shows the resulting
pressure maps were comparable. Although the absolute IFP mag-
nitude was affected by differences in spatial discretization due to

Figure 5. Sensitivity analyses of IFP and IFV profiles for patients #1 (A, B) and #2 (C, D) as a result of varying model pa-
rameters; in each case, the high value is 2� the default parameter (as listed in Table 2), and the low value is 0.5� the
default. Subscript t, n denote values in tumor and normal, respectively.
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changes in voxel size, the overall profile trends in IFP maps were
not changed.

Known limitations of this study include literature-based pa-
rameter values in tumor and normal tissue (23), a shortcoming of
all similarly constructed IFP simulations (1, 54–57). Physiologically
accurate approaches in the future would aim to include additional
imaging-based biomarkers to characterize the model parameters. A
B1 nonuniformity acquisition is required for high-field DCE-MRI.
The accuracy of ETM-derived K trans values would be improved by
inclusion of a B1 correction (58). Individual AIF measurements for
large patient cohort studies can be a challenge, which can be

addressed by using an average AIF (34). Lastly, the repeatability of
the metric and comparison to a gold standard WIN IFP mea-
surement needs to be assessed before the IFP derived from
CFM method can be established as a prognostic/predictive
biomarker.

In conclusion, our initial findings establish that DCE-MRI-
based CFM can noninvasively provide estimates of tumor IFP
and IFV in neck nodal metastases. After validation, IFP estimates
from CFM may help treating physicians better understand and
plan optimal radiation treatment dose for tumor control, and/or
assess early treatment response of novel targeted therapies.
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