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Abstract

Adverse drug reactions (ADRs) constitute key factors in determining successful medication therapy in clinical sit-

uations. Integrative analysis of electronic medical record (EMR) data and use of proper analytical tools are requi-

site to conduct retrospective surveillance of clinical decisions on medications. Thus, we suggest that electronic

medical recording and human genetic databases are considered together in future directions of pharmacovigi-

lance. We analyzed EMR-based ADR studies indexed on PubMed during the period from 2005 to 2017 and retro-

spectively acquired 1161 (29.6%) articles describing drug-induced adverse reactions (e.g., liver, kidney, nervous

system, immune system, and inflammatory responses). Of them, only 102 (8.79%) articles contained useful infor-

mation to detect or predict ADRs in the context of clinical medication alerts. Since insufficiency of EMR datasets

and their improper analyses may provide false warnings on clinical decision, efforts should be made to overcome

possible problems on data-mining, analysis, statistics, and standardization. Thus, we address the characteristics

and limitations on retrospective EMR database studies in hospital settings. Since gene expression and genetic vari-

ations among individuals impact ADRs, pharmacokinetics, and pharmacodynamics, appropriate paths for pharma-

covigilance may be optimized using suitable databases available in public domain (e.g., genome-wide association

studies (GWAS), non-coding RNAs, microRNAs, proteomics, and genetic variations), novel targets, and biomark-

ers. These efforts with new validated biomarker analyses would be of help to repurpose clinical and translational

research infrastructure and ultimately future personalized therapy considering ADRs.
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INTRODUCTION

Large electronic medical datasets that include patients’

medical records have already proven useful in clinical

research and have become essential for the analysis of

patient medication in the era of big data in healthcare (1).

Various medication-related decision processes have been

implemented to ensure the efficiency and safety of medi-

cines, such as dose guidance, drug allergy, and drug-drug

interactions (2). Various parameters, including disease, age,

the liver and kidney functions of patients, effects of excipi-

ents, additives, or preservatives, and food-drug interactions,

should also be considered for the proper administration of

medications.

Several studies have shown the value of pharmacovigi-

lance research by using electronic medical record (EMR)

data for use as decision support tools. EMR data may

include passive and active referential information, remind-

Correspondence to: Sang Geon Kim, Department of Pharmacy,
Seoul National University Hospital, College of Pharmacy and
Research Institute of Pharmaceutical Sciences, Seoul National
University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
E-mail: sgk@snu.ac.kr
†The first two authors contributed equally to this work.

This is an Open-Access article distributed under the terms of the
Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/3.0) which permits unre-
stricted non-commercial use, distribution, and reproduction in
any medium, provided the original work is properly cited.



320 Y.H. Choi et al.

ers, alerts, and guidelines related to adverse drug reac-

tions (ADRs). Thus, EMR data may have great potential

in pharmacovigilance research and could enable the rapid

identification of patients for inclusion in interventional

and observational studies. The use of EMR data and data-

mining processes may enable us to produce effective deci-

sion support tools for the prediction of ADRs (2), thereby

having the potential to repurpose clinical and translational

research infrastructure.

ADRs are commonly used as an important factor to

determine the success of a therapy. In particular, as clini-

cal data of ADRs are now documented electronically, efforts

to compile information on ADRs have received wide-

spread support (2). However, few studies using EMRs have

observed significant benefits on patient outcomes (3), per-

haps owing to the small sample sizes or short investiga-

tional times, which did not allow clinically important events

to be revealed. The exploitation of efficient medication

depends on the accuracy of information in the EMR data-

base (4). For example, duplication of medications, contra-

indication of patient’s condition, and changes in the efficacy

and toxicity of drugs with respect to their pharmacoki-

netic and pharmacogenomic characteristics may often be

proficiently assessed by clinicians and pharmacists by using

EMR data. As their use becomes more widespread, it is

increasingly important to have better ways of analyzing

EMR data to ensure the validity of the studies (5).

PAST APPROACHES FOR RETROSPECTIVE 
ANALYSIS

Examples of ADR articles published in PubMed. In

our analysis of articles indexed in the PubMed databases,

we assessed a set of reports published between 2005 and

2017 by using the following key words: EMRs, drug ther-

apy, drug-related side effects, adverse reactions, drug,

medication, pharmacoepidemiology, or pharmacology.

The number of papers describing ADRs of major organs

in patients is listed in Fig. 1. Drug-induced liver injury

(DILI) constituted the greatest percentage of ADRs, as

Fig. 1. Number of articles retrospectively identifying adverse drug reactions (ADRs) by using electronic medical record (EMR) data.
Articles archived in PubMed from 2005 through 2017 were sub-grouped by ADR occurrences in different organs.
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shown in Fig. 1; the gastrointestinal tract, cardiovascular

system, and kidney were the next most vulnerable loca-

tions to ADRs. There were no significant annual differ-

ences in the total number of ADRs. To assess the target

organ, we counted the number of papers archived for dif-

ferent organs. From a total of 1421 potentially relevant

publications, 1161 retrospective full-text publications were

obtained after screening titles and abstracts using keywords

presenting ADR events and target organs; 513 reported

occurrences of ADRs only, 908 reported both efficacy and

ADRs, and 648 (45.6%) focused on ADR reports based on

EMR database mining. In addition, 86, 892, and 443 papers

showed ADRs in subjects who were healthy, had dis-

ease(s) directly associated with the ADRs, and had dis-

ease(s) indirectly associated with ADRs, respectively. This

review process was conducted based on the PRISMA

guidelines (Fig. 2). In Fig. 2, ADR reports from EMR-

based quantitative analyses were ~56% of all ADR stud-

ies, suggesting that EMR data-mining is still widely used

for ADR assessment.

The papers referring to ADRs currently have several

shortcomings for determining a conclusion on incidence

rates or the severity of ADRs in sub-groups. For example,

it was difficult to make a sophisticated decision on ‘drug-

induced liver injury’ and ‘no drug-induced liver injury’

and to calculate the mismatched occurrence rate of DILI

(6). Especially, when researchers try to predict ADR occur-

rence rates and severity of liver injury depending on sub-

groups after combining the results from retrospective and

prospective studies, the total number of patients exposed

to target drugs cannot be calculated exactly. In addition,

information on the characteristics of patients in each sub-

group was not easy to obtain from retrospective EMR

studies (6,7). Moreover, ADRs were further categorized to

Fig. 2. Review process of full-text articles presenting adverse drug reaction (ADR) events.
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sub-groups, such as DILI and gastrointestinal tract injury.

In these cases, various incidence rates of ADRs can be

calculated. As reports of ADRs emerge for new drugs or

for various clinical cases (8), the analytical methodology

to combine larger scale reports of ADRs is a prerequisite.

Routine analytical procedures for ADR prediction
from EMR databases. ADRs have become a clinical issue

and a concern to public health system; they are responsi-

ble for 6.5% of all hospital admissions (e.g., approximately

one quarter of the patients had a risk of death) (9,10). As

knowledge of the occurrence and the content of these

ADR reports has increased (11,12), drug safety evalua-

tion, including ADR monitoring, has become an import-

ant issue in pharmacotherapy (13). Thus, signal detection

for ADR alerts in hospitals is currently regarded as active

drug safety surveillance. To reduce ADRs, it is essential to

identify the causal relationship between drug medications

and the incidence of ADRs (14). Data acquisition using

laboratory signals from patients’ EMRs is the first step in

the identification of ADRs and other conditions in patients

(15). Reviews of EMR data may be used to assess the

incidence of ADRs (16). Three major methods are often

used for ADR reports: 1) retrospective chart reviews; 2)

ADR reviews based on patients’ EMRs (17); and 3) spon-

taneous reports by clinicians or patients, which can be

focused on for additional chart reviews.

The analytical processes of the EMR database can be

Fig. 3. A schematic illustrating new biomarkers and methodologies necessary to improve electronic medical record (EMR)-based
pharmacovigilance studies.
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summarized into four steps: Institutional Review Board

(IRB) approval; data extraction from the EMR database;

data-mining of extracted dataset; and statistical analysis.

The procedures for data extraction, analysis, and evalua-

tion of potential ADRs are prerequisites to generate drug

safety information. Clinical outcomes from hospitals and

efficacy/safety data submitted by pharmaceutical compa-

nies can be adjusted to define the proper information on

ADRs (Fig. 3).

Here, we focus on how to identify ADRs by using hos-

pital data. First, the study design should be approved by

the IRB of the respective hospital. The protocol submitted

to the IRB includes the purpose of study, the researchers’

certificate numbers taken from the IRB educational pro-

gram, and a detailed description of the study. The descrip-

tions should mention the following factors: administered

drugs; drug administration period; patient information, such

as age, gender, diseases, and exclusion criteria; required

laboratory signals of the study; and analytical methods

using acquired dataset. Secondly, after IRB approval, data

extraction is conducted; data collection process means that

the required dataset is extracted from EMR database in

electro-medical team in hospitals. If necessary, ADR sig-

nals defined by World Health Organization (WHO), as

well as potential signals in the EMR database, can be

used. In particular, specific ADR hits and signals may

raise hypotheses on safety information, which may affect

regulatory decisions (12). In our data extraction from Seoul

National University Hospital (SNUH), twenty laboratory

signals, such as phosphate, glucose, hemoglobin A1c

(HbA1c), blood urea nitrogen (BUN), serum creatinine

(Scr), cholesterol, protein, albumin, uric acid, total biliru-

bin, aspartate transaminase (AST), alanine aminotransfer-

ase (ALT), alkaline phosphatase (ALP), gamma-glutamyl

transpeptidase (GGT), C-reactive protein (CRP), alpha-

fetoprotein (AFP), white blood cells (WBC), absolute neu-

trophil count (ANC), hemoglobin test (Hb), hematocrit

(Hct), platelet count (PLT), international normalized ratio

(INR), sodium (Na+), potassium (K+), and calcium (Ca+2),

were retrieved. In addition, patients’ disease, co-adminis-

tered drugs, prescription patterns (e.g., dose, period, and

route of administration), age, or gender can be extracted as

candidates of general and potential signals from EMR

database (12).

To assess the quality of dataset, the reporting number,

rate, and percentage of serious adverse events should be

considered (12). Using the extracted dataset, pharmacists

and/or researchers initiate data-mining to predict ADRs.

The data-mining and acquisition process exemplified in

this article may be important for clinicians to understand

ADRs. Moreover, the data processing and scoring sys-

tems are required to assess the ADR alert system, through

which clinicians optimize medication schedules at pre-

scription. The procedures of ADR data-mining and the

acquisition methods using laboratory signal hits are also

applicable to assess other effects. The scoring method is

more advanced if other parameters, such as comorbidity,

polypharmacy, gender, and age are combined, which allows

us to obtain more reliable information on the severity,

onset time and/or duration of ADRs, and incidence rate.

The prevention of ADRs may ultimately contribute to the

reduction of unnecessary healthcare costs.

To apply ADR reports to prevent medication errors and

to improve the quality of pharmaceutical care, causality

assessments of ADRs and the development of criteria for

ADR reports are required. To accomplish this, the valida-

tion of the ADR reporting process and the provision of

feedback to medical teams on the potential harmful effects

of the prescriptions are required. However, there are sev-

eral points to overcome when using EMR data for the

identification of proper ADRs.

First, there may be intrinsic errors, such as incorrect

reporting, reporting of false positive laboratory results, or

incorrect grading (18). Patient compliance may also be an

issue (e.g., gap between patients’ drug administration and

prescription) in the following situations: 1) duplicated pre-

scriptions ordered from different departments, even within

a single hospital; 2) no prescription information in previ-

ous hospital(s); 3) no revised information after prescrip-

tion withdrawal; and/or 4) no information on drug ad-

ministration time (e.g., exact time for administration of

different drugs). In addition, laboratory signals may be

affected by the duration time of drug treatment, although it

is not easy to retrieve information on the exact treatment

time or duration. In particular, treatment time and dura-

tion are critical factors for laboratory signals: a general-

ized hypothesis for the treatment or duration may cause

confusion regarding the occurrence of drug-induced adverse

effects. Incorrect reporting, reporting of false-positive lab-

oratory results, and/or incorrect grading result in erroneous

use of the EMR database. An example of incorrect report-

ing would be a description error, such as hypokalemia vs

hyperkalemia. Matching laboratory data to a description

can be a solution; this is not easy, may be time consum-

ing, and sometimes impossible. The reporting of false-

positive laboratory results may occur owing to improper

specimen collection, inaccurate normalized values of labo-

ratory report, and/or the occurrence of concurrent oppo-

site symptoms. The errors should be identified and re-

checked for the addition of information, as well as extract-

ing and mining EMR datasets.

Second, the application of a data acquisition method

using laboratory signals in patients’ EMRs allows us to

rapidly and conveniently monitor ADRs and other patient

conditions (16,19). To create a data-acquisition method by

using EMRs and its systematical application, such as

patient laboratory signals, age, organ functions, pathologi-

cal factors, co-administered drugs, and lifestyles should be
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considered (15,20-22). Because this method is retrospec-

tive, laboratory signal hits have been used for analysis.

However, there are limitations to the process of extracting

the EMR database because of difficulty in using commer-

cial database programs for data-mining (i.e., the necessity

of customized programs). Despite calls for greater trans-

parency (20-23), code lists have seldom been reported in

published papers (21,22). Thus, one of possible reasons

for the poor quality of reporting is the varied and inconsis-

tent clinical coding. EMR studies adopt definitions of clin-

ical entities. When patient information, including laboratory

signals is provided from medical staff in hospitals, the lists

of clinical codes are generally extracted and converted

into “.csv” or “Excel” files. However, drug medication

data vary and cannot be perfectly extracted by automated

systems. Moreover, descriptions by clinicians are some-

times important factors to observe patient conditions

during medication and should be extracted after communi-

cations between clinicians and medical informatics staff.

For example, inconsistency in code selection and the

resulting small errors in the analysis of laboratory signals

in EMR data-mining process may cause large numbers of

misclassified patients and a large degree of potential inac-

curacy in ADR prediction, causing biased outcomes and

errors affecting conclusions in unpredictable ways (24). In

particular, clinical definitions may change over time during

the observation period, which may necessitate changes in

the code lists in patients’ information.

To improve ADR prediction from the EMR database by

using new analytical approaches, “prescription sequence

symmetry analysis” (PSSA) may be used as a signal detec-

tion method (25). This method employs a simple algorithm,

which is computationally rapid, and requires a minimal

dataset of only three factors, such as drug name, date of

supply, and a patient identifier. Another approach is the

simultaneous consideration of the rate of drug prescrip-

tion and ADR occurrence for ADR prediction (26). As the

disproportionality of drug prescription and ADR reports

has limitations for the prediction of sensitivity, it would be

useful to create priority-based listings for signal detec-

tions in databases (26). In this method, receiver-operating

characteristics curves are used, including the specificity

and sensitivity of ADRs (Fig. 2).

LACK OF SENSITIVE AND SELECTIVE
BIOMARKERS IN ROUTINE CHECK-UPS

Emerging evidence from numerous biomedical studies

and advancements in scientific technology in recent decades

have suggested the potential value of novel biomarkers in

the prediction and/or diagnosis of ADRs. As ADRs affect

many organs in humans and vary broadly in severity, diverse

biological events (e.g., gene expression and signaling

pathway activation) could be changed (27,28). This con-

cept proposes the importance of the identification of novel

targets and/or biomarkers based on elucidation of com-

plex molecular mechanisms and their utilization in coordi-

nation with the EMR database analysis, to allow applications

in clinical situations (29). The integration and understand-

ing of the factors may enable us to provide directions for

pharmacovigilance studies, as suggested in Table 1.

One of the problems in the use of routine EMR data is

the limitation of traditional biomarkers for the proper pre-

diction of ADRs. Circulating protein biomarkers have been

used for the diagnosis and/or prognosis of ADRs, which

associate with specific tissue damage, irrespective of the

Table 1. Potential new targets and/or biomarkers for pharmacovigilance studies

Category Targets and/or biomarkers Pharmacological effects and/or ADRs References

Genetic variations

(traditional)

CYP2D6 Drug metabolism (rapid or slow metabolizers) (75,76)

SLCO1B1 Statins (myopathy) (77)

VKORC1 Warfarin (anti-coagulant effect) (78,79)

miRNAs

(novel)

miR-122 Acetaminophen (hepatotoxicity) (57)

miR-27b, miR-298
Drug metabolism [possibly effects on drugs metabolized by CYP3A4

(e.g., benzodiazepines, antivirals and steroids)]
(50,51)

miR-378
Drug metabolism [possibly effects on drugs metabolized by CYP2E1

(e.g., acetaminophen, isoniazid)]
(52,53)

miR-122a, miR-422a
Bile acid synthesis (CYP7A1); possibly effects on ADRs affecting

liver and biliary system, and/or responses to statins)
(54,82)

miR-125b
Vitamin D3 metabolism (CYP24A1); possibly effects on ADRs affect-

ing cancer susceptibility and/or calcium homeostasis
(55,83)

miR-124, miR-18a-5p Skin blistering reactions (SJS/TEN) (60,61)

Secretory proteins

(novel)
HMGB1 Tissue injury, immune response, acetaminophen (hepatotoxicity) (35,38)
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etiology of the diseases and/or drugs (30-34). For exam-

ple, the measurement of ALT and AST activities for liver

injury is an example. Although the traditional biomarkers

of tissue injury have been continuously and widely used,

several limitations exist: the markers may become elevated

only when the tissues are significantly damaged (i.e., low

sensitivity), and the markers may be produced by various

organs and/or toxic stimuli (i.e., low specificity). In addi-

tion, the markers are incomplete for determining the pre-

cise mechanism of ADRs and/or the specific cell types

affected. ALT often shows greater specificity than AST

(31), but it has disadvantages, such as low sensitivity and

possible alterations by other comorbid conditions. To over-

come these limitations, the identification and utilization of

novel biomarkers is necessary for future pharmacovigi-

lance studies. Indeed, recent improvements in the discov-

ery of new biomarkers based on genetic variations [i.e.,

genome-wide association studies (GWAS), non-coding

RNAs, microRNAs], proteomics, gene network, and sig-

nal pathways have enabled us to understand the benefits of

new ADR indicators (8,30).

In addition, the mechanistic approaches to the discov-

ery of biomarkers can certainly be applied to various tis-

sues and organs commonly affected by ADRs, such as the

liver, in which toxicity may be specific to certain cell types

(30). High-mobility group box 1 (HMGB1) has been con-

sidered as a prognostic biomarker for ADRs. It is released

from necrotic hepatocytes and activated immune cells,

which is an important link between cell death, inflamma-

tion, and the disease progression (30,35). It has been shown

that HMGB1 isoforms were more sensitive than ALT for

the prediction of DILI development and adverse reactions

caused by hepatotoxicants, such as acetaminophen over-

dose (35). Therefore, despite the limitations [i.e., time-

consuming diagnostic assays (MS/MS) or inability to dis-

tinguish between different acetyl and redox isoforms of

HMGB1 (ELISA)] (35), HMGB1 is a promising candidate

novel biomarkers. ADRs possess strong genetic predispo-

sition, although it is difficult to discern the genetic compo-

nents underlying any particular ADR. For example, the

human leukocyte antigen (HLA) alleles are highly poly-

morphic and are associated with different types of ADRs

(36). Others include genes encoding for drug metaboliz-

ing enzymes and drug transporters (37,38). Thus, the iden-

tification of genetic factors and the implementation of new

genetic approaches contribute to the safer use of drugs, as

shown in some clinical practice (37,38).

POTENTIAL BIOMARKERS FROM GENETICS 
APPLICATIONS

Transcriptomics from genome-wide association stud-
ies. Genome-wide association studies (GWAS) continue

to be used to offer a more comprehensive view of drug

responses and ADRs (39). GWAS for ADRs are character-

ized by smaller sample sizes than GWAS for common dis-

eases; often, only dozens of cases and hundreds of controls

are used, in comparison to GWAS for common diseases,

which usually need thousands of cases and controls (39,40).

ADRs are often related to immunological features, as many

drugs or metabolites can interact with major histocompati-

bility (MHC) molecules, and these associations have been

detected in the early GWAS of ADRs (39,41). Despite

various adverse reactions of drug hypersensitivity, recent

studies have reported the links of ADRs with loci outside

of the MHC region, such as human leukocyte antigen

(HLA) alleles (e.g., NUDT15, EPHA5, RBMS3, and TCL1A),

which suggest that many ADRs might be involved in other

reactions, as well as immunological phenomena (39).

Emerging roles of non-coding RNAs. The human

genome encodes RNAs that do not translate to proteins,

known as non-coding RNAs (ncRNAs). These comprise

of microRNAs (miRNAs, a type of small non-coding

RNAs), intronic RNAs, repetitive RNAs, and long non-

coding RNAs (lncRNAs). Their functions are related to

the control of the transcription, stability or translation of

transcripts for the de novo synthesis of proteins, and affect

the expression of other genes. Thus, the dysregulation of

ncRNAs may facilitate the progression of various diseases

(42,43). Emerging evidence have suggested that ncRNAs

provide various regulatory functions in the cell, and that

the RNA networks may be critical for the coordination of

genomics and proteomics (44). Notably, GWAS of com-

mon diseases have shown that the most (> 90%) of the

disease-associated genomic variants are noncoding vari-

ants (41,45), which indicates the potential of dysregulated

ncRNAs as regulatory mediators causing the develop-

ment and/or progression of various diseases. It is also of

note that a majority (82%) of ADR-associated genomic

variants exist in noncoding regions of the genome (39),

which also supports the inclusion of ncRNAs in pharma-

covigilance studies.

The most well-studied ncRNAs are miRNAs, but many

other types of ncRNAs with various lengths and character-

istics may also have roles in the regulation of cellular

homeostasis and disease progression (42,46). The func-

tional impacts of ncRNAs on human disease have been

well described from the research to discover the abnormal

expression patterns of miRNAs (46). For example, certain

miRNAs can control various processes of tumorigenesis,

neurodegenerative diseases, or cardiovascular disorders

(46,47). In addition, a small nuclear RNA (snoRNA) and

lncRNA functions are also impaired (46).

MicroRNAs as new potential biomarkers. MiRNAs

control diverse biological processes through the post-tran-

scriptional regulation of their target genes. Specifically,
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miRNAs may modulate the expression of proteins account-

able for the regulation of pharmacokinetics, which involves

P450 metabolizing enzymes, and ABC or SLC transport-

ers (48-53). Therefore, drug metabolism and disposition

can be affected by miRNA-dependent alterations in gene

expression and the consequent changes in biological func-

tions. Human CYP3A4 is the most abundant in organs

such as the liver and small intestine and metabolizes > 50%

of drugs, such as benzodiazepines, antivirals, and steroids

(50). miR-27b and miR-298 act directly on the 3' untrans-

lated region of CYP3A4 mRNA (51). Other types of cyto-

chrome P450 genes are also regulated by certain miRNAs

[e.g., the inhibition of CYP7A1 by miR-122a and miR-

422a (54), and CYP24A1 by miR-125b (55)]. Therefore,

miRNAs may become valuable biomarkers for the detec-

tion of ADRs, as well as targets for drug discovery.

Many types of toxicants alter the expression of miR-

NAs in target organs. miRNAs are considered to be stable

in the plasma; thus several miRNAs originated from vari-

ous tissues (e.g., the liver) can be released into the blood-

stream (56). Thus, the dysregulation of miRNAs can be

found in easily obtainable biological fluids. The advan-

tages of using miRNAs, in combination with the early

responses to toxic challenges and their stability, allow the

molecules to act as novel biomarkers for drug safety assess-

ment (57-61). Recent developments in the discovery of

biomarkers for DILI support the view that the newly iden-

tified biomarkers have enabled us to overcome the limita-

tions of traditional markers for the diagnosis and compre-

hension of the etiology of ADRs (30). Specifically, miR-

122, as a liver-enriched miRNA, is a promising target.

Circulating miR-122 has been shown to be specific for

acute hepatocyte injury in acetaminophen overdose and is

more sensitive for the early detection of liver injury than

traditional tests (58,59). Further research is necessary to

validate the utilization of miR-122 as a diagnostic or prog-

nostic indicator of late-onset idiosyncratic DILI (30).

Therefore, the precise understanding of the basis underly-

ing miRNA biology in the context of drug responses

would provide an opportunity to gain insight into the spe-

cific tissue damage and the pathogenesis of injury (30).

This would also provide valuable information for drug

development during preclinical testing and early phase

human trials.

Biomarker discovery from proteomics applications.
Given the functional roles of proteins in most of cellular

processes and the diverse proteomic patterns in response

to environmental and/or chemical stress, including drugs,

proteomics may also represent a new model for ADR

assessment. A recent study applying large-scale proteom-

ics of blood samples and pathway analysis discovered the

unknown effects of torcetrapib on the immune and inflam-

matory functions, in addition to the changes in the endo-

crine systems, indicating the improved assessment of drug

safety through proteomic analysis (62). A comprehensive

proteome scale approach was developed to predict drug-

protein interactions, providing the information on ADRs

as well as drug repositioning (63). In addition, a method

was also suggested for the expectation of ADRs through

the integration of protein-protein interaction (PPI) net-

works with drug structures, which showed that the integra-

tion significantly improved the prediction of ADRs (64).

Compared with genomics, proteomic techniques may con-

vey different information and offer the advantage of early

detection of ADRs; thus, these approaches complement

each other (65,66).

New information from gene network and signaling
pathways. Many complex traits for drug responses are

associated with alterations in various biological pathways

rather than single gene changes (67). A predictive frame-

work was presented, in which gene expression data were

captured into activity states of signal transduction circuits

as sub-pathways connecting receptor proteins to the ulti-

mate effectors activating reactions in the cell (67). These

mechanism-based biomarkers may provide insight into the

molecular basis of drug actions (67).

Considerations of genetic variations. Advancements

in genetic studies have allowed the mapping of individual

genetic variations based on human genome sequencing

(68). A number of reports suggested that genetic differ-

ences might be related to the progression of disease,

responses to drugs, and ADRs (68,69). Recently, the use

of the pharmacogenomic database has been considered to

explain variations in biological events among individuals

in the context of pharmacokinetics, pharmacodynamics,

and adverse reactions (70,71). Indeed, the findings from

pharmacogenetic studies have already been utilized in

clinical applications for the purpose of future customized

therapies (70,72). In addition, technical advances in labo-

ratory works and bioinformatics have allowed genetic

research outcomes to be applied to more complex genetic

diseases (69), suggesting their relevance to the evaluation

of drug responses and ADRs, especially in the areas of

oncology, neurodegenerative and cardiovascular diseases,

and metabolic disorders.

Although the research data showing the impact of phar-

macogenomic biomarkers on drug responses have rapidly

expanded, the clinical applications of evidence-based find-

ings are small and thus only a small fraction of the studies

identifying predictive novel biomarkers of ADRs has been

translated to clinical practice (30,71). It is important to uti-

lize the information on novel biomarkers for pharma-

covigilance studies and to coordinate EMR data with

multiple biomarker panels (genomic/non-genomic), which

can be integrated through the application of different
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‘-omics’ technologies (e.g., transcriptomics, proteomics,

and metabolomics) and thereby provide more detailed

information on drug responses (30).

Given the roles of the molecules in biological func-

tions, genetic alterations can significantly affect pharmaco-

kinetics, drug actions, and other factors involving therapeutic

outcomes and ADRs (71,73). Of note, unpredictable and

individual ADRs are considered a major risk factor for

safe and successful therapy (69,74). Therefore, the discov-

ery of genetic factors affecting ADRs would be of great

help to reduce the medical problems and mortality for a

subset of the population (69,75). Among drug-metaboliz-

ing enzymes, genetic variations in cytochrome P450s

(CYPs) have been well studied. One good example is the

CYP2D6 subtype, which belongs to the main enzymes

responsible for drug biotransformation (i.e., 20%-25% of

clinical drugs) (76). According to the differences in gene

copy numbers of CYP2D6, patients are categorized as rapid

or slow metabolizers (69,76). Compared with rapid metab-

olizers, slow metabolizers who have insufficient func-

tional CYP2D6 genes may be exposed to more frequent

occurrence of ADRs (69,75). Polymorphisms in genes that

encode transporters and drug receptors also contribute to

therapeutic effects and ADRs (71,77-79). A genome-wide

study identified that a single-nucleotide polymorphism

(SNP) in SLCO1B1, which belongs to the solute carrier

organic anion transporter family members, may be related

to statin-induced myopathy (77). Therefore, the FDA in

USA has revised many drug labels to provide information

on pharmacogenetic biomarkers (73).

CONCLUSIONS

Advancements in technology have allowed us to expand

the application of novel biomarkers into the EMR data-

base. For example, the ultimate tool for the identification

of ADRs in patients with different phases of diseases

would require a combination of specific biomarkers of

each disease and traditionally monitored EMR parameters

(80). Key factors for the successful clinical applications of

pharmacogenomic data include the development of clini-

cal guidelines to guarantee consistent interpretation and

prescribing practices, in addition to evidence-based infor-

mation databases and the appropriate educational programs

for decision making (71,76).
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