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Abstract: This work addresses the following problem: which of the statistical approaches, Weibull’s
or Gaussian, is more appropriate to correctly describe the statistical distributions of the mechanical
properties of the high-performance polymer materials of different sample types (single or multifila-
ment oriented fibers) and chain architectures (ultra-high-molecular-weight polyethylene, polyamide
6, or polypropylene)? Along with the routine mechanical properties such as strength, strain at
break, and Young’s modulus, an apparent viscoelastic modulus and an apparent strain at break
found when differentiating the stress–strain curves have been considered for the first time. For this
purpose, a large sample number (50 in each series) has been tested. It has been shown that the
values of the Weibull’s modulus (m) characterizing the data scatter were dependent both on the
chain architecture and the sample type for the five elastic, viscoelastic and fracture characteristics
analyzed. The Weibull’s model has been found to be more correct as compared to the Gaussian
one. The different statistical approaches used for the analysis of the large arrays of the data are
important for a better understanding of the deformation and fracture mechanisms of quasi-brittle
and quasi-ductile high-performance polymer materials.

Keywords: high-performance polymers; mechanical properties; Weibull’s statistics; Gaussian statistics

1. Introduction

High-performance oriented polymer materials are promising materials in various
fields of application. One of the effective methods of their production is the drawing of
isotropic low-strength polymers [1]. The initial lamellar crystallites in isotropic polymers
are transformed in the course of orientation into rigid oriented fibrils due to the unfolding of
the polymer chain folds in the initial lamellae. Such a discrete “structural re-arrangement”
leads to a significant (by an order of magnitude or more) increase in the material important
mechanical characteristics —Young’s (or elastic) modulus (E) up to 200 GPa and strength
(σ) up to 6 GPa [1–3]. The advantage of such materials with respect to high-performance
inorganic materials lies in their extremely high specific characteristics (related to the ma-
terial density ρ). For instance, for a high-strength steel characterizing with very high
values of σ = 1–2 GPa [4], the σ-to-ρ ratio, at a steel density of ρ ≈ 8 × 103 kg/m3, is
σ/ρ = 0.13–0.25 × 10−3 GPa·m3/kg while that for the ultra-oriented ultra-high-molecular-
weight polyethylene (UHMWPE) gel fibers with σ = 6 GPa [2] and ρ ≈ 1 × 103 kg/m3

attains σ/ρ = 6 × 10−3 GPa·m3/kg, i.e., it is 25–50 times greater than that for steel.
However, one of the drawbacks of the drawing process is the material embrittlement

resulting in a sharp increase in a scatter of the measured mechanical properties. This
behavior is due to the formation and development of surface microcracks at the final stages
of orientational drawing, the so-called kink bands, which are initiators of the most intense
crack growth at the deformation stages preceding the sample failure [1,2]. For this reason, in
order to correctly estimate the average values of σ, E, and strain at break (εb), σav, Eav, and
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εav, which are important characteristics playing a key role in choosing the most appropriate
fields for material applications, the number of identical samples to be tested should be
increased markedly, from the generally accepted about five [5–8] to some dozens, or even
hundreds [2,9–22]. In this case, the statistical distributions of mechanical properties can also
be analyzed, and additional information obtained, for instance, on their conformity to a
certain theoretical model (e.g., Gaussian [23], Weibull’s [9–22]). It can be helpful for a better
understanding of the deformation and fracture mechanisms of materials and for making
a more proper recommendation about their practical use. Actually, if the distribution
of a measured dataset can be represented with a bell curve that is characteristic of the
Gaussian (or normal) distribution, it implies that the data scatter is caused by the sum of
many independent and equally weighted factors [23]. By contrast, if it obeys the Weibull’s
statistics, it should have the shape of a linear plot in specific coordinates “lnln[1/(1 − Pj)]
− lnσ”, where Pj is the cumulative probability of failure, suggesting the dominant role
of the surface cracks and their propagation across the sample cross-section in the sample
fracture [2–12].

Earlier [2,3,15], it has been shown for high-performance polymer materials that the
more correct type of the statistical distributions, Weibull’s or Gaussian, of σ, E, and εb, and
the values of the statistical Weibull’s modulus (m) characterizing the data scatter (an in-
crease in m means a decrease in the data scatter) were dependent both on the chain chemical
structure and the sample type (single or multifilament fibers). However, statistical charac-
terization of other mechanical properties, besides σ, E, and εb, has not been investigated yet,
though it is helpful for a better understanding of the deformation and fracture mechanisms.
In this respect, it is interesting to perform a detailed analysis of the stress–strain curves of
such materials in order to estimate other important characteristics [24] in addition to those
indicated above.

So, the goal of our study was to carry out a detailed analysis of the stress–strain
behavior of a number of high-strength polymer materials in an attempt to estimate addi-
tional mechanical characteristics, besides widely used σ, εb, and E, and to investigate the
conformity of their statistical distributions to the Gaussian and Weibull’s models.

For this purpose, UHMWPE, polyamide 6 (PA 6), and polypropylene (PP) were chosen.
The choice of these polymers was motivated by different chain architectures and conforma-
tions resulting in their different abilities to strengthen. Each of these polymers has been
investigated by using two different oriented sample types: single or multifilament fibers.
It was motivated by different statistical natures of these samples: “statistical origin” of a
multifilament sample (including some hundreds of individual fibers) and “non-statistical
origin” of a single fiber. The stress–strain behavior of these high-strength oriented polymer
materials will be analyzed in more detail than usual (i.e., analysis of σ, εb, and E only), and
the statistical distributions of new mechanical characteristics estimated when analyzing the
stress–strain curves will be compared with those of σ, εb, and E.

It should also be noted that, along with drawing, some enhancement of the mechanical
properties of polymer-based materials can be obtained by introducing the filler into a
polymer matrix (see, e.g., [25–27]). However, despite the significant increase in the values
of σ and E for such composite materials with respect to those of neat polymers, the former
are still markedly lower (σ = 0.7 GPa, E = 17 GPa [25]) as compared to those of highly
oriented polymers, in particular, of gel-cast UHMWPE fibers (σ = 6 GPa, E = 200 GPa [1–3]).

2. Weibull’s Statistics

Weibull’s statistics, proposed initially for the σ distribution analysis only, are based on
the idea that the brittle sample fracture is controlled by the weakest (local) link [21] when
the cumulative probability function P(σ) describing the probability of failure of identical
samples at or below stress σ is given by:

P(σ) = 1 − exp [−(σ/σ0)m], (1)
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where m is the so-called Weibull modulus (or shape parameter, a measure of data dispersion)
and σ0 is the scale parameter (having the physical meaning of σav). For performing the
Weibull’s analysis, a set of test results should be converted into an experimental probability
distribution by ordering them from the lowest strength to the highest ones. The j-th result
in the set of n samples is assigned to a cumulative probability of failure (Pj):

Pj = (j − 0.5)/n. (2)

By rearranging Equation (1), taking the logarithm of both sides twice and replacing
P(σ) with Pj, one obtains Equation (3):

lnln[1/(1 − Pj)] = −m·lnσ0 + m·lnσ. (3)

Equation (3) represents a linear regression:

y = a + bx, (4)

where y = lnln[1/(1 − Pj)], b is the m, x is the lnσ, and a = −m·lnσ0 is the curve intersection
with the y axis. By estimating m as the tangent to the curve lnln[1/(1 − Pj)] = f(lnσ) by
using the standard procedure of the linear regression analysis, one can calculate σ0 by
solving Equations (5) and (6):

lnσ0 = −a/m, (5)

σ0 = exp (−a/m). (6)

Earlier [15], it has been suggested to apply this approach not exclusively to σ, but to
εb and E as well. So, by replacing σ and σ0 in Equations (1) and (3) by εb and ε0, E and E0,
one obtains:

lnln[1/(1 − Pj)] = m·lnεb − m·lnε0, (7)

ε0 = exp (−a/m), (8)

lnln[1/(1 − Pj)] = m·lnE − m·lnE0, (9)

E0 = exp (−a/m). (10)

Equations (7) and (9) can be reduced to Equation (4), by analogy with σ, where
x = lnεb or lnE, and a = −m·lnε0 or a = −m·lnE0.

In order to analyze the stress–strain behavior of high-strength oriented polymers in
more detail than usual (analysis of σ, εb, and E), the first derivative of the stress–strain
curves should be calculated and specific points found (see [24]). In this work, the statistical
analysis of other mechanical properties, besides σ, εb, and E, found on the stress–strain
curves will be performed for the high-strength single and multifilament fibers of PA 6 for
the first time.

3. Materials and Methods

The following samples have been investigated: (i) lab-scale ultradrawn (a draw ratio
of 120) single film threads of UHMWPE cast from decalin; (ii) commercial gel-spun multifil-
ament fibers of UHMWPE (Dyneema SK60) consisting of some hundreds of single fibers
kindly supplied by DSM, the Netherlands, and commercially available oriented single and
multifilament fibers of (iii, iv) PA 6 and (v, vi) PP. In total, six sample series have been
investigated. The lab-scale oriented single film threads were produced from an UHMWPE
nascent powder with a viscosity-average molecular weight of 3 × 106 g/mol synthesized
at a Boreskov Institute of Catalysis (Novosibirsk, Russia). A 1.5-wt% UHMWPE solu-
tion in decalin was prepared at 160 ◦C under stabilization of 0.5 wt% of an anti-oxidant
(di-tert-butyl-p-cresol). The UHMWPE gel films were produced by casting a polymer
dilute solution into a Petri dish followed by quenching at ambient temperature. After
drying, the gel was transformed into a xerogel in the form of films of a thickness of 100 µm.
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As-produced xerogel film was cut into 1-mm-wide strips which were subjected to a multi-
stage hot-zone drawing on a home-made device equipped with a pin heater [1]. The
commercial single and multifilament fibers of UHMWPE, PA 6 and PP were used as re-
ceived.

The samples were subjected to tensile loading on an Instron tester at ambient tem-
perature. Force–displacement curves were recorded at a cross-head speed of 10 mm/min
and an initial distance between the tester clamps of 10 mm for the lab-scale UHMWPE
single film threads (of a width of 0.4 mm and a thickness of ~2 µm), and at a strain rate
of 200 mm/min and a distance between the tester clamps of 500 mm for all five other
commercial samples: (i) multifilament fibers of UHMWPE (linear density D = 179 tex);
(ii) single filament with a diameter d of 0.20 mm; (iii) multifilament fibers (D = 213 tex) of
PA 6; (iv) single fiber (d = 0.17 mm); and (v) multifilament fibers of PP (D = 1087 tex). The
measured stress–strain curves were analyzed and mechanical properties were estimated.
For obtaining statistically proper results, 50 identical samples were tested for each of the
six above-listed materials.

The statistical distributions of mechanical properties have been investigated by using
the Gaussian [23] and Weibull’s models [21]. In the first case, the variation range of a
property under analysis was divided into several intervals for each of which the number
of measured values and their percentage in the total set of measurements were estimated.
Thereafter, the histograms of the probability density function (PDF, the fraction of the
values included in a given interval with respect to the total measured values) as a function
of property value were constructed, and their conformity to the bell-shaped curve that
is characteristic of the Gaussian distribution was investigated. In the second case, the
Weibull’s plots lnln[1/(1 − Pj)] = f [ln(property)] were constructed and the values of the
scale parameter (e.g., σ0) and the shape parameter (or Weibull’s modulus) m were estimated.

4. Results

Typical stress–strain curves for the high-performance single and multifilament fibers
of PP, PA 6 and UHMWPE are shown in Figure 1. One can see that the curves for PP
and UHMWPE demonstrate a monotonic increase in σ with ε until the sample fracture
while those for PA 6 have a steeper curve portion at ε > 6% with respect to the initial curve
portion at ε < 1%, indicating that additional strengthening takes place in the course of
sample deformation. This behavior suggests that the strengthening potential has not been
exhausted in the course of the drawing process, and the mechanical properties can be
enhanced markedly even after an additional drawing of the samples by 10% only.

Let us consider the stress–strain curve for the PA 6 multifilament for which this effect
is more marked in more detail by taking the first derivative of the curve (see Figure 2). In
this case, one observes two tangent lines corresponding to the Young’s modulus (E1) at
small strains < 1% and an apparent viscoelastic modulus (E2) at large strains (ε > 10%). By
extrapolating the second curve portion (E2) to σ = 0, the value of strain at break εb for this ε
range (εb-2) can be estimated. In this way, the second portion of the curve can be adjusted
to a typical stress–strain behavior in the shape of a monotonic increase in σ with ε observed
here for the PP and UHMWPE materials. By using this approach, one can also estimate,
besides the ‘traditional’ mechanical properties such as σ, εb and E1, the values of E2 and
εb-2 and, thus, characterize the mechanical behavior of the PA 6 fibers more fully.

We first performed the statistical analysis of the characteristics which are relevant
to all the six materials investigated, in particular, σ; and then E2 and εb-2 found on the
PA 6 stress–strain curves were considered. For this purpose, the σ values for each of the
materials were arranged in an ascending order (see Figure 2a) and analyzed relative to
their conformities to the Weibull’s and Gaussian statistical models. The results of this
analysis are shown in Figure 2b, 2c, 2d, 2e, 2f, 2g and 2h, respectively. In addition, the
Weibull’s analysis results are collected in Table 1. It is worth noting that the choice of the
high-performance polymer materials under study allowed us to analyze their statistical
mechanical behavior over a rather broad interval of strengths, from 0.2 to 6 GPa.
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Figure 1. (a) Stress–strain curves for single (s) and multifilament (m) fibers of UHMWPE, PA 6 and
PP recorded at a cross-head speed of 200 mm/min and an initial distance between the tester clamps
of 500 mm; (b) Scheme of the stress–strain curve analysis for a PA 6 multifilament fiber.

Table 1. Results of Weibull’s analysis of the strength distribution of high-performance single (s) and
multifilament (m) fibers of UHMWPE, PA 6 and PP.

Sample y = a + bx R2 m σ0, GPa σav, GPa σ0/σav

UHMWPE-s y = −106.12+ 73.98x 1

y = −12.28 + 7.69x 1
0.856
0.996

73.98
7.69

4.20
4.96

4.70
4.70

0.89
1.06

UHMWPE-m y = −8.62 + 9.89x 0.987 9.89 2.39 2.23 1.07
PA 6-s y = 15.14 + 45.32x 0.976 45.32 0.72 0.71 1.02
PA 6-m y = 8.44 + 43.41x 0.982 43.41 0.82 0.81 1.02

PP-s y = 6.34 + 12.02x 0.954 12.02 0.59 0.57 1.04
PP-m y = 28.54 + 23.02x 0.973 23.02 0.29 0.28 1.04

1 Approximation with two linear portions.

Figure 2. Cont.
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Figure 2. (a) Tensile strength σ as a function of sample number n in an ascending order for single
and multifilament fibers of UHMWPE, PA 6 and PP; (b) Weibull’s plots for the data presented
in (a), the solid lines are linear fits to the data sets; probability density function (PDF) vs. σ for:
(c) UHMWPE single fibers, (d) UHMWPE multifilament fibers, (e) PA 6 single fibers, (f) PA 6
multifilament fibers, (g) PP single fibers, and (h) PP multifilament fibers; the bell curves PDF(σ) are
the Gaussian fitting results.
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As follows from Figure 2b and Table 1, the constructed Weibull’s plots in the majority
of cases (UHMWPE-m, PA 6-s, PA 6-m, PP-s, PP-m) represent single linear curves fitted
with rather high reliability (root-mean-square deviation R2 > 0.95). For the UHMWPE single
fibers, the data can be correctly fitted with two linear curves. However, 80% of the data
pointing at higher strengths also demonstrate a high linear fitting reliability (R2 = 0.996).
Besides, taking into consideration that the ratio of the parameter σ0 estimated from the
Weibull’s plots (having the physical meaning of σav) to σav, σ0/σav, is close to unity in all
the cases considered, the results of the Weibull’s analysis performed seem to be correct.

As far as the Weibull’s modulus m is concerned, its value depends on: (i) the polymer’s
chemical structure; (ii) the sample type; and (iii) the strength interval considered. In general,
the m value for the multifilament is higher than the corresponding m value for the single
fiber (carbon-chain UHMWPE and PP) or close to it (heterochain PA 6). For the ultra-high-
strength UHMWPE single fibers, a markedly higher value of m = 74.0 was calculated for
20% of the samples with low strengths with respect to that of m = 7.7 calculated for 80% of
the samples with high strengths. By contrast, a single linear curve with m = 9.9 is obtained
when fitting the entire dataset of the UHMWPE multifilament. To put it differently, a higher
m value for the UHMWPE multifilament (m = 9.9) as compared to that for the majority of
the data for the UHMWPE single fiber (m = 7.7) indicates that the data scatter is narrower
for the former. This observation suggests that the UHMWPE multifilament demonstrates
a more reliable mechanical behavior as compared to that for the UHMWPE single fibers.
Moreover, the observation of an excellent reproducibility (m = 74.0) of the low strength
values (σ ≈ 4 GPa) for the latter ones indicates that the use of such materials is potentially
more dangerous because there is an increased probability of fracture at σ < σav with respect
to that for the UHMWPE multifilament. The fact that the m values for the UHMWPE and
PP multifilament are higher with respect to the corresponding m values for the single fibers
indicates that the role of critical cracks in the entire sample fracture is more important for
the latter ones, which seems to be reasonable. Actually, the fracture of one filament should
not necessarily result in the fracture of the entire multifilament sample including some tens
or hundreds of single filaments.

The analysis of the strength data distributions on their conformity to the Gaussian
model (see Figure 2c–h) has revealed that, for five of the six materials investigated, except
the UHMWPE single fibers (see Figure 2g), the distribution histograms represent the bell-
shaped curves suggesting that the measured data can be satisfactorily described in the
framework of this model. It is also seen that, in general, (i) the fitting results are more
correct for the three different multifilament samples than those for the corresponding single
filaments, and (ii) for the materials with a lower strength.

When comparing the applicability of the Weibull’s and Gaussian models to the strength
distributions of the high-performance polymer materials investigated, one can distin-
guish the statistical dualism of the strength distribution behavior for the materials with
σ < 1 GPa. To put it differently, the four datasets for the PA 6 and PP materials investigated
have been found to obey both the Weibull’s and Gaussian statistics. The conformity to
the Gaussian statistics may be explained, on one hand, by their (though rather limited)
plasticity (εb = 10–20%) preserving their brittle fracture. On the other hand, they do not
undergo yielding (yield points are absent on the stress–strain curves—see Figure 1a). So,
they can also be treated as quasi-brittle materials for which the Weibull’s statistics were
proposed initially. The UHMWPE materials investigated characterized with smaller values
of εb < 5% are referred to as quasi-brittle materials. So, it is not surprising that their strength
distribution behaviors are in good accord with the Weibull’s model. The fact that the
Gaussian model does not always work properly for these materials, in particular for the
UHMWPE single fibers, indicates that the data scatter is not caused by the sum of many
independent and equally weighted factors [23]. Rather, it is controlled by weakest links
and a crucial role of surface cracks in the sample fracture, i.e., the key factors on which the
Weibull’s statistics are based [2,21].
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Let us turn to the statistical analysis of the stress–strain curves of the two PA 6 materials
under study by comparing the distributions of E1 (=E) and E2, and εb and εb-2. The results
of this analysis are presented in Figure 3 (E1 and E2 for single fibers), Figure 4 (E1 and E2
for multifilament fibers), Figure 5 (εb and εb-2 for single fibers), and Figure 6 (εb and εb-2 for
multifilament fibers), and are collected in Table 2.

Let us apply the Weibull’s and Gaussian models to describe the statistical distribu-
tions of the values of E2 and εb-2 presented in Figures 3a and 4a, and Figures 5a and 6a,
respectively, in the same way as above for E1 and εb. For this purpose, the values of εb, ε0,
E, and E0 in Equations (7)–(10) should be replaced by the corresponding values of εb-2, ε2-0,
E2, and E2-0. As a result, one obtains Equations (11)–(14) that will be used for the Weibull’s
analysis of E2 and εb-2 below.

lnln[1/(1 − Pj)] = m·lnεb-2 − m·lnε2-0, (11)

ε0 = exp (−a/m), (12)

lnln[1/(1 − Pj)] = m·lnE2 − m·lnE2-0, (13)

E2-0 = exp (−a/m). (14)

Figure 3. (a) Moduli E1 and E2 as functions of sample number n in an ascending order for PA 6 single
fibers; (b) Weibull’s plots for the data presented in (a); PDF vs. E1 (c) and E2 (d) for the data presented
in (a); the bell curves are the Gaussian fitting results.
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Figure 4. (a) Moduli E1 and E2 as functions of sample number n in an ascending order for PA 6
multifilament fibers; (b) Weibull’s plots for the data presented in (a); PDF vs. E1 (c) and E2 (d) for the
data presented in (a); the bell curves are the Gaussian fitting results.

Figure 5. Cont.
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Figure 5. (a) Strains at break εb and εb-2 as functions of sample number n in an ascending order for
PA 6 single fibers; (b) Weibull’s plots for the data presented in (a); PDF vs. εb (c) and εb-2 (d) for the
data presented in (a); the bell curves are the Gaussian fitting results.

Figure 6. (a) Strains at break εb and εb-2 as functions of sample number n in an ascending order for
PA 6 multifilament fibers; (b) Weibull’s plots for the data presented in (a); PDF vs. εb (c) and εb-2

(d) for the data presented in (a); the bell curves are the Gaussian fitting results.
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Table 2. Results of Weibull’s distribution analysis of various mechanical properties (p) of single and
multifilament fibers of PA 6.

Property, p Fiber Type y = a + bx R2 m p0 pav p0/pav

E1 single y = −44.63 + 23.39x 0.907 23.39 6.75 GPa 6.60 GPa 1.02
E1 multifil. y = −29.55 + 17.24x 0.940 17.24 5.56 GPa 5.38 GPa 1.03
E2 single y = −28.08 + 14.85x 0.936 14.85 6.63 GPa 6.40 GPa 1.04
E2 multifil. y = −106.68 + 49.55x 0.871 49.55 8.62 GPa 8.56 GPa 1.01
σ single y = 15.14 + 45.32x 0.936 45.32 0.72 GPa 0.71 GPa 1.02
σ multifil. y = 8.44 + 43.41x 0.982 43.41 0.83 GPa 0.81 GPa 1.02
εb single y = −28.48 + 9.40x 0.982 9.40 20.7% 19.6% 1.06
εb multifil. y = −97.06 + 35.01x 0.958 35.01 16.0% 16.1% 0.99

εb-2 single y = −26.13 + 8.94x 0.978 8.94 18.6% 17.6% 1.06
εb-2 multifil. y = −56.18 + 23.49x 0.966 23.49 10.9% 10.7% 1.02

As follows from Figure 3a, the values of E1 and E2 for the PA 6 single fibers are
close, indicating that the effect of the deformation strengthening is not characteristic of
this material. These data are represented in Weibull’s coordinates “lnln[1/(1 − Pj)] −
ln(property)” in Figure 3b. The Weibull’s modulus values calculated from the tangents of
these plots m(E1) = 23.4 and m(E2) = 14.9 indicate that that the scatter data for E2 are broader
than that of E1. The data analysis in the framework of the Gaussian model shows that the
bell-shaped curves can be received by computer fitting of the histograms for both E1 and E2
(see Figure 3c and 3d, respectively). However, the curve obtained for E1 with a well-defined
maximum is more symmetric while that for E2 demonstrates a rather diffuse maximum
shifted to higher E2 values. Hence, the Gaussian model describes the distribution of E1
more correctly as compared to that of E2. By contrast, the Weibull’s model describes more
correctly (R2 = 0.936; for the E1 distribution, R2 = 0.907) the E2 distribution. These two
observations may be explained as follows. On one hand, the E2 value is calculated for
the strains > 0.5εb. In this strain range, the onset of the local fracture processes (chain
scission, interfibrillar slipping) is expected. Hence, this mechanical property ‘approaches’
the fracture properties such as σ and εb for which the Weibull’s model works properly [2–15].
On the other hand, the E1 value characterizes the very beginning of the sample deformation.
At this deformation stage, the contribution of the fracture processes such as covalent bond
rupture and crack propagation is negligible. Therefore, the validity of the Weibull’s model
in this case is less appropriate than the Gaussian one. Therefore, it may be concluded that
the E1 data scatter is controlled by many independent and equally weighted factors, as
expected in the framework of the Gaussian model.

Let us consider variations of the same mechanical properties for the PA 6 multifilament
fibers. For this material, the E2 values are twice as high compared to the E1 values (see
Figure 4a). This means that a significant improvement in the material rigidity takes place
with an increase in ε. The Weibull’s modulus values calculated from the plots of Figure 4b
are 17.2 and 49.6 for E1 and E2, respectively, i.e., the observed difference by a factor of three
is rather large, indicating that the data scatter of E2 is significantly smaller as compared
to that of E1. It may be indicative of the development of a more uniform structure in the
course of deformation. As far as the Gaussian analysis is concerned, the histograms PDF(E1)
and PDF(E2) presented in Figure 4c and 4d, respectively, show that the E1 distribution
can be fitted satisfactorily with a bell curve. By contrast, two maxima with rather high
PDF values of 40 and 30% are observed on the E2 histograms, indicating that the E2
distribution in the framework of the Gaussian mode is bimodal and, hence, it has a rather
complicated character.

Let us analyze the distributions of εb and εb-2. The datasets εb(n) and εb-2(n) for the PA
6 single fibers presented in Figure 5a are plotted in the Weibull’s coordinates in Figure 5b.
As one can see, the two linear fit curves are symbatic, and they are characterized with rather
close m values for εb-2 and εb (m = 8.94 and 9.40, respectively). The analysis of these data
using the Gaussian model (see Figure 5c,d) shows that the results received are arbitrary.
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Therefore, the Weibull’s model seems to be more appropriate for describing correctly the
statistical distributions of εb-2 and εb for the PA 6 single fibers in comparison with the
Gaussian model. Taking into consideration that the Weibull’s model has been proposed
for a fracture property (σ), this behavior seems to be reasonable. For the PA 6 multifil-
ament samples, one observes behavior similar to that for the PA 6 single fiber samples:
symbatic curves εb(n) and εb-2(n) (see Figure 6a) and close tangents of the linear fit curves
lnln[1/(1 − Pj)] = f(lnεb) and lnln[1/(1 − Pj)] = f(lnεb-2): m = 35.0 and 23.5, respectively.

It should be noted that the Weibull’s analysis carried out for the deformation character-
istics considered is correct for the two sample types since it is characterized with R2 ≥ 0.98
and R2 ≥ 0.96 for the single and multifilament PA 6 fibers, respectively. However, in con-
trast to the Gaussian distributions of εb and εb-2 for the PA 6 single fibers, the fitting results
for the PA 6 multifilament, in particular, the curve for εb-2, using the Gaussian model seem
to be correct. The difference in the Gaussian distributions of εb and εb-2 revealed for the two
PA 6 sample types may be explained by the statistical nature of one multifilament sample
(including about 200 individual fibers) in comparison with one fiber in the single fiber
sample. To put it differently, the test results for the multifilament sample are substantially
more verified statistically which is important for obtaining a proper Gaussian distribution.

From the data collected in Table 2, it follows that all the values of the ratio of the scale
parameter to the average value of the corresponding mechanical property p0/pav (E2-0/E2-av,
ε2-0/ε2-av, E1-0/Eav, σ/σav, and ε0/εav) for the two PA 6 sample types investigated are close
to unity (p0/pav ≈ 1), indicating that the Weibull’s analysis carried out is correct for all
five mechanical properties investigated. In order to estimate the effect of the deformation
strengthening at the second portion of the stress–strain curve, let us compare the statistically
correct values of E1 and E2, i.e., the values of E1-0 and E2-0, respectively, calculated from the
corresponding Weibull’s plots. Since the ratios E2-0/E1-0 for the single and multifilament
PA 6 fibers are 0.98 and 1.55, respectively, this means that the slope of the second portion
(at ε > 6%) of the stress–strain curve for the PA 6 multifilament is steeper than the initial
portion (at ε < 1%) while those for the single fibers are almost equal. This suggests a marked
effectiveness of strengthening of the PA 6 multifilament. It should also be noted that the
applicability of the Weibull’s model is more correct for a fracture property (εb-2, R2 > 0.96)
with respect to a viscoelastic property (E2, R2 < 0.94). This behavior seems to be reasonable
since this model has been proposed initially for a fracture property (σ).

Finally, let us compare the m values estimated for the two PA 6 sample types investi-
gated (see Table 3) as the m ratios for the multifilament to those for the single fiber.

Table 3. Comparison of the Weibull’s modulus m for single and multifilament PA 6 fibers for some
mechanical properties.

Mechanical Property σ E1 E2 εb εb-2

m(multifilament)/m(single) 0.96 0.74 3.34 3.72 2.63

It is seen that these ratios are rather close for σ and, to a lesser extent, for E1 while they
are markedly higher for the multifilament, by a factor of 3 to 4, for E2, εb, and εb-2. This
means that, in general, the data scatter for the multifilament is substantially smaller than
that for the single fiber. This behavior may be explained by an extremely large number of
the fractured single fibers per one test for the multifilament sample including 200 single
fibers with respect to the single filament sample (i.e., 200 against 1), making the results for
the former more appropriate statistically which is reasonable.

5. Conclusions and Future Outlook

The analysis of the stress–strain behavior of the six high-performance polymer ma-
terials differing in the chain architecture (UHMWPE, PA 6 and PP) and the sample type
(single and multifilament fibers) has revealed rather extended near-linear portions only
on the curves of the two PA 6 samples investigated at ε > 5% characterized with a tangent
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equal to or larger than the tangent of the initial stress–strain portion characterizing the
Young’s modulus E. By differentiating these curves, the two additional characteristics,
the apparent modulus E2 and the apparent strain at break εb-2, have been estimated. A
marked effect of strengthening of the PA 6 multifilament in the course of tensile testing
(E2 > E1) has been found, indicating that the enhancement of the mechanical properties
of this material proceeded more effectively than that of the PA 6 single fibers (E2 ≈ E1).
It has been shown that the Weibull’s model is more correct for describing the statistical
distributions of the mechanical properties of the high-strength PA 6 fibers than the Gaussian
one. It has been shown that the data scatter for some of the mechanical properties (E2, εb,
and εb-2), including those estimated, for the first time, by differentiating the stress–strain
curves (E2 and εb-2), is substantially smaller for the multifilament than that for the single
fibers. This behavior is due to a substantially larger (by two orders of magnitude) number
of the fractured single fibers per test in the multifilament samples as compared to the single
fiber, making the results received for the former substantially more proper statistically.

Based on the results obtained in this work and earlier [2,3,15], we suppose that it
is necessary to use both the Weibull’s and Gaussian models for the correct statistical
characterization of the mechanical properties of the high-performance polymer materials
of various chemical natures, fragilities and ductilities. The strength distribution behavior
investigated over a wide range of strengths of 0.2 to 6 GPa has been shown to depend both
on the chain architecture and the sample type. The notable deviations from the standard
Weibull’s and Gaussian distributions have been observed for the ultra-strength UHMWPE
single fiber. This suggests that the final drawing stages, up to the high draw ratio of 120,
were accompanied by the significant structural damage.

Further in-depth analysis of the statistical distributions of the mechanical properties
of high-performance polymer materials can be performed by involving the other statis-
tical approaches such as the chi-square, Kolmogorov–Smirnov and D’Agostino–Pearson
tests [28].
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