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Background. The current study is aimed at identifying the cross-talk genes between periodontitis (PD) and rheumatoid arthritis
(RA), as well as the potential relationship between cross-talk genes and pyroptosis-related genes. Methods. Datasets for the PD
(GSE106090, GSE10334, GSE16134) and RA (GSE55235, GSE55457, GSE77298, and GSE1919) were downloaded from the
GEO database. After batch correction and normalization of datasets, differential expression analysis was performed to identify
the differentially expressed genes (DEGs). The cross-talk genes linking PD and RA were obtained by overlapping the DEGs
dysregulated in PD and DEGs dysregulated in RA. Genes involved in pyroptosis were summarized by reviewing literatures,
and the correlation between pyroptosis genes and cross-talk genes was investigated by Pearson correlation coeflicient.
Furthermore, the weighted gene coexpression network analysis (WGCNA) was carried out to identify the significant modules
which contained both cross-talk genes and pyroptosis genes in both PD data and RA data. Thus, the core cross-talk genes were
identified from the significant modules. Receiver-operating characteristic (ROC) curve analysis was performed to identify the
predictive accuracy of these core cross-talk genes in diagnosing PD and RA. Based on the core cross-talk genes, the
experimentally validated protein-protein interaction (PPI) and gene-pathway network were constructed. Results. A total of 40
cross-talk genes were obtained. Most of the pyroptosis genes were not differentially expressed in disease and normal samples.
By selecting the modules containing both cross-talk genes or pyroptosis genes, the blue module was identified to be significant
module. Three genes, i.e., cross-talk genes (TIMP1, LGALS1) and pyroptosis gene-GPX4, existed in the blue module of PD
network, while two genes (i.e., cross-talk gene-VOPPI1 and pyroptosis gene-AIM2) existed in the blue module of RA network.
ROC curve analysis showed that three genes (TIMP1, VOPP1, and AIM2) had better predictive accuracy in diagnosing disease
compared with the other two genes (LGALS1 and GPX4). Conclusions. This study revealed shared mechanisms between RA
and PD based on cross-talk and pyroptosis genes, supporting the relationship between the two diseases. Thereby, five modular
genes (TIMP1, LGALS1, GPX4, VOPPI, and AIM2) could be of relevance and might serve as potential biomarkers. These
findings are a basis for future research in the field.

1. Introduction

The relationship between rheumatoid arthritis (RA) and
periodontitis (PD) was extensively examined during recent
years; a systematic review and meta-analysis revealed that
patients with RA had a 1.69-fold increased risk of PD,

albeit a certain heterogeneity is given across studies [1].
Altogether, it is meanwhile well-established that RA and
PD are similar diseases, whereby main similarities are a
chronic inflammatory character driven by proinflamma-
tory cytokines and leading to destruction of hard and soft
tissues, combined with shared risk factors, e.g., smoking
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FIGURE 1: The work flowchart of the current study.
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and ageing [2]. While the primary biological correlation
between these two diseases is founded on three mecha-
nisms, ie., genetic susceptibility, microbial status, and
(auto-)inflammatory response, the detailed mechanisms are
still not fully understood [3].

Especially, the transfer of findings originating from ani-
mal models into clinical context appears limited; thereby,
the respective validation in patient cohorts is often difficult.
To outline one example, the citrullination of autoantibodies
by Porphyromonas gingivalis, a potentially pathogenic,
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TaBLE 1: The information of included datasets.
Disease Series Sample type Experimental type Platform Case Control
GSE55235 Synovial tissue Microarray GPL96 10 10
GSE55457 Synovial tissue Microarra GPL96 13 10
Rheumatoid arthritis 4 R ) Y
GSE77298 Synovial biopsies Microarray GPL570 16
GSE1919 Synovial tissue Microarray GPL91 5
GSE16134 Gingival tissue Microarray GPL570 241 69
Periodontitis GSE10334 Gingival tissue Microarray GPL570 183 64
GSE106090 Gingival tissue Microarray GPL21827 6 6

gram-negative anaerobic bacterium, has been repeatedly
proven in an animal model [4]. However, large clinical
cohort studies were not able to confirm these findings
completely, showing contradictory results [4-6]. Due to
the variety of potential interactive pathways between PD
and RA, the heterogeneity across different studies and the
incomplete knowledge on the role of proinflammatory
cytokines, more research is needed to gain a deeper under-
standing of the link between these two diseases [4, 7]. In
this context, the inflammasome and pyroptosis could be a
promising new approach; pyroptosis is a proinflammatory
form of cell death, which is characterized by membrane
pore formation, rapid swelling, and lysis of respective cells,
alongside with an emerging release of proinflammatory
mediators [8, 9]. Aside of apoptosis and necroptosis, pyrop-
tosis is one out of the three most well-understood modali-
ties of cell death. Moreover, it plays an important role in
autoimmunity [10]. Accordingly, it is not surprising that
pyroptosis is of relevance in RA pathogenesis, especially
due to the link with plasma membrane destruction and
release of proinflammatory mediators [11]. Thereby, cell
death has been developed into a field of growing interest
in autoimmunity, including understanding of pathogenesis
as well as finding appropriate therapeutic targets [12]. Up
until now, no examination of pyroptosis in the interrela-
tionship between PD and RA has been performed.
Therefore, this current study is aimed at evaluating
cross-talk genes between PD and RA and their potential
relationship with pyroptosis-related genes to reveal their
potential role in the interrelationship between these two
diseases. For this, bioinformatics analysis was applied to
allow the generation of respective hypothesis as a basis
for future clinical research in the field. The analysis
included assessment of overlapping genes dysregulated in
PD and RA, which are hypothesized to be key players in
the interrelationship between these two diseases. Moreover,
a potential correlation between pyroptosis-related genes
and the identified cross-talk genes should be examined to
identify the role of pyroptosis in the interplay between
PD and RA. Due to the identification of biological pro-
cesses and pathways in this interrelationship, a deeper
understanding of the shared genetic mechanisms between
PD and RA should be gained. The general hypothesis of
this current study was that there would be a couple of
pyroptosis-related genes, which are related to the genetic
cross-talk between PD and RA on transcriptomic level.

2. Material and Methods

2.1. The Work Flowchart of the Current Research. Figure 1
illustrated the study design of the current research. As
shown in Figure 1, the bioinformatics analysis consisted of
three steps. Firstly, identification of cross-talk genes linking
PD and RA, which were obtained by overlapping the DEGs
dysregulated in PD and DEGs dysregulated in RA. Secondly,
genes involved in pyroptosis were summarized by reviewing
literatures, and the correlation between pyroptosis genes and
cross-talk genes was investigated by using correlation heat-
map. Furthermore, the weighted gene coexpression network
analysis (WGCNA) was carried out to identify the signifi-
cant modules which contained both cross-talk genes and
pyroptosis genes in both PD data and RA data. Thus, the
core cross-talk genes were identified from the significant
modules.

2.2. Data Procurement and Preprocessing. Sample-matched
whole-genome gene expression datasets from periodontitis
were sourced and downloaded from the Gene Expression
Omnibus (GEO) [13] in National Center for Biotechnology
Information (NCBI) [14]. The eligibility criteria for these
datasets were as follows: datasets that included established
periodontitis samples as the experimental group and healthy
gingival samples as the control group, where periodontitis
was defined based in accordance with the case-definition
presented in the 2017 world workshop on the classification
of periodontal and peri-implant diseases and conditions:
(1) interdental CAL detectable at >2 nonadjacent teeth or
(2) buccal or oral CAL >3 mm with pocketing >3 mm detect-
able at >2 teeth [15]. Based on such inclusion criterion, three
periodontitis-related ~ datasets (i.e, GSE106090 [16],
GSE10334 [17], and GSE16134 [18, 19]) were included in
the current analysis.

Regarding rheumatoid arthritis (RA), the datasets with
the established study design of comparing the genetic
expression alteration of the synovial tissue between RA
patients and non-RA subjects were included; thus, four data-
sets (ie., GSE55235 [20], GSE55457 [20], GSE77298 [21],
and GSE1919 [22]) were assessed from the GEO database.
The experimental type of all included datasets for both dis-
eases was consistent: all datasets were microarray datasets.
The probe IDs in the datasets were converted into gene sym-
bol by comparing the information in the relevant experi-
mental platform with the Homo sapiens (human) genome



assembly GRCh37 (hgl9). The detailed information (e.g.,
sample types, experimental type, experimental platform, as
well as the number of case and control samples) of each
included GEO dataset is shown in Table 1. The detailed
clinical sample information of each dataset is shown in the
supplementary material Table S1.

2.3. Batch Correction and Normalization of PD and RA Data.
Based on the information of the datasets (Table 1), the inter-
section genes between datasets of each type of disease were
obtained. In other words, regarding PD, the overlapping
between genes examined in GSE106090, GSE10334, and
GSE16134 datasets was obtained, and regarding RA, the over-
lapping between genes examined in GSE55235, GSE55457,
GSE77298, and GSE1919 was obtained. The expression pro-
files of these intersection genes in each dataset were obtained,
respectively. Afterward, all samples for each type of disease
were combined based on the expression profiles of the inter-
section genes in each dataset.

In order to reduce the deviation caused by the merging
process of combining different batches of samples, the
ComBat method in the sva package (version 3.13) of R
program (version 3.6.3) was used to perform batch correc-
tion of merged data [23]. Since the expression value of RA
samples were comparatively larger than that of PD sam-
ples, the expression profile of RA data was firstly corrected
and then normalized by using scale() function of R pro-
gram (version 3.6.3).

2.4. Differential Expression Analysis. After batching correc-
tion, the differential expression analysis (DEA) was per-
formed on the corrected PD and RA data by using limma
package (version 3.9) of R program (version 3.6.3) [24].
The genes with P value < 0.05 and [logFC|>=0.5 were
defined as differentially expressed genes (DEGs). By per-
forming DEA analysis, DEGs which were dysregulated in
RA and PD (i.e., RA-DEGs and PD-DEGs) were identified,
respectively. The expression pattern of DEGs identified in
RA and PD was depicted in the volcano plot by using the
ggplot2 package (version 3.3.5) of R program (version 3.6.3).

2.5. Cross-Talk Genes Linking PD and RA. The evaluation of
cross-talk genes was a major aim of this current study.
Thereby, cross-talk genes were defined as genes, which were
jointly dysregulated in both RA and PD. Those genes are
supposed to be key players in the interrelation between PD
and RA by regulating biological processes or pathways,
which are important for RA patients to develop more severe
PD (and vice versa). After identifying the DEGs in PD and
RA, respectively, the intersection between RA-DEGs and
PD-DEGs were obtained. Such intersection genes were not
only differentially expressed in RA but also differentially
expressed in PD; thus, these genes were regarded as cross-
talk genes linking PD and RA. The expression patterns of
the cross-talk genes in diseased and healthy control samples
of PD and RA were visualized by heatmap, using ggplot2
package (version 3.3.5) of R program (version 3.6.3). The
functional enrichment analysis was performed to identify
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TABLE 2: Pyroptosis-related genes from literature.

Genes Full-names

AIM2 Absent in melanoma 2

CASP1 Cysteine-aspartic acid protease-1

CASP3 Cysteine-aspartic acid protease-3

CASP4 Cysteine-aspartic acid protease-4

CASP5 Cysteine-aspartic acid protease-5

CASP6 Cysteine-aspartic acid protease-6

CASP8 Cysteine-aspartic acid protease-8

CASP9 Cysteine-aspartic acid protease-9

ELANE Elastase, neutrophil expressed

GPX4 Glutathione peroxidase 4

GSDMA Gasdermin A

GSDMB Gasdermin B

GSDMC Gasdermin C

GSDMD Gasdermin D

GSDME Gasdermin E

IL18 Interleukin 18

IL1B Interleukin 1 beta

IL6 Interleukin 6

NLRC4 NLR family CARD domain containing 4

NLRP1 NLR family pyrin domain containing 1

NLRP2 NLR family pyrin domain containing 2

NLRP3 NLR family pyrin domain containing 3

NLRP6 NLR family pyrin domain containing 6

NLRP7 NLR family pyrin domain containing 7

NODI Nucleotide binding o¥ig‘omerization domain
containing 1

NOD2 Nucleotide bindcii)lrgltziiri?l;l;rization domain

PJVK Pejvakin/deafness, autosomal recessive 59

PLCGl1 Phospholipase C gamma 1

PRKACA Protein kinase cAMP-activated catalytic subunit alpha

PYCARD PYD and CARD domain containing
SCAF11 SR-related CTD-associated factor 11
TIRAP TIR domain containing adaptor protein
TNF Tumor necrosis factor

the biological functions of cross-talk genes, especially from
the aspect of biological processes and signaling pathway.

2.6. Correlation between Cross-Talk Genes and Pyroptosis-
Related Genes. In order to investigate the role of pyroptosis
in regulating the linkage between PD and RA, the correla-
tion between cross-talk genes and pyroptosis-related genes
was analyzed. A total of 33 pyroptosis-related genes
(Table 2) were obtained by reviewing previous literature
regarding pyroptosis [25-28].

The expression values of pyroptosis-related genes and
cross-talk genes in case and control samples of PD and RA
were obtained, respectively. The case samples of PD were
gingival tissue of periodontitis patients, while the control
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FIGURE 2: (a, b) PCA analysis results of PD batch before and after correction; (¢, d) PCA analysis results of RA batch before and after

correction.

samples of PD data were gingival tissue of periodontal
healthy subjects. The case samples of RA data were synovial
tissue from osteoarthritic joint, while the control samples of
RA data were synovial tissue from healthy joint. Subse-
quently, the correlation between pyroptosis genes and
cross-talk genes in different types of samples was analyzed
by performing the Pearson correlation method. The Pearson
correlation coeflicient () values were calculated by using the

“corrplot” package (version 0.90) [29] of R program (version
3.6.3).

2.7. The Functional Relationship between Cross-Talk Genes
and Pyroptosis Genes. The functional relationship between
cross-talk genes and pyroptosis-related genes was evaluated.
The human KEGG pathways and pathway-gene datasets
were obtained from the KEGG database (https://www.kegg
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jp/) [30]. The common pathways regulated by both cross-
talk genes and pyroptosis-related genes were obtained from
pathway-gene datasets. Such pathways were the key path-
ways by which the cross-talk genes and pyroptosis-related
genes act together. The gene-pathway network consisted of
the cross-talk genes, and pyroptosis genes were visualized
by using Cytoscape software (version 3.9.0) [31].

2.8. Weighted Gene Coexpression Network Analysis. The
weighted gene coexpression network analysis (WGCNA)
was performed to identify the significant modules that con-
tain both cross-talk genes and pyroptosis-related genes.
The gene coexpression networks were constructed based
on case samples of PD and RA data, respectively. Firstly,
the expression values of all genes in the PD and RA datasets
were obtained, respectively. Afterward, the “wgcna” package
(version: 1.70-3) [32] of R program (version 3.6.3) was used
to screen the coexpressed modules, respectively, belonging
to PD and RA data. The coexpression network was con-
structed, and coexpression gene modules were further iden-
tified. The methodology of WGCNA analysis followed the
flowchart described by Langfelder and Horvath [33].
Briefly, WGCNA analysis follows several steps as below:
firstly, an unsupervised coexpression relationship was ini-
tially built based on the adjacency matrix of connection
strengths by using Pearson’s correlation coefficients for gene
pairs. The power f3 was calculated, using the “pickSoftThres-
hold” function. The arguments (corFnc=“bicor,” corOp-
tions=list (maxPOutliers=0.1), network type="“signed,”
power=“f") were chosen to meet the need of scale-free
topology property of the coexpression network. Based on
the scale-free topology criterion, the optimum power 3 was

TABLE 3: Statistics of the number of differentially expressed genes.

Disease Up-DEG Down-DEG Total-DEG
PD 584 457 1041
RA 109 75 184

selected to amplify the strong connections between genes
and penalize the weaker connections. Furthermore, the
hybrid dynamic tree cutting method was used to cut
branches and cluster coexpression modules in the PD and
RA data.

Many modules that contained either cross-talk genes or
pyroptosis genes in PD and RA were selected, among which
the distribution of cross-talk genes or pyroptosis-related genes
was analyzed. The modules containing both cross-talk genes
and pyroptosis-related genes were identified and regarded as
significant module. The cross-talk genes in the significant
modules were considered as core cross-talk genes. In addition,
in order to further analyze the functions of significant modules
of PD and RA, the functional enrichment analysis of signifi-
cant module genes was performed by using “clusterProfiler”
package (version 3.14) of R program (version 3.6.3) [34].
The enriched functional terms (i.e., GO-BP and KEGG path-
way) with P value < 0.05 were considered as significant.

2.9. Deep Investigation of Core Cross-Talk Genes. The core
cross-talk genes identified in the last step were deeply inves-
tigated from three aspects: the correlation between the core
cross-talk genes and pyroptosis gens in the significant mod-
ules; the expression patterns of core cross-talk genes in case
and control healthy samples of PD and RA; and the
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FIGURE 4: Top 25 significant functions regulated by cross-talk genes. (a) Top 25 biological processes; (b) top 25 KEGG pathway.

diagnostic accuracy of cross-talk genes by carrying out
receiver-operating characteristics (ROC) analysis.

Pearson correlation analysis was performed for the genes
obtained in the PD module using the PD disease sample
dataset and in the RA module using the RA disease sample
dataset. Afterwards, the “ggpubr” package (version: 0.4.0.)
of R program (version 3.6.3) was applied to use boxplot to
display the expression patterns of core cross-talk genes and
pyroptosis-related genes in PD and RA. The Kruskal-
Wallis-test was used to analyze the expression values of each
gene in disease and control samples. The smaller the P value
of the result, the greater the difference between case and con-
trol samples, and the more “*” is depicted in the boxplots.
ROC analysis for the core cross-talk genes was performed
to check the diagnostic accuracy of core cross-talk genes at
the expression level.

2.10. PPI Network Consisted of Core Cross-Talk Genes and
Pyroptosis-Related Genes. Based on the gene expression pro-
files of case samples in PD and RA data, the GENIE3 pack-
age (version 3.13) [35] of R program (version 3.6.3) was used

to predict the relationship between all genes in the signifi-
cant modules of PD and RA, as well as cross-talk genes
and pyroptosis-related genes. Afterward, the predicted
results were ranked by the descending order of the weight
value, among which the relationship pairs with the top
10% weight were selected and used as the interaction pairs
for constructing the subsequent protein-protein interaction
(PPI) network.

The experimentally validated PPIs were obtained from
eight databases: HPRD (http://www.hprd.org/index_html),
BIOGRID (http://thebiogrid.org/), DIP (http://dip.doe-mbi
.ucla.edu/dip/Main.cgi), MINT (http://mint.bio.uniroma2
.it/mint/Welcome.do), menthe (http://mentha.uniroma2.it/
index.php), PINA (http://cbg.garvan.unsw.edu.au/pina/),
InnateDB (http://www.innatedb.com/), and Instruct (http://
instruct.yulab.org/index.html). The core cross-talk genes
and pyroptosis-related genes in the significant modules of
PD and RA were extracted, and these gene-related PPIs were
obtained from the eight databases above mentioned. The
PPIs obtained from these eight databases and the PPIs
obtained by GENIE3 package (version 3.13) were merged
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FIGURE 5: Expression and correlation of pyroptosis-related genes in PD and RA. (a) Heatmap of pyroptosis-related gene expression in PD;
(b) heatmap of the expression of pyroptosis-related genes in RA; (c) correlation between cross-talk genes and pyroptosis-related genes in PD
samples; (d) correlation between cross-talk genes and pyroptosis-related genes in RA samples.
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FIGURE 7: Module screening of cross-talk genes and pyroptosis-related genes. (a, b) WGCNA network module built by PD and RA; (c, d)
gene distribution of WGCNA network modules constructed by PD and RA.

together and eventually used as the PPIs used for construct-
ing the significant module-related PPI network. The PPI net-
work was visualized by Cytoscape software (version 3.9.0).

2.11. The Relationship between Module Genes and KEGG
Pathway. The gene sets of the human KEGG pathway and
experimentally validated gene sets of PPI interaction pairs
were obtained. These two gene sets were used to observe
potential relationships between five important genes
(TIMPI1, LGALSI1, GPX4, VOPP1, and AIM2) and KEGG
pathways, based on the gene sets of human KEGG pathways,
the pathways in which significant module genes were
obtained. After identifying the specific KEGG pathways, all
genes that were involved in these pathways were obtained.
The relationship between cross-talk genes, KEGG pathways,
and pyroptosis-related genes was investigated. Based on the
experimentally validated PPI pairs, the respective targets of
all genes in each specific pathway in the dataset were
obtained. Afterward, if the module genes existed in the tar-
gets needs to be checked, the relationship between cross-
talk genes, pyroptosis-related genes, and KEGG pathways
was shown in table and network.

3. Results

3.1. Preprocessed Data for the Subsequent Analysis. After
batch correction and normalization of data, a set of PD
data and a set of RA data were obtained. The set of PD
data contained three datasets (GSE106090, GSE10334,
and GSE16134) and consisted of a total of 430 case sam-
ples and 139 control samples. The set of RA data con-
tained four datasets (GSE55235, GSE55457, GSE77298,

and GSE1919) and consisted of 44 case samples and 32
control samples. Differences among samples were signifi-
cantly reduced after batch correction (Figures 2(a)-2(d)).

3.2. Identification of DEGs Dysregulated in Both Diseases.
The genes with the threshold of P value < 0.05 and [logFC | >
=0.5 were defined as differential expressed genes (DEGs).
The expression pattern of DEGs in both diseases is depicted
by using volcano plot (Figures 3(a) and 3(b)). The number of
upregulated, downregulated, and the total DEGs is shown in
Table 3.

3.3. Identification of Cross-Talk Genes. By obtaining the
intersection of DEGs dysregulated between PD and RA,
a total of 40 cross-talk genes were obtained. The expres-
sion values of these 40 cross-talk genes in the both sets
of PD data and RA data was extracted. The heatmap
was therefore plotted to display the expression pattern of
40 cross-talk genes in different samples including RA
patients’ synovial samples, non-RA subjects’ healthy syno-
vial samples, PD patients’ inflamed gingival samples, and
periodontally healthy subjects’ noninflamed healthy gingi-
val samples (Figure 3(c)). Figures 4(a) and 4(b) show the
functional terms enriched by the cross-talk genes especially
in terms of the biological processes and KEGG signaling
pathways. Figure 4(a) shows that cross-talk genes were
mainly enriched in several biological processes, for exam-
ple, neutrophil activation, extracellular matrix disassembly,
and antigen processing and presentation of peptide anti-
gen. Figure 4(b) shows that cross-talk genes were mainly
enriched in several biological processes, for example,
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apoptosis, lysosome, IL-17 signaling pathway, osteoclast
differentiation, and phagosome.

3.4. Correlation between Cross-Talk Genes and Pyroptosis-
Related Genes. The expression patterns of 33 pyroptosis-
related genes in the sets of PD and RA data were depicted
in heatmap (Figures 5(a) and 5(b)). Figures 5(a) and 5(b)
showed that majority of the pyroptosis-related genes were
not differentially expressed between case and healthy sam-
ples, no matter in either PD or RA data. The pyroptosis-
related genes (e.g., IL6, AIM2, IL1BIL6, and IL18) were
differentially expressed between case and healthy control
samples of PD disease, while none of pyroptosis-related
genes was differentially expressed between the case and
healthy control samples of RA disease. In addition, the
gene expression values of pyroptosis-related genes and
cross-talk genes in disease samples of PD and RA were
obtained, respectively. Therefore, the correlation between
33 pyroptosis-related genes and 40 cross-talk genes were
analyzed by Pearson correlation coeflicient (Figures 5(c)
and 5(d)).

3.5. Identification of Common Pathways Involved by Both
Cross-Talk Genes and Pyroptosis-Related Genes. The human
KEGG pathways were obtained from the KEGG database
(https://www.kegg.jp/) to identify the pathways in which
cross-talk genes interact with pyroptosis-related genes.
Cytoscape software was used to construct the pathway-
gene network consisted of cross-talk genes and pyroptosis-
related genes as well as 77 KEGG pathways (Figure 6). It can
be observed from Figure 6 that IL6 and FOSB commonly reg-
ulated the IL-17 signaling pathway; CASP1 and HLA-DMB
commonly regulated the pathway of Influenza A; three
cross-talk genes (FOS, CD14, and CSFIR) together with
pyroptosis-related genes (TNF, PRKACA, IL1B, and CASP3)
commonly affected the MAPK signaling pathway; CD14 and
pyroptosis genes (PLCGI, IL1B, TNF, and TIRAP) commonly
regulated the NF-kappa B signaling pathway.

3.6. Modules Screened for Cross-Talk Genes and Pyroptosis-
Related Genes. In WGCNA network, the 3 value closest to
the scale-free network was 14 for PD and 5 for RA. After
selecting the f3 value as the network construction parameter,
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FiGure 9: Correlation and predictive analysis of cross-talk genes and pyroptosis-related genes in significant modules of PD and RA. (a)
Correlation between LGALS1 and GPX4 in PD samples; (b) correlation between TIMP1 and GPX4 in PD samples; (c) correlation
between VOPP1 and AIM2 in RA disease samples. (d) Expression of TIMP1, LGALS1, GPX4, VOPPI, and AIM2 in PD samples and

normal samples. (e) Expression of TIMP1, LGALS1, GPX4, VOPPI, and AIM2 in RA and normal samples. P values and “*”
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corresponding relation is P> 0.05ns, *P < =0.05, P < ** said = 0.01, P < =0.001, *** said"***P < =0.0001.

a weighted coexpression network model was established to
classify the genes and divide them into several modules. At
least 30 genes in each module were set; otherwise, similar gene
modules were merged. Module mining was carried out by
using WGCNA’s cutreeStaticColor method. The coexpression
network constructed by PD samples had 15 modules
(parameter cutHeight = 0.98, minSize =30) (Figure 7(a)).
The network constructed by RA samples had 13 modules
(parameters cutHeight = 0.95, minSize = 30) (Figure 7(b)).
The modules that may contain cross-talk genes or
pyroptosis-related genes in PD and RA were selected to
observe the distribution of cross-talk genes or pyroptosis-
related genes in the modules (Figures 7(c) and 7(d)). Both
cross-talk genes and pyroptosis-related genes only appear
in the blue module of PD and RA, respectively; however,
the other modules contained either cross-talk genes or
pyroptosis-related genes. Based on this reason, blue module
was regarded as the significant module. The functional terms
enriched by the blue module genes in PD and RA were,
respectively, shown in Figures 8(a)-8(d). Figure 8(a) shows
that blue module genes were significantly enriched in several
biological processes involved in PD, for example, protein
localization to endoplasmic reticulum, protein targeting to
ER, and nucleoside triphosphate metabolic process.
Figure 8(b) shows that blue module genes were significantly
enriched in several KEGG pathways involved in PD, for
instance, HIF-1 signaling pathway, ribosome, biosynthesis
of amino acids, spliceosome, proteasome, and oxidative
phosphorylation. Figure 8(c) shows that blue module genes
were significantly enriched in several biological processes,
for example, leukocyte proliferation, T cell receptor signaling
pathway, antigen receptor-mediated signaling pathway, and
immune-response-regulating cell surface receptor signaling
pathway. Figure 8(d) shows that blue module genes were
significantly enriched in several KEGG pathways, for exam-
ple, PD-L1 expression and PD-1 checkpoint pathway, NF-

kappa B signaling, B cell receptor signaling, cytokine-
cytokine receptor pathway, and natural killer cell-mediated
cytotoxicity.

3.7. Identification of Core Cross-Talk Genes from the
Significant Modules. The blue module was significant in
PD and RA networks, respectively. Thus, the cross-talk genes
and pyroptosis-related genes in the module were extracted;
thereby, three genes, i.e, TIMP1, LGALS], and GPX4
(pyroptosis), were in the blue module of PD network, while
two genes, i.e., VOPP1 and AIM2 (pyroptosis), were in the
blue module of RA. Thus, three core cross-talk genes
(TIMP1, LGALSI, and VOPP1) were identified. Five genes
(TIMP1, LGALS1, GPX4, VOPP1, and AIM2) including
three core cross-talk genes and two pyroptosis genes were
included for the subsequent analyses.

Figures 9(a)-9(c) show the correlation between these
three cross-talk genes and the pyroptosis genes in the blue
significant module. Figure 9(a) shows that the correlation
between the core cross-talk gene-LGALS1 and pyroptosis
gene-GPX4 was strong (R=0.74>0.7, P<22e-16).
Figure 9(b) shows that the correlation between the core
cross-talk gene-TIMP1 and pyroptosis gene-GPX4 was
strong (R=0.76, P <2.2e — 16). Figure 9(c) shows that the
correlation between the core cross-talk gene-VOPP1 and
pyroptosis gene-AIM2 was strong (R=0.72, P =2.6e — 08).

Figures 9(d) and 9(e) show the expression patterns of
five important genes (IMP1, LGALS1, GPX4, VOPPI1, and
AIM2) in PD and RA. Figure 9(d) shows that all these five
genes were significantly upregulated in case samples of PD
compared with control healthy samples. Figure 9(e) shows
that among five important genes, three genes (AIM2,
TIMP1, and VOPP1) were significantly upregulated in case
samples of RA, while the other two genes (GPX4 and
LGALSI) were not found to be dysregulated in RA.
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AIM2 in RA.

Figure 10 used ROC curves to show the diagnostic accu-
racy of the 5 important genes in PD and RA, respectively.
The results showed that three genes (TIMP1, VOPP1, and
AIM?2) had higher diagnostic accuracy on predicting a spe-
cific disease, while the other two genes (LGALS1 and

GPX4) showed lower diagnostic accuracy on predicting a
specific disease.

3.8. Construction of PPI Network of Significant Module.
Based on the expression profile of case samples of PD and
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RA, the GENIE3 package (version 3.13) of R program (ver-
sion 3.6.3) was used to predict the weighted relationships
between all genes and TIMP1, LGALSI, and GPX4 in the
blue module of PD. Meanwhile, all genes in the blue module
of RA and the weighted relationships of VOPP1 and AIM2
were predicted in the same manner. Then, PPI relationship
pairs related to these five genes (TIMP1, LGALS1, GPX4,
VOPP1, and AIM2) were screened from the experimentally
validated relationship pairs dataset, and thus, PPI network
was constructed and shown in Figure 10. Observed from
Figure 11, the interaction pairs (TIMP1-GPX4, LGALSI-
GPX4, and VOPP1-AIM2) had higher weight. And also,
any two genes among these five important genes can interact
with each other by other genes in the PPI network.

3.9. The Network Showing the Relationship between Five
Important Genes and KEGG Pathways. Figure 12 used table
and network to show the relationship between five impor-
tant genes and KEGG pathways. Observed from Figure 12,
the pyroptosis gene-GPX4 and cross-talk gene-LGALSI
commonly regulated the metabolic pathway. The cross-talk
gene-LGALSI can indirectly regulate ferroptosis by interact-
ing with PCBP2. The cross-talk gene-TIMP1 was involved in
the regulation process of HIF-1 signaling pathway. The
cross-talk gene-TIMP1 was able to indirectly influence the
metabolic pathway by interacting with TH gene. VOPPI

was found to indirectly affect the metabolic pathways by
interacting with metabolic pathway-involved genes (e.g.,
SMPD3, GLYAT, and HMOX2). The pyroptosis-related
gene-AIM2 was found to mainly regulate two pathways:
cytosolic DNA-sensing pathway and NOD-like receptor
signaling pathway. GPX4 was found to indirectly influence
AIM2-regulated pathways based on the interaction between
GPX4 and JUN, as well as the interaction between JUN and
AIM2. AIM2 was found to indirectly regulate the HIF-1
signaling pathway by interacting with CAMK2D gene. The
cross-talk gene-TIMP1 was found to be able to regulate the
HIF-1 signaling pathway.

4. Discussion

A total of five modular genes, i.e., TIMP1, LGALS1, GPX4
(PD network), VOPP1, and AIM2 (RA network) were
revealed, of which TIMP1, VOPPI, and AIM2 had the high-
est predictive effect. These cross-talk or pyroptosis-related
genes were found to be involved in the HIF-1 signaling path-
way, ferroptosis, metabolic pathways, NOD-like receptor
signaling pathway, and cytosolic DNA-sensing pathway.
Based on the high variety of results in this current analysis,
the discussion will focus on these main findings.

In general, PD and RA are closely related to each other,
which has been repeatedly examined during the past years. A
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Cross or pyroptosis | Pathway

Pathway other gene | Pathway_other_gene_Target (cross or pyroptosis)

NOD-like receptor signaling pathway

JUN

NOD-like receptor signaling pathway

MAPKI13

NOD-like receptor signaling pathway

VDACI1

NOD-like receptor signaling pathway

VDAC2

NOD-like receptor signaling pathway

CASP1

NOD-like receptor signaling pathway

JUN

NOD-like receptor signaling pathwa

PYCARD

AKRI1B1

Metabolic pathways

Metabolic pathways

ALDOA

Metabolic pathways

ALDOC

Metabolic pathways

DUT

Metabolic pathways

ENO1

Metabolic pathways

ENO2

Metabolic pathways

ENO3

Metabolic pathways

HSD17B10

Metabolic pathways

IMPA2

Metabolic pathways

ME1

Metabolic pathways

PGAM4

Metabolic pathways

PRDX6

Metabolic pathways

TKT

Metabolic pathways

ALDH3A2

HIF-1 signaling pathway

ALDOA

HIF-1 signaling pathway

EGFR

HIF-1 signaling pathwa

Ferroptosis

FLT1

Cytosolic DNA-sensing pathway

Cytosolic DNA-sensing pathway

CASP1

Cytosolic DNA-sensing pathway

PYCARD

(a)

FiGure 12: Continued.
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FIGURE 12: Relationships among TIMP1, LGALS1, GPX4, VOPPI, and AIM?2 in related pathways. (a) Table of the relationship between
cross-talk genes, pyroptosis-related genes, and pathways. (b) Diagram of the relationship between cross-talk genes, pyroptosis-related
genes, and pathways. The background color of (a) is consistent with the color of the lines in (b). The gray line connects the relationship
between cross-talk genes or pyroptosis-related genes of the same type. The other color lines connect the relationship between cross-talk

genes and pyroptosis-related genes.

recent meta-analysis revealed that patients with PD have a
69% greater risk of having RA than healthy controls [1].
Accordingly, different biologic mechanisms were found to
be involved in the complex interrelationship between the
two diseases [36]. The most popular and relevant link
appears to be within dysbiosis of the oral microbiome; a
recent study found that anti-CCP-positive patients show a
dysciotic subgingival microbiome [37]. In this context,
Porphyromonas gingivalis was found to be a key player by
causing an immunological imbalance, which promotes RA
development and severity [38]. However, the complexity of
RA pathogenesis and, especially, the variety of antirheumatic
medications affect the periodontal outcome [39]. Accord-
ingly, the identification of potential cross-talk genes appears
reasonable to gain a deeper understanding of the interplay
between the two diseases. Especially, up until now, there is
no information on the potential relevance of pyroptosis
and potentially relevant mechanisms in this context. The
following will focus on this question and will discuss the
potential pathways linking PD and RA in context of pyrop-
tosis and genetic cross-talk.

Primarily, TIMP1 was found to present the highest pre-
dictive value in both, PD and RA. TIMPI, i.e., the tissue
inhibitor of matrix metalloproteinases (MMP), is a natural
antagonist of MMP and thus a glycoprotein with the ability
to inhibit matrix degradation [40]. Because matrix degrada-
tion, which is triggered by MMP, is a relevant process in
hard and soft tissue destruction in both RA and PD [40,
41], the potential role of TIMP1 seems plausible. Different
clinical studies examined TIMPI1 in patients with RA and
PD, whereby both saliva and blood has been analyzed. While
the overall results across studies are inconsistent, a clinical
study on patients with RA under methotrexate therapy
revealed increased TIMP1 and MMP8 concentrations in
blood of individuals with RA and periodontal inflammation,
indicating an immunologic dysbalance of these patients [42].
In the current study, TIMP1 was found to be related to the
HIF1 signaling pathway. Hypoxia-inducible factor 1 (HIF1)
is associated with autoimmune inflammation, because ongo-
ing immune response is oxygen-consuming, leading to an
“inflammatory hypoxia” of respective affected environments
[43]. Regarding PD, HIF1 can be related to mucosal tissue
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aging [44], apoptotic-osteocyte-mediated osteoclastogenesis
[45], and apoptosis and autophagic cell death in human
periodontal ligament cells [46] as well as inflammatory
reaction on periodontal ligament cells triggered by Por-
phyromonas gingivalis [47]. Due to the potential role of
Porphyromonas gingivalis in RA pathogenesis, the latter
could be of particular interest [4]. Similarly, as for PD,
hypoxia and the HIF1 pathway are also related to RA,
especially with regard of the vascular angiogenesis of the
synovial membrane [48]. Accordingly, an immunological
dysbalance by a deregulation of TIMP1 alongside with a
role of hypoxia and HIF1 pathway could be relevant inter-
links between PD and RA.

While TIMP1 affected the HIF1 pathway, another gene,
ie, AIM2 as pyroptosis-related gene indirectly influenced
the HIF1 pathway. AIM2 (absent in melanoma 2) is a cyto-
plasmic sensor of DNA originating from destructed cellular
structures or pathogens, respectively [49]. A genome-wide
association study confirmed AIM2 to be a risk gene for
periodontitis development [50]. Furthermore, polymor-
phisms of AIM2 were found to be related to higher levels
of periodontal microorganisms and worse periodontal
parameters, indicating a role in PD [51]. Thereby, Porphyro-
monas gingivalis could be involved as well, because this bac-
terium was found to induce IL-1f secretion and pyroptotic
cell death related to AIM2 inflammasome activation [52].
Therefore, the potential role of pyroptosis and related genes
in the interplay between RA and PD seems probable. The
second pyroptosis-related gene, i.e., GPX4, was involved in
metabolic pathway, ferroptosis, and NOD-like receptor path-
way and interacts with JUN, which in turn interacts with
AIM2. Therefore, GPX4 also potentially affects the pathway
regulated by AIM2 through interaction. GPX4 (glutathione
peroxidase 4) is a selenoperoxidase, which is decisively
involved in antiperoxidant defense and related to ferroptosis
[53]. GPX4 was not examined regarding periodontitis, yet;
however, glutathione peroxidases in general are related to
periodontal inflammation and thereby related to PD-
associated oxidative stress [54, 55]. Additionally, a potential
role of ferroptosis in periodontal inflammation has been dis-
cussed [56]. Similarly, in case of lipopolysaccharide-induced
synovitis, GPX4 is reduced, while ferroptosis is triggered
[57]. Furthermore, as oxidative stress occurs in autoimmune
rheumatic disease, glutathione peroxidase in general appears
of relevance in these diseases [58].

Two further genes, i.e., LGALS1 and VOPP1, were also
found as module-related genes. LGALSI, i.e., galectin-1, is
a f3-galcotosid-binding lectin, which is able to induce T
cell apoptosis and is also involved in modulation of
inflammation [59]. Galectin-1 was found to be increased
in gingival crevicular fluid of PD individuals, suggesting
its potential role in periodontal inflammation [60]. Inter-
estingly, soluble galectin-1 can bind to lipopolysaccharides
in the cell wall of Porphyromonas gingivalis, enhancing the
adhesion and invasion of this bacterium into oral epithe-
lial cells [61]. Intracellular galectin-1 was able to inhibit
lipopolysaccharide-induced autophagy and apoptosis in
periodontal ligament cells [62]. This is a further hint of
the potential role of Porphyromonas gingivalis and its lipo-
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polysaccharides in the interrelationship between PD and RA.
Furthermore, galectin-1 was also found to be of relevance in
the pathogenesis of RA; thereby, RA patients show higher
levels of galectin-1, what is positively correlated to disease
activity [63]. Lastly, vesicular overexpressed in cancer pro-
survival protein 1 (VOPP1) was deregulated in the current
study, which was found the be related to oxidative cellular
injury [64]. While this gene is related to different cancers,
including squamous cell carcinoma, hepatocellular carci-
noma, or breast cancer [64-66], no results regarding PD or
RA are available. However, the potential relevance in oxida-
tive stress could support the relevance of this issue as men-
tioned above.

Altogether, several hypotheses can be formed based on
the current study’s results: (I) oxidative stress and hypoxia
might be a common condition in PD and RA and thus link-
ing its pathogenesis; (II) Porphyromonas gingivalis and its
virulence factors repeatedly occur in the context of the mod-
ular genes, underlining the potential of a microbiological
interlink; (III) pyroptosis, including the pyroptosis-related
genes AIM2 and GPX4, appears to be involved in the inter-
relationship between PD and RA. All these hypotheses need
experimental validation. Therefore, the current study pro-
vides a basis for future research in the field.

4.1. Strengths and Limitations. This is the first bioinformatics
study on PD and RA under consideration of pyroptosis-
related genes. The analysis was very comprehensive and
revealed a variety of results, which can be a basis for future
research. A good number of samples, which underwent a cor-
rection within the two disease groups strengthens the find-
ings. The major limitation is that the results are only based
on bioinformatics analysis; thus, an experimental validation
of the hypotheses must be performed subsequently. It must
be considered that the RA and PD patients were different
and heterogeneous groups of individuals. Thereby, disease-
related or therapy conditions (e.g., RA medication) were
not considered, because only data are analyzed. Generally,
the findings are on transcriptomic level, what must be recog-
nized during interpretation of the findings.

5. Conclusion

The current study showed shared mechanisms between PD
and RA via cross-talk and pyroptosis genes and related path-
ways, supporting the close interrelationship between RA and
PD. Thereby, five modular genes, ie, TIMP1, LGALSI,
GPX4, VOPP1, and AIM2, were revealed, which could be
of relevance in the interlink between RA and PD and might
serve as potential biomarkers. These findings are a basis for
future research in the field.
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