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Abstract

tert-Butyldimethylsilyl (TBDMS) and tert-butyldiphenylsilyl (TBDPS) are alcohol protecting groups widely employed in organic
synthesis in view of their compatibility with a wide range of conditions. Their regioselective installation on polyols generally
requires lengthy reactions and the use of high boiling solvents. In the first part of this paper we demonstrate that regioselective sily-
lation of sugar polyols can be conducted in short times with the requisite silyl chloride and a very limited excess of pyridine
(2-3 equivalents). Under these conditions, that can be regarded as solvent-free conditions in view of the insolubility of the polyol
substrates, the reactions are faster than in most examples reported in the literature, and can even be further accelerated with a cata-
lytic amount of tetrabutylammonium bromide (TBAB). The strategy proved also useful for either the selective TBDMS protection
of secondary alcohols or the fast per-O-trimethylsilylation of saccharide polyols. In the second part of the paper the scope of the
silylation approach was significantly extended with the development of unprecedented “one-pot” and “solvent-free” sequences
allowing the regioselective silylation/alkylation (or the reverse sequence) of saccharide polyols in short times. The developed meth-
odologies represent a very useful and experimentally simple tool for the straightforward access to saccharide building-blocks use-
ful in organic synthesis.

Introduction

The application of an orthogonal set of protecting groups repre-
sents a typical issue in organic synthesis in the elaboration of
highly functionalized molecules such as carbohydrates, and
lengthy multistep procedures are often needed to this aim [1,2].
Silyl groups are widely applied in organic chemistry in orthogo-
nal protection strategies owing to their stability to a broad range

of conditions and feasible removal under conditions compatible

with many other used alcohol protecting groups [1-3]. For this
reason, silyl protecting groups are often serving as temporary
protecting groups with polyol and saccharide substrates. The
most robust and adopted silyl protecting groups are featuring
the presence of hindered substituents at silicon such as in tert-
butyldimethylsilyl (TBDMS) and fert-butyldiphenylsilyl
(TBDPS) groups. Their bulkiness allows in many cases regiose-
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lective silyl protection of primary alcohols. Commonly, O-sily-
lation is performed by exposing the alcohol to a suitably substi-
tuted silyl chloride in the presence of a base, a catalyst (often
coinciding with the base) and an aprotic solvent [2-9]. The use
of more expensive silyl triflates is also reported, especially
when poorly reactive alcohols have to be protected [2,10-13].

A regioselective silylation of polar saccharide polyols is typical-
ly performed with the appropriate silyl chloride in the presence
of a high boiling solvent such as DMF or pyridine, often in the
presence of a nucleophilic catalyst (more frequently imidazole
and DMAP) [14-21]. The protection generally takes several
hours and the work-up is burdened by necessary removal of the
high boiling solvent. A good regioselective control was also re-
ported in an alternative silylation approach based on a dehydro-
genative mechanism in which expensive trialkyl silanes were
used as silylating agents [22]. Very recently, Vogel and
co-workers reported an original strategy based on unusual sily-
lating agents such as silyl methallylsulfinates; this approach
proved very high-yielding under neutral conditions, but the pre-
liminary synthesis of the requisite reagent relied on a non-trivial
two-step procedure starting from the corresponding silyl chlo-
ride [23].

The regioselective silylation of secondary saccharide alcohols
can also be achieved either taking advantage of the inherent
difference of reactivity among the hydroxy functions [24-32] or
exploiting the activation effect of boron complexes [33].

Over the last years, we have addressed our interest towards the

development of solvent-free protocols aimed at regioselective

protection of highly functionalized saccharide substrates. This

Table 1: Regioselective silylation of 1 under solvent free conditions?@.
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effort led to a simple protocol for the selective benzylation of
primary saccharide alcohols [34], the first catalytic tin-medi-
ated procedure for regioselective benzylation/allylation of
hydroxy groups incorporated into vicinal diols [35], and three
alternative acetalation protocols [36]. Besides the avoided use
of solvents, these approaches appear advantageous owing to
their experimental ease, the reactions being performed under air

by simply mixing the requisite reagents.

In this paper, we wish to report the extension of the scope of the
solvent-free strategies to the silylation reaction, and the feasible
incorporation of this step into unprecedented one-pot, fully sol-
vent-free sequences yielding orthogonally protected saccharide
building-blocks under simple experimental conditions and in

short times.

Results and Discussion

In preliminary experiments, methyl mannopyranoside (1) was
selected as the model substrate and exposed to TBDMSCI in
the presence of a slight or moderate excess of several bases
(Table 1).

In all cases 6-O-silylated derivative 2 was obtained as the main
product, but yields and rates were strongly dependent on the
adopted base: pyridine (Table 1, entries 6—9) gave much better
results than tertiary amines (Table 1, entries 1-5) that, on the
other hand, had previously performed better than pyridine in the
tin-catalyzed solvent-free regioselective benzylation or allyla-
tion of sugars [35]. The silylation rate was not appreciably
influenced by tin catalysis (compare entries 2 and 3 in Table 1),
although a previous report described the stoichiometric use of

stannylene acetals in the regioselective silylation of saccharide

TBDMSO

Ho—\ T base, TBDMSCI Ho—\ 18
HO additive, Temp HO
T ome 2 Ome

Entry Base (equiv) Additive (equiv) Temperature, time Isolated yield
1 DIPEA (5) - 50°C,5h <15
2 DIPEA (5) TBAB (0.3) 50 °C,5.5h 49
3 DIPEA (5) TBAB (0.3), Bu2SnO (0.1) 50°C,5.5h 52
4 DIPEA (5) TBAI (0.3), Bu,SnO (0.1) 50 °C,5.5h 48
5 TEA (5) TBAB (0.3) 50 °C, 5.5 h 53
6 pyridine (5) TBAB (0.3) 50°C,1h 89
7 pyridine (2.5) TBAB (0.3) rt, 1h 80
8 pyridine (2.2) TBAB (0.1) rt, 1.5 h 84
9 pyridine (2.2) - rt, 1.5 h 70

aGeneral conditions: substrate, base, additive, TBDMSCI (1.2 equiv for entries 1-6, 1.1 equiv for entries 7-9).
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primary alcohols [37]. At this stage, it should be noted that pyri-
dine is frequently employed as the solvent for silylations, but
the conditions herein described can be referred to as “solvent-
free” because of the very limited amount of pyridine used, that
is by far not sufficient for dissolution of the polar polyol sub-
strates. Interestingly, reactions with pyridine were found to give
slightly improved yields (within comparable times) on using a
catalytic amount of TBAB (compare in Table 1 entries 6—8 with
entry 9), which may be accounted for by a possible role of the
bromide ion in the activation of the silylating agent as also sug-
gested by literature [38]. Taking into account several parame-
ters such as the used amount of pyridine and TBAB, the reac-
tion yield and its length, we elected conditions of Table 1, entry
8 as the optimized conditions. Notably, the conversion of 1 to 2
under these conditions took a much shorter time than previ-
ously reported by using the same silylating agent [14,15,18].
With optimized conditions in hand, the TBDMS regioselective
installation was tested on a range of saccharide building-blocks,
and good yields were achieved in short times with several
polyols (Table 2, entries 1-3, 5 and 8).

Interestingly, galacto-configured substrates exhibited a pecu-
liar reactivity with the reaction outcome depending on their
anomeric configuration. In accordance with yields obtained by
Lee and Taylor with similar substrates under standard condi-
tions [14], only allyl B-galactoside (6) was silylated in a good

Beilstein J. Org. Chem. 2016, 12, 2748-2756.

yield (Table 2, entry 5), whereas the corresponding a-anomer
was almost quantitatively recovered (Table 2, entry 4). As will
be shown below, partial protection of allyl a-galactoside in
itinere can render this substrate much more reactive towards
these silylation conditions. High-yielding silylation of allyl
B-galactoside (6) required the employment of a higher stoichio-
metric excess of both pyridine and TBDMSCI (Table 2, entry
5), exhibiting an extent of conversion apparently ruled by an

equilibrium-like control.

Among the screened polyols in Table 2, glycals 7 and 8 were
the only substrates to exhibit a lower regioselectivity, the silyla-
tion rate being comparable at the primary (O-6) and the allylic
(0-3) position, to provide a mixture of products (Table 2,
entries 6 and 7). A similar competitive reactivity was very
recently described also with the above mentioned method based
on silyl methallylsulfinates [23]. On the other hand, the method
herein proposed was found compatible with a reducing sugar
such as D-mannose, which was converted in a good yield into
the corresponding 6-O-silylated product 13, isolated after in situ
peracetylation (Table 2, entry 8).

The scope of the TBAB-catalyzed silyl protection under sol-
vent-free conditions was next examined for the regioselective
attachment of TBDPS (Table 2, entries 9-13), a commonly used
silyl protecting group bulkier than TBDMS and more resistant

Table 2: Regioselective silylation of saccharide primary alcohols under solvent-free conditions@.

Entry Substrate Pyridine/silylating agent/ TBAB Time (h) Product, isolated yield
(equivalents)P
HO OH TBDMSO
HO 0} . HO (0]
HO pyridine/TBDMSCI/TBAB HO
! (2.2:1.1:0.1) 5
oMe oo HOOMe
1 2,84%
TBDMSO
- HO (0]
2 pyridine/TBDMSCI/TBAB 15 HO
2.2:1.1:01 :
( ) HO4 e
3 pyridine/TBDMSCI/TBAB 15
(2.2:1.1:0.1) ’
11, 86%
4 pyridine/TBDMSCI/TBAB 15 low conversion

(2.2:1.1:0.1)
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Table 2: Regioselective silylation of saccharide primary alcohols under solvent-free conditions?. (continued)

Org. Chem. 2016, 12, 2748-2756.

HO OH HO OTBDMS
0 pyridine/TBDMSCI/TBAB ]
5 HO&S/OAII (3.02.00.1) 25 HO OAll
HO HO
6 12, 82%
OH
pyridine/TBDMSCI/TBAB .
6 Hﬁé&g (2.2:1.1:0.1) 1.5 complex mixture
7
Ho OH
pyridine/TBDMSCI/TBAB .
7 HO &9 (2.2:1.1:0.1) 15 complex mixture
8
HO— OH TBDMSO— OAc
0 . o
g Hﬁo&*ﬁ pyricine/ TBDMSCI/TBAB ) Aggo&*m
OH (2.2:1.1:0.1) OAC
9 13, 73% (a/p 1:2)
TBDPSO— OH
- HO 0
9 1 pyridine/TBDPSCI/TBAB 3 HO
(2.2:1.1:0.2)
OMe
14, 68%
10 1 pyridine/TBDPSCI/TBAB 3 14, 92%
(3.0:1.1:0.2)
TBDPSO
. HO O
1 3 pyridine/TBDPSCI/TBAB 3 HO
(3.0:1.1:0.2) HO Oy e
15, 84%
TBDPSO
HQOw-
pyridine/TBDPSCI/TBAB
12 4 (3.0:1.1:0.2) 2 HO 0
o
16, 98%
13 7 pyridine/TBDPSCI/TBAB 5 very sluggish
(3.0:1.1:0.2)

aGeneral conditions: polyol substrate, pyridine, silylating agent (TBDMSCI or TBDPSCI), and TBAB at rt. See pertinent entries for stoichiometric
ratios. PWith respect to the polyol substrate. The crude silylation mixture was acetylated in situ (direct addition of pyridine and acetic anhydride), prior

to purification of the product.

to acidic conditions. Optimization on mannoside 1 indicated
that in this case a moderate increase of the pyridine excess (3.0
instead of 2.2 equivalents) is beneficial for the achievement of a
higher yield while maintaining the use of a minimal excess of
the silylating agent (Table 2, entries 9 and 10). As with TBDMS
protection of 6 (Table 2, entry 5), in this case a sort of steady
state was observed when adopting less than three equivalents of

pyridine, with coexistence of the reagent and the product.

The TBDPS selective protection of polyols 3 and 4 proceeded
in high yields (Table 2, entries 11 and 12), and expectedly the
reactions took slightly longer times than for TBDMS protection.

The only disappointing result observed in attempted TPDPS
protections was the poor yield recorded with glucal 7 (Table 2,
entry 13), a surprising outcome which is somehow consistent
with the very slow rate observed for the same reaction under
standard conditions [39,40]. As already observed for the synthe-
sis of 2, the herein described conditions for regioselective
TBDMS and TBDPS protections entail shorter reaction times
than most of the reported protocols in the literature on monosac-
charide polyols [14-18,20,41-53]; comparable silylation rates
were indeed be found in a few examples, often involving rela-
tively less polar thioaryl glycosides as the substrates and DMF
as the solvent [19,54-59]. Having established the scope of
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TBAB-catalyzed mono silylations with a minimal excess of
pyridine, some effort was devoted to ascertain the feasible
exploitation of a similar strategy to either regioselective di-O-
silylations or the protection of secondary alcohols in absence of
primary ones (Table 3).

As a matter of fact, upon doubling the stoichiometric amount of
TBAB, pyridine and TBDMSCI, the regioselective synthesis of
di-O-TBDMS derivatives was achieved at 50 °C in satisfying
yields from glycosides 1 and 3 (Table 3, entries 1 and 2), and
glycal 8 (entry 3).

Double silylation at primary positions of the disaccharide lacto-
side 20 [60] also proved feasible at room temperature within
short times (Table 3, entry 4). Model substrates devoid of a pri-
mary alcohol were also examined; thioethyl rhamnoside 22 (as

Beilstein J. Org. Chem. 2016, 12, 2748-2756.

an anomeric mixture) was 3-O-silylated in a good yield, and the
anomeric composition of the products revealed the higher reac-
tivity of the a-anomer (Table 3, entry 5). The same regioselec-
tivity was also found starting from the corresponding 4-O-
benzoylated precursor 24 [61] (Table 3, entry 6) and a satis-
fying yield and an excellent conversion were observed in spite
of the increased hindrance and deactivation of the O-3 hydroxy
group due to the adjacent electron-withdrawing benzoyl group.
As already described above in Table 1 for mono-silylations, tin
catalysis did not affect the double silylation processes as evi-
denced by the reaction of Table 3, entry 1 that in the presence of
0.1 equiv of BuySnO gave 17 in the same yield within the same
time. Not unexpectedly, secondary alcohols exhibited a recalci-
trant reactivity towards TBDPSCI under these solvent-free
conditions, and the di-O-silylation process resulted in limited
synthetic usefulness (data not shown).

Table 3: Solvent-free regioselective silylations committing secondary alcohols®?.

Entry Substrate
1 1
2 3
3 8
HO_-OH
o)
4 HO = Ho
HOOAII
20
SEt
M
5 ZANS
HOoH
22 (a:B ca. 2.5)
SEt
Me
6 BzO 0
HOOH

24 (a: ca. 2.5)

Time (h) Product, isolated yield

TBDMSO OH
TBDMSO

(e}
O‘g

Me
17, 72%

TBDMSO
HO
45 TBDMSO

i1

HO
18, 60%

O/OTBDMS

OMe

I

[~

TBDMSO —
19, 56%

HO_-OTBDMS OTBDMS
o
e) O
; HO%H/ 25
HOGAII
21, 56%
SEt
M
6 NS
TBDMSOQ
23 (a:B ca. 4), 75%
SEt

Me
6 BzO 0

TBDMSO 3,
25 (a:B ca. 4), 50% (95%)°

aGeneral conditions (entries 1-3): pyridine (5 equiv), TBDMSCI (2.5 equiv), TBAB (0.3 equiv), 50 °C. For entry 4: pyridine (6 equiv), TBDMSCI
(3.5 equiv), TBAB (0.3 equiv), rt. For entries 5 and 6: pyridine (3 equiv), TBDMSCI (1.5 equiv), TBAB (0.15 equiv), 50 °C. PIn parenthesis is indicated

the conversion yield.
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The scope of the solvent-free conditions was further examined
in the synthesis of per-O-trimethylsilylated derivatives
(Scheme 1), widely used precursors in one-pot strategies for or-
thogonal protection of carbohydrates [62-67].

Application of the TBAB-catalyzed protocol on glucoside 3
gave product 26 in high yield within a few minutes (Scheme 1,
reaction 1). The method proved also applicable to glucosamine
hydrochloride, although in this case a higher excess of pyridine
was needed for the conversion to occur (Scheme 1, reaction 2).
Consistent with previous literature reports [68-72], silylation
left unaltered the amino functionality which could be protected
in situ with a Troc group without isolation of 27 [69], as shown

in the one-pot, two-step sequence in Scheme 1, reaction 3.

Owing to the importance of the one-pot functional diversifica-
tion of carbohydrates in modern organic synthesis [62-67,73-
76], the scope of the solvent-free silylation approaches herein
introduced was next extended to the development of fully sol-
vent-free one-pot sequences leading to the sequential alkylation/
silylation of saccharide polyols with high regiocontrol. For this
purpose, we tried to combine the previously reported tin-cata-
lyzed procedure for benzylation/allylation of saccharide second-
ary alcohols [35] with the present protocol for silylation of pri-
mary alcohols. Some experiments were carried out on methyl
mannoside (1) in order to establish which order of steps (alkyl-
ation/silylation or the reverse sequence) might be higher
yielding. Initial experiments indicated that the silylation step
was not apparently effective when performed after the tin-cata-
lyzed 3-O-benzylation of mannoside (1, Table 4, entry 1). A
competitive reaction of residual benzyl bromide from the first
step with pyridine may account for this result. Indeed, on
repeating the experiment suitably increasing the amount of pyri-
dine in the second step (from 2.2 to 5 equivalents), the desired

pyridine (9 equiv),
TMSCI (5 equiv)

TBAB (0.4 equiv),
rt, 5 min

pyridine (15 equiv),

D-glucosamine

TMSCI (5 equiv)
hydrochloride

TBAB (0.4 equiv),
i, 1.5 h

1) as 2 equiv, then
2) TrocCl (1.1 equiv),
50°C,2h

Scheme 1: Multiple O-trimethylsilylations of saccharide compounds.

TMSO
TMSO&O
TrocHN

Beilstein J. Org. Chem. 2016, 12, 2748-2756.

product 29 was obtained in a satisfying 61% yield within a few
hours (Table 4, entry 2). It should be outlined that this result is
especially relevant taking into account that the solvent-free 3-O-
benzylation alone (the first step of the sequence) occurs in a
comparable yield under tin catalysis [35]. The reverse protec-
tion sequence (6-O-silylation/3-O-benzylation) was found to be
less effective in terms of yields, apparently because of the
partial loss of the TBDMS group in the second step where rela-
tively forced thermal conditions are needed (Table 4, entry 3).
This latter one-pot sequence was instead much more rewarding
when the more robust TBDPS group was installed first
(Table 4, entries 5 and 6). Interestingly, this latter group was
satisfyingly stable under the especially forced conditions (a
reaction temperature of 90 °C) required to carry out the tin-
mediated 2-O-benzylation of a gluco-substrate (Table 4, entry
6). In addition, the TBDPS installation also proceeded in satis-
fying yields after a preliminary allylation (Table 4, entry 4) or
benzylation step (Table 4, entry 8).

In the case of glycal 8, the application of a benzylation/silyla-
tion sequence resulted in very good yields with both silylating
agents (Table 4, entries 7 and 8), although the 6-O-silylation
alone had been low yielding in the initial set of experiments
(Table 2, entries 6, 7 and 13). Comparison of these data seems
to indicate that the silylation step is much more effective on less
polar, partially protected polyols. As a further evidence of this
trend, the 3-O-benzylation/6-O-silylation sequence was succes-
fully applied to access a-galactoside 35 (Table 4, entry 9), al-
though, as shown earlier in Table 2, entry 4, direct silylation of
the same precursor was quite unfruitful.

Conclusion
In the first part of this paper we have introduced a very simple
approach to carry out the selective TBDMS or TBDPS protec-

TMSO
TMSO O
TMSO (reaction 1)
TMSOOCH3

26, 97%

TMSO
TMSO o

TMSO
N

27, 84% H2 OTMS

(reaction 2)

(reaction 3)

TMSO

OTMS
28, 82%
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Table 4: One-pot, regioselective protection of sugar polyols with silyl and alkyl groups?.

Entry Substrate First step conditions (equiv) Second step conditions (equiv) Product, isolated yield
1 1 DIPEA (2.5), BuSnO (0.1), TBAB  pyridine (2.2), TBDMSCI (2.0), low silylation yields
(0.3),BnBr (4), 70 °C, 3.5 h rt,3h
2 1 DIPEA (2.5), BuaSnO (0.1), TBAB  pyridine (5.0), TBDMSCI (2.0), OTBDMS
(0.3), BnBr (4), 70 °C, 3.5 h rt,3h OH
HO 0]
BnO
OMe
29, 61%
3 1 pyridine (2.2), TBDMSCI (1.1), DIPEA (3.5), Bu,SnO (0.1), 29, 39%
TBAB (0.3), rt, 1.5 h BnBr (5.5), 70 °C, 4.5 h
4 1 DIPEA (4), BuaSnO (0.1), TBAB pyridine (5.0), TBDPSCI (1.5), OTBDPS
(0.3), AlIBr (8), 90 °C, 3.5 h , h OH
HO 0
AllO
OMe
30, 59%
5 1 pyridine (3.0), TBDPSCI (1.1), DIPEA (2.5), Bu,SnO (0.1), OTBDPS
TBAB (0.3), rt, 3 h BnBr (6), 80 °C, 4 h OH
HO ]
BnO
OMe
31,62%
6 3 pyridine (3.0), TBDPSCI (1.1), DIPEA (2.5), Bu,SnO (0.2), OTBDPS
TBAB (0.3), 1t, 3 h BnBr(7),90°C,4 h <
HO ]
HO
BnOOMe
32,42%
7 8 DIPEA (2.5), BuaSnO (0.1), BnBr  pyridine (3.5), TBDMSCI (2.0), TBDMSO
(2), TBAB (0.3) 70 °C, 2.5 h TBAB (0.3), rt, 1 h HO
BnO 0
33, 69%
8 8 DIPEA (2.5), BuaSnO (0.1), BnBr  pyridine (3.5), TBDPSCI (1.5), TBDPSO
(2), TBAB (0.3),70°C,2.5h rt,2.5h HO
BnO Q
34, 75%
9 5 DIPEA (2.5), BuSnO (0.1), BnBr  pyridine (6), TBDMSCI (2), rt, OTBDMS
(4), TBAB (0.3), 70 °C, 2 h 15h HO
Bno =2
HO
OAlI
35,57%

aGeneral conditions: upon completion of the first step (see times in pertinent entries), the temperature was modified according to conditions of the

second step, and the requisite reagents added.

tion of carbohydrate polyols taking advantage of reactions per-

formed in the presence of a very limited amount of pyridine

(3 equivalents or less for the hydroxy group to be protected).

The method can indeed be regarded as a solvent-free approach
because of the limited stoichiometric amount of the base that is

not sufficient to dissolve the highly polar saccharide substrates.

Under these conditions, a catalytic role played by TBAB was
also evidenced. Besides the limited amount of the used base, the

proposed method is endowed with further practical advantages
such as the experimental ease (all reaction herein reported were
conducted in air by simply mixing the reagents), and high reac-
tion rates, often comparing favourably with literature examples,
in spite of the poor solubility of the starting substrates in the
reaction medium. The scope of the silylation approach was also
extended to secondary alcohols and to the per-O-trimethylsily-
lation of saccharides.
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In the second part of the paper, we have explored the feasible
combination of the silylation methodology here introduced with
a previously developed tin-catalyzed methodology for regiose-
lective alkyl protection of carbohydrates. The merging of both
methods led to unprecedented one-pot and fully solvent-free
synthetic sequences, providing a straightforward and experi-
mentally simple access to saccharide building-blocks orthogo-
nally protected with a silyl at the primary position and a benzyl
(or an allyl) group at well defined and predicatable secondary
positions.

Supporting Information

Supporting Information File 1
Experimental and analytical data.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-12-271-S1.pdf]
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