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Abstract

Background: Peripheral nerve stimulation has been used for decades to treat chronic pain but has not been used
for postoperative analgesia due to multiple limitations, beginning with invasive electrode placement. With the
development of small-diameter/gauge leads enabling percutaneous insertion, ultrasound guidance for accurate
introduction, and stimulators small enough to be adhered to the skin, neurostimulation may now be provided in a
similar manner to continuous peripheral nerve blocks. Here, we report on the use of ultrasound-guided
percutaneous peripheral nerve stimulation to treat postoperative pain.

Materials and methods: Subjects within 60 days of a total knee arthroplasty with pain insufficiently treated with
oral analgesics had a 0.2-mm-diameter electrical lead (pre-loaded into a 20 gauge needle) introduced percutaneously
using ultrasound guidance with the tip located approximately 0.5-1.0 cm from the femoral nerve (a second lead was
inserted approximately 1.0-3.0 cm from the sciatic nerve for posterior knee pain). An external stimulator delivered
current. Endpoints were assessed before and after lead insertion and the leads subsequently removed. Due to the
small sample size for this pilot/feasibility study, no statistics were applied to the data.

Results: Leads were inserted in subjects (n = 5) 8-58 days postoperatively. Percutaneous peripheral nerve stimulation
decreased pain an average of 93% at rest (from a mean of 5.0 to 0.2 on a 0-10 numeric rating scale), with 4 of 5
subjects experiencing complete resolution of pain. During passive and active knee motion pain decreased an average
of 27 and 30%, respectively. Neither maximum passive nor active knee range-of-motion was consistently affected.

Conclusions: Ultrasound-guided percutaneous peripheral nerve stimulation may be a practical modality for the
treatment of postoperative pain following orthopedic surgical procedures, and further investigation appears warranted.

Keywords: Ultrasound-guided analgesia, Peripheral nerve stimulation, Postoperative analgesia, Acute pain,
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Background

Total knee arthroplasty often results in moderate-to-
severe pain that is frequently treated with opioids, them-
selves correlated with unwelcome side effects such as
sedation, nausea, vomiting, respiratory depression, and
abuse [1]. Other analgesic techniques such as continu-
ous peripheral nerve blocks have their own limitations
as they induce quadriceps weakness and are associated
with an increased risk of falling [2]; duration limitations
because of the risk of infection [3]; and, for outpatients,
the encumbrance of carrying the local anesthetic reservoir
and portable infusion pump [4]. An alternative analgesic
modality—peripheral nerve stimulation—may deliver
post-surgical pain control without the limitations of cur-
rently available analgesic techniques.

Peripheral nerve stimulation was initially described to
treat pain over 2,000 years ago with the use of the elec-
trical charge generated by Torpedo Fish [5]. Many hypoth-
eses have been proposed to explain the analgesic effects of
stimulation [6], but Melzack and Wall’s “gate control the-
ory” is the most common and accepted theory [7]. In
1967, Melzack and Wall described how large-diameter
myelinated afferent peripheral nerve fibers were activated
by electrical current which, in turn, impeded pain signal
conduction (the “gate”) within the spinal cord, to the cen-
tral nervous system from small-diameter pain fibers [7, 8].
Soon thereafter, Wall and Sweet hypothesized that stimu-
lating primary afferent neurons could produce analgesia
[9]. Subsequently, off-label use of commercially available
stimulators was described to deliver nerve stimulation to
peripheral nerves [10]. In the past 40 years, surgically im-
planted peripheral nerve and spinal cord stimulators have
been validated and thoroughly investigated in managing
chromic pain [11, 12].

However, using neurostimulation to treat surgically in-
duced pain has been dramatically restricted by the inva-
sive nature of the available electrical leads that required
a surgical incision to both insert and remove the mul-
tiple electrodes oriented in close proximity to the per-
ipheral nerve [13]. In addition, the potential for nerve
damage was not insignificant, and approximately one-
quarter of reported implants resulted in lead migration
or failure, necessitating surgical revision [10, 14-21].
Finally, fibrous capsule formation adherent to the target
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nerve frequently led to difficult lead removal [21].
Transcutaneous electrical nerve stimulation—involving
the use of large skin electrodes—circumvents these limi-
tations [22, 23]; but, skin pain fiber activation limits the
amount of tolerated current, creating an unacceptably
low “ceiling” effect [24].

To facilitate the application of peripheral nerve stimula-
tion in treating pain resulting from surgical procedures
such as total knee arthroplasty, an analgesic technique
should optimally be administered without the requirement
of an open surgical incision for either insertion or re-
moval. This may be accomplished with the use of very
small gauge electrical leads that allow the relatively rapid
insertion via a percutaneously placed needle [25, 26].
Using ultrasound guidance to guide the insertion needle, a
lead may be consistently introduced 0.5-3.0 cm from a
peripheral nerve utilizing the same general landmarks
and approach as for perineural nerve block administra-
tion [27, 28]. Ultrasound-guided percutaneous periph-
eral nerve stimulation was first reported in situ by
Huntoon in 2009 using an epidural neurostimulation
electrode for the treatment of chronic neuropathic pain
[29]. Although related methods were later described for
other chronic pain conditions [30-32], it has yet to be
applied to a post-surgical pain state. We now report, to
our knowledge, the first use of ultrasound-guided per-
cutaneous peripheral nerve stimulation to treat post-
surgical pain.

Methods
Consent to publish
This prospective feasibility study was conducted within
the ethical guidelines outlined in the Declaration of
Helsinki and followed Good Clinical Practice. Approval
and oversight were provided by two Institutional Review
Boards (Western IRB, Puyallup, WA; and Duke University
Health System IRB, Durham, NC). An Investigational
Device Exemption was granted for the use of these investi-
gational devices by the US Food and Drug Administration
(FDA), and written, informed consent was obtained from
all subjects. The protocol was not registered as this was
not a randomized, controlled trial.

We enrolled a convenience sample of adult subjects
(21 years and older) with surgically related joint pain (>3
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OH; illustration used with permission from Brian M. lifeld, MD, MS)

Fig. 1 A 125 cm, 20 g needle with a pre-loaded helically coiled monopolar-insulated electrical lead (MicroLead, SPR Therapeutics, LLC, Cleveland,
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on an 11-point numerical rating scale of the Brief Pain
Inventory Short Form, Question 3: “Pain at its worst in
the last 24 h”) uncontrolled with oral analgesics within
60 days following primary, unilateral, total (e.g., tricom-
partment) knee arthroplasty. Key exclusion criteria
included the presence of implanted cardiac or deep brain
stimulators, ongoing infections of the affected limb or
other factors that increase the risk of infection, increased
risk of bleeding (e.g., bleeding disorder), confounding
pain conditions unrelated to the clinical indication for
the knee arthroplasty (e.g., fibromyalgia), and nerve
damage to the affected limb.

Materials

The investigational stimulation system used in the present
study includes components (e.g., lead, stimulator) of a
stimulation system that recently received FDA 510(k)
clearance for the treatment of chronic and acute pain, in-
cluding post-surgical and post-traumatic pain. Electrical
stimulation was delivered through a helically coiled
monopolar insulated electrical lead (MicroLead™, SPR
Therapeutics, Cleveland, OH), which was pre-loaded in a
12.5 cm, 20 gauge introducer needle (Fig. 1). The lead was
connected to a battery-powered electrical stimulator that
was connected to the body via a surface return electrode
(SPR Therapeutics, Cleveland, OH). To deliver test stimula-
tion prior to lead placement, a 7.5 cm, 25 gauge or 12.5 cm,
24 gauge monopolar needle electrode (Test Needle, SPR
Therapeutics, Cleveland, OH) was inserted. To guide place-
ment of the lead and needle electrode, ultrasound imaging
was used (M-Turbo, SonoSite, Bothell, WA; Flex Focus 400
exp, BK Medical, Peabody, MA) along with a linear array
transducer (HFL38x 13—6 MHz 38 mm, SonoSite, Bothell,
WA; Type 8870 18—-6 MHz 60 mm, BK Medical, Peabody,
MA) or curved array transducer (C60x 5-2 MHz 60 mm
SonoSite, Bothell, WA; Type 8820e, 6—2 MHz 200 mm, BK
Medical, Peabody, MA) to target femoral and sciatic nerves,
respectively, within a sterile sleeve.

Lateral

Fig. 2 Ultrasound image of a femoral lead insertion
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Fig. 3 A stimulator attached to the surface return electrode (SPR
Therapeutics, LLC, Cleveland, OH; figure used with permission from
Brian M. llfeld, MD, MS)

Lead placement

The anatomic lead location was determined by the ori-
gination of pain: anterior knee pain was treated with a
femoral lead, and posterior knee pain received a sciatic
lead. Subjects were positioned either supine or in the lat-
eral decubitus position for femoral and sciatic insertions,

Fig. 4 An electrical lead connected to a portable stimulator (SPR
Therapeutics, LLC, Cleveland, OH; illustration used with permission

from Brian M. lIfeld, MD, MS)
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Table 1 Subject characteristics

Subject Days since surgery Diagnosis Fixation method Age (years) Sex BMI (kg/m?) Leg
A 8 Osteoarthritis Cement 48 Male 30 Left
B 9 Osteoarthritis Cement 56 Female 26 Left
@ 13 Osteoarthritis Cement 73 Female 36 Left
D 41 Osteoarthritis Unknown 66 Male 34 Left
E 58 Osteoarthritis Unknown 61 Female 51 Left
Mean 26 61 35

BMI body mass index

respectively. Subjects had their ipsilateral limb prepared
with chlorhexidine gluconate/isopropyl alcohol solution
and sterile drapes at the level of the inguinal crease or
over the gluteus maximus muscle for femoral and sciatic
insertions, respectively. Nerves were imaged using ultra-
sound in a transverse cross-sectional (short axis) view at
the inguinal crease for femoral leads and between the is-
chial tuberosity and greater trochanter for sciatic leads
(Fig. 2). A local anesthetic skin wheal was raised lateral
to the transducer, and no sedation was utilized.

To deliver test stimulation prior to lead placement, the
monopolar needle electrode was inserted within the ultra-
sound plane and positioned approximately 0.5-1.0 cm
from the femoral and 1.0-3.0 cm from the sciatic nerves.
The electrical stimulator was used to deliver test stimula-
tion (100 Hz, 15-200 psec, 0.2-20 mA) to verify that
comfortable sensations within the regions of pain could be
induced without discomfort or evoking muscle contrac-
tions. If local cutaneous or subcutaneous discomfort was
reported—indicating too superficial electrode place-
ment—the needle electrode was advanced until resolution
of the undesired sensations. If muscle contractions and/or
discomfort distal to the lead insertion site were induced,
the current intensity was reduced and/or the needle elec-
trode was redirected until the contractions resolved.

Following a successful test (comfortable sensations and/
or pain relief within the regions of pain without discomfort

Table 2 Procedure-related pain and stimulation parameters

or muscle contractions), the monopolar needle electrode
was withdrawn and replaced with the lead introducer nee-
dle (Fig. 1) using the same skin entry point and ultrasound
approach. The final needle tip location was in the same lo-
cation as the monopolar needle electrode (i.e., approxi-
mately 0.5-3.0 cm from the nerve). The needle was then
withdrawn over the pre-loaded helically coiled electrical
lead, the lead attached to a stimulator, and the stimulator
subsequently attached to a surface return electrode (Fig. 3).
Comfortable sensations over the regions of pain without
muscle contractions confirmed accurate lead placement.

A short portion of the lead outside the body was
formed into a loop and affixed to the skin at the point of
exit using an occlusive dressing (Fig. 4). For subjects
with pain in the posterior aspect of the knee, a second
lead was inserted between approximately 0.5-3.0 cm
from the sciatic nerve between the greater trochanter
and ischial tuberosity, using the technique described for
the femoral lead. Following the measurement of the end-
points, the occlusive dressing was removed and gentle
traction applied to the lead for extraction. A small sterile
bandage was applied at the lead exit point.

Outcome measures

Pain “right now” was evaluated first at rest and subse-
quently with passive and active knee motion using a
Numeric Rating Scale of 0-10, with 0 and 10 equivalent

Procedure-related pain

Stimulation parameters

Subject Catheter location (NRS) Minimum sensation Maximum tolerable Optimal settings
(ps) (mA) (ps) (mA) (ps) (mA) (Hz)
A femoral 2 15 [§ 15 10 15 9 100
sciatic 18 20 18 20 18 20 100
femoral 0 15 1 17 20 15 20 100
C femoral 4 15 10 22 20 15 18 100
sciatic 15 20 200 20 50 20 100
D femoral 2 15 5 26 20 19 20 100
E femoral 1 15 1 15 5 15 5 100
Mean 1.8 15 9 45 16 21 16 100

NRS numeric rating scale (0-10)
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Table 3 Pain at baseline and during percutaneous peripheral
nerve stimulation with electric current

Subject Days At rest
since Stimulation % Change
surgery
Off On
A 8 3 1 67%
B 9 3 0 100%
C 13 7 0 100%
D 41 5 0 100%
E 58 7 0 100%
Mean 26 50 0.2 93%

Pain evaluated using a numeric rating scale (0-10)

to no pain and the worst imaginable pain, respectively
(Question 6 of the Brief Pain Inventory, Short Form). End-
points were evaluated immediately prior to lead inser-
tion(s) and during the delivery of current. Passive and
active knee range-of-motion was measured using a stand-
ard goniometer and included the number of degrees be-
tween the maximum flexion and extension measurements.

Safety

Subjects received a telephone call 24 to 48 h after testing
to evaluate the safety of the lead exit site. Also, subjects
were instructed to contact the investigators for any de-
vice- or procedure-related adverse events after testing.

Results

Five subjects were enrolled meeting all inclusion/exclusion
criteria (Table 1). Leads were inserted without difficulty in
all subjects; and stimulation produced comfortable sensa-
tions in the thigh/knee areas without discomfort or
muscle contractions (Table 2). Percutaneous peripheral
nerve stimulation produced immediate analgesia, decreas-
ing pain an average of 93% at rest (mean NRS from 5.0 to
0.2) with 4 of 5 subjects experiencing complete resolution
of pain (Table 3). In addition, pain during passive and
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active knee motion was reduced to 27 and 30%, respect-
ively (Table 4). Neither maximum passive nor active knee
range-of-motion was consistently affected (Table 5).

All leads were removed without difficulty approxi-
mately 1-2 h after the start of testing. There were no
device-related adverse events.

Discussion

This prospective feasibility case series suggests that
ultrasound-guided percutaneous peripheral nerve stimu-
lation may be applicable to pain following total knee
arthroplasty. The relatively recent convergence of five
advances may now allow the wide application of this
modality to treat post-surgical pain: (1) the recent
propagation of ultrasound machines available to practi-
tioners for use in regional analgesia; (2) the current per-
vasiveness of anesthesiologists trained in ultrasound-
guided regional anesthesia; (3) an insulated electrical
lead specially developed for percutaneous insertion and
extended use adjacent to peripheral nerves that enables
selective activation of pain-relieving fibers when inserted
remote (approximately 0.5-3.0 c¢cm) from the target
nerve; (4) a novel stimulator that may be adhered
directly to the skin due to its small footprint and slim
design; and (5) the recent FDA 510(k) clearance of this
percutaneous peripheral nerve stimulation system for
the treatment of chronic pain and acute pain, including
post-surgical and post-traumatic pain.

The novel electrical leads used in this investigation were
comprised of a small-diameter open helical coil (0.2 mm
wire diameter and 0.6 mm overall coil diameter) wound
from a fluoropolymer insulated 7-strand, type 316L stain-
less steel wire with a single terminal anchor at the tip
(Fig. 5). The lead was specifically designed to provide mul-
tiple advantages that increase the applicability of nerve
stimulation to the management of post-surgical pain. Per-
cutaneous insertion with a 20 g needle is possible due to
the relatively small coil diameter (Fig. 1), and removal may
be achieved simply with continuous traction. The helical

Table 4 Pain at baseline and during percutaneous peripheral nerve stimulation with electric current

Subject Days since During passive range-of-motion During active range-of-motion
surgery

Stimulation % Change Stimulation % Change
Off On Off On

A 8 5 5 0% 5 5 0%

B 9 5 2 60% 6 4 33%

@ 13 7 5 29% 6 4 33%

D 41 9 8 11% 9 6 33%

= 58 6 3 50% 6 4 33%

Mean 26 6.4 46 30% 64 4.6 27%

Pain evaluated using a numeric rating scale (0-10)
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Table 5 Range-of-motion at baseline and during percutaneous
peripheral nerve stimulation with electric current

Passive range-of-motion Active range-of-motion

Stimulation Change Stimulation Change
Subject  Off On Off On
A 61 60 -1 57 53 —4
B 21 39 18 10 54 44
C 63 70 7 75 61 -14
D m 116 5 100 110 10
E 88 80 -8 87 88 1
Mean 69 73 4 66 73 7

Active and passive knee range-of-motion was measured using a standard goni-
ometer and included the number of degrees between the maximum flexion
and extension measurements

shape theoretically decreases the incidence of fracture and
migration, as well as lowering the risk of infection to less
than 0.1% for up to 60 days [33]. The minimal infection
risk and investigational device exemption (IDE) from the
US FDA for use up to 60 days in clinical investigations
raises the possibility of providing post-surgical analgesia
that outlasts the pain resulting from not only total knee
arthroplasty but the overwhelming majority of orthopedic
procedures. It is for this reason that we included subjects
who were within 60 days of surgery for the current
investigation.

The single coiled monopolar lead enables a stimulation
paradigm that is intended to provide pain relief while min-
imizing muscle contractions and discomfort from stimula-
tion. The challenge with peripheral nerve stimulation for
the treatment of pain has been to activate selectively the
pain-relieving (large-diameter myelinated) fibers within a
nerve trunk while avoiding activation of smaller diameter
(alpha motoneurons, or types III and IV) fibers. This “se-
lective activation” of large over small diameter fibers im-
proves as pulse duration decreases [34] and the distance
between the electrode and nerve increases [35]. Compared
to conventional peripheral nerve stimulation that uses
multi-electrode leads placed close to the nerve (commonly
<0.2 cm) and wide pulse durations (90-500 ps), the stimu-
lation paradigm in the present study utilized remote lead

Page 6 of 9

placement (approximately 0.5-3.0 cm from the nerve) and
narrow pulse durations (15-50 ps). Such remote lead
placement is enabled by the ability of the single, coiled
monopolar lead to resist migration due to its coiled struc-
ture and terminal anchor at the electrode (Fig. 6).

In addition, the positive results of the present study are
unlikely to be due to peripheral nerve field stimulation,
where electrodes are placed subcutaneously near the re-
gions of pain to activate adjacent nerve fibers to generate
sensations locally to relieve pain. In contrast, the present
technique directly stimulated peripheral nerves proximal
to the surgical wound to produce sensations and analgesia
distal to the leads within the nerve distributions.

Percutaneous peripheral nerve stimulation produced
immediate reductions in pain that compare favorably to
existing treatments for postoperative pain. Pain at rest
was completely relieved in 4 of 5 subjects (overall aver-
age relief = 93%), and pain during passive and active
flexion was decreased 27 and 30%, respectively. Al-
though one subject did not achieve complete relief of
pain at rest with stimulation on (pain = 1) compared to
stimulation off (pain = 3), adjustment of the lead loca-
tion and/or stimulation parameters may have enabled
this subject to achieve complete pain relief. With this
small feasibility study, we can only speculate on the de-
gree of pain control provided with percutaneous periph-
eral nerve stimulation relative to single injection and
continuous peripheral nerve blocks [4]. However, it is
notable that adductor canal blocks reduced pain to a
similar degree following total knee arthroplasty, albeit
immediately following surgery [36, 37].

Ultrasound-guided percutaneous peripheral nerve stimu-
lation has several important limitations. Small lead frag-
ments, typically less than 0.1 mm?® in volume (less than a
tenth of the volume of a common skin staple) and 0.8 mg
in weight, may be retained upon withdrawal of the lead at
the end of the therapy period. MRI scanning may still be
performed on a patient with a retained fragment since the
retained fragments are MR conditional using common
scanning conditions at up to 1.5 Tesla (standard field
strength used clinically) [38]. Also, no lead fractures
have been reported within the body during therapy and
retained fragments have not produced complications

ACTECLLAA 1A TT 4117

figure used with permission from Brian M. lifeld, MD, MS)

ST 1995999

Fig. 5 A small-diameter (0.2 mm) open-coiled, helical electrical lead with an anchoring wire (MicroLead, SPR Therapeutics, LLC, Cleveland, OH;
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A

Fig. 6 The therapeutic window and the ability to preferentially activate the targeted large nerve fibers—without activating non-targeted pain or motor
neurons—increases as the distance between the electrode and the nerve increases (illustration used with permission from Brian M. Iifeld, MD, MS)

when left in situ and occur in less than 8% of cases (20 of
267) when used for the treatment of pain [24, 30, 31, 39-46].

Furthermore, the subjects of this feasibility study
underwent treatment 8-58 days following surgery, and
the quality of pain control and impact on supplemental
analgesic consumption provided within the first postop-
erative week remains unknown. Lastly, the subjects of
this pilot study underwent stimulation for less than 1 h,
while the desirable duration of treatment following total
knee arthroplasty would be far longer.

How practical ultrasound-guided percutaneous per-
ipheral nerve stimulation is following total knee arthro-
plasty as an alternative to opiates and other analgesic
techniques will be determined with further research.
Ongoing studies are underway with the goal of evaluat-
ing safety (e.g., ability to reduce risks of falls relative to
existing therapies), efficacy (including during the first
postoperative week as well as after the end of stimula-
tion therapy), the potential placebo effect, and the value
of the therapy relative to its costs. However, the data
provided by the current feasibility study suggest that
there is immense potential for making a historic ad-
vancement in the treatment of post-surgical pain.

Conclusions

This prospective feasibility case series suggests that
ultrasound-guided percutaneous peripheral nerve stimula-
tion may be applicable to pain following total knee arthro-
plasty and possibly other orthopedic surgical procedures.
If subsequent studies demonstrate a favorable risk-benefit
ratio, the modality has the possibility to entirely transform
post-surgical pain control as it has been performed admin-
istering local anesthetic for over 100 years [47].
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