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Abstract 

Background 

The novel coronavirus, SARS-CoV-2, has increased the burden on healthcare systems already 

strained by a high incidence of tuberculosis (TB) as co-infection and dual presentation are occurring 

in syndemic settings. We aimed to understand the interaction between these diseases by profiling 

COVID-19 gene expression signatures on RNA-sequencing data from TB-infected individuals. 

Methods 

We performed a systematic review and patient-level meta-analysis by querying PubMed and pre-print 

servers to derive eligible COVID-19 gene expression signatures from human whole blood (WB), 

PBMCs or BALF studies. A WB influenza dataset served as a control respiratory disease signature. 

Three large TB RNA-seq datasets, comprising multiple cohorts from the UK and Africa and 

consisting of TB patients across the disease spectrum, were chosen to profile these 

signatures. Putative “COVID-19 risk scores” were generated for each sample in the TB datasets using 

the TBSignatureProfiler package. Risk was stratified by time to TB diagnosis in progressors and 

contacts of pulmonary and extra-pulmonary TB. An integrative analysis between TB and COVID-19 

single-cell RNA-seq data was performed and a population-level meta-analysis was conducted to 

identify shared gene ontologies between the diseases and their relative enrichment in COVID-19 

disease severity states. 

Results 

35 COVID-19 gene signatures from nine eligible studies comprising 98 samples were profiled on 

TB RNA-seq data from 1181 samples from 853 individuals. 25 signatures had significantly higher 

COVID-19 risk in active TB (ATB) compared with latent TB infection (p <0·005), 13 of which were 

validated in two independent datasets. FCN1- and SPP1-expressing macrophages enriched in BALF 

during severe COVID-19 were identified in circulation during ATB. Shared perturbed ontologies 

included antigen presentation, epigenetic regulation, platelet activation, and ROS/RNS production 

were enriched with increasing COVID-19 severity. Finally, we demonstrate that the overlapping 

transcriptional responses may complicate development of blood-based diagnostic signatures of co-

infection. 

Interpretation 

Our results identify shared dysregulation of immune responses in COVID-19 and TB as a dual risk 

posed by co-infection to COVID-19 severity and TB disease progression. These individuals should be 

followed up for TB in the months subsequent to SARS-CoV-2 diagnosis. 
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Background 

Three months after it was first detected, SARS-CoV-2 was declared to have caused the first global 

pandemic of the 21st Century. In the absence of an effective treatment or vaccine, mortality in the 35 

million diagnosed thus far, currently stands at 2.9% (as of October 2020).  By comparison 

tuberculosis (TB), a similar respiratory infection and humanity’s longest continuing pandemic, causes 

10 million annual cases, and has a mortality of 12–20%, the upper bound including those HIV-

coinfected1. This high mortality, of roughly 4000 people a day, exists despite a vaccine that reduces 

infant mortality and antibiotics which have reduced mortality from the pre-antibiotic era by 50%. 

With an estimated quarter of the world’s population infected with Mycobacterium tuberculosis (Mtb), 

it could be said that TB is a silent killer. Silent in that during the current pandemic, TB has killed 

roughly the same number of people a day as COVID-19 currently; with the socio-economic and 

health systems impact of COVD-19 lockdowns estimated to result in an additional 6.8 million TB 

cases and 1.4 million TB deaths over the next 5 years2,3. Countries where TB-HIV already causes high 

mortality were shielded from previous SARS and MERS outbreaks, and thus the interaction of these 

coronaviruses with concurrent TB co-infection, has not previously been experienced.   

COVID-19 and TB share a symptomatic presentation of productive cough, fever and shortness of 

breath, and clinical parameters of raised C-reactive protein (CRP), erythrocyte sedimentation rate 

(ESR), D-Dimer, interleukin (IL)-6, leukopenia and neutrophilia. The similarity in clinical parameters 

and aspects of underlying immunological reactions suggests co-infection will not only complicate 

diagnostic algorithms, it indicates a potentially fatal convergence in immunopathogenesis. Emerging 

case studies and population level data indicate TB patients, and those latently infected or with a 

history of TB are at increased risk of severe COVID-194-7. 

In order to develop contextually appropriate treatment and risk mitigation interventions in 

communities where the potential for Mtb-SARS-CoV-2 co-infection is high, we urgently need to 

understand how the immunopathogenesis of these two respiratory pathogens interact. We therefore 

conducted a systematic transcriptomic evaluation of whole blood (WB), peripheral blood 

mononuclear cell (PBMC) and bronchoalveolar lavage fluid (BALF) signatures associated with 

COVID-19 clinical severity and the spectrum of asymptomatic and symptomatic TB. Our findings 

suggest that subclinical and active TB (ATB) increase the risk of severe COVID-19 disease, due to 

increased abundance of circulating myeloid subpopulations also found in the lungs of severe COVID-

19 patients. This shared pathway of immunopathogenesis also suggests that SARS-CoV-2 infection 

will trigger increased progression to TB disease. COVID-19 may therefore pose the biggest threat to 

ending the TB epidemic since HIV-1 and the modelling increase of 6.8 million extra TB cases in the 

next 5 years is significantly underestimated8. 
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Methods 

 

Search strategy and selection criteria 

The hypothesis that WB transcriptomic signatures present in those with existing TB infection will 

increase risk of severe COVID-19 and interfere in diagnostic biomarker selection was evaluated using 

a combination of transcriptomic data from COVID-19 patients and WB RNA-seq data from studies of 

TB disease progression on which the COVID-19 signatures were evaluated. A literature search of 

published and pre-print manuscripts was conducted on the NIH PubMed and bioRxiv, medRxiv, and 

SSRN servers uploaded/published between 01/02/20 and 20/09/20 (figure 1).  The WB influenza 

dataset, GSE1113689, was used to generate an influenza virus control signature. The curatedTBData 

package,10 which includes 48 publicly available TB RNA-seq datasets, was used to identify eligible 

TB datasets, that included individuals who progressed to TB during the duration of study follow-up, 

with RNA-seq data at baseline and time of diagnosis, and patient-level meta-data including time to 

TB progression. Selection criteria and cohort datasets are described in detail in appendix 1 p2 and p5 

(table 1–2).  

 

Data Analysis 

TB RNA-seq data were downloaded for eligible studies using the curatedTBData package,10 as 

outlined in appendix 1 p2. Samples collected at all time points were included. The eligible COVID-19 

and influenza control signatures (appendix 2 p1) were evaluated independently against the patient-

level TB RNA-seq data, generating individual-sample putative “COVID-19 risk score” using gene set 

variation analysis (GSVA)11 with the TBSignatureProfiler package12 (appendix 1 p2), and score 

significance, as compared to latent TB infection (LTBI) controls, calculated by Bonferroni-corrected 

t-test (appendix 2 p2–4). 

Single cell (sc)RNA-seq integrative comparison was conducted using the identified COVID-19 

bronchoalveolar lavage fluid (BALF) dataset13 downloaded from the NIH GEO database 

(GSE145926) and a TB PBMC dataset14 downloaded from NCBI Short Read Archive (SRA, 

SRR11038989-SRR11038995). filtered_feature_bc_matrix.h5 files were read into RStudio using the 

Seurat Read10X_h5 function (v3.0).15 Datasets were independently normalised before the Seurat 

FindIntegrationAnchors function was applied to generate a corrected data matrix for joint analysis. 

Functional enrichment analysis and cohort selection is described in detail in appendix 1 (p3). Briefly, 

selected datasets were evaluated using the Metascape16 statistically enriched ontology terms, 

generating enriched pathways (appendix 1 p3–4). Pathway-associated gene clusters from the 

functional enrichment analysis were used to generate a protein-protein interaction (PPI) network and 

visualised with Cytoscape17 (v4.01) using ranked gene set enrichment analysis (GSEA)18. 
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Results 

 

COVID-19 severity signatures are enriched during subclinical and active tuberculosis 

Nine COVID-19 studies with 35 signatures were eligible for evaluation (figure 1, table 1). Three TB 

cohort studies encompassing 853 individuals and 1181 samples, at various time points, were eligible 

for comparison. COVD-19 signatures were first evaluated in the TB combined observational and 

prospective cohort (TCC), from the UK (London and Leicester) and South Africa, including 293 

individuals19. Out of the 35 COVID-19 signatures profiled, 25 were significantly associated (p<0·005) 

with higher COVID-19 risk scores in TB progressors and ATB patients, compared with latently 

infected individuals. Conversely, the influenza signature centred on a score of zero, across the 

spectrum of TB infection in both countries (figure 2). Of the ten COVID-19 signatures that were not 

associated with a significantly higher COVID-19 risk score, across the TB spectrum, seven were 

enriched in those with mild COVID-19 in the original studies compared to severe COVID-19 patients.  

Of the 20 scRNA-seq immune cell population signatures profiled; innate immune cell signatures 

generated the highest COVID-19 risk scores in the ATB groups. The classical monocyte signature20 

was drastically increased in ICU cases of COVID-19, yielding the most significantly increased risk 

scores between LTBI and ATB samples (p<0·0001). The Silvin et al. COVID-19 WB neutrophil 

signature21 was most significantly increased in ATB vs LTBI (p<0·0001). The lung macrophage sub-

populations associated with severe disease in BALF from COVID-19 patients13 showed high risk 

scores; in particular, the FCN1hi (monocyte-derived macrophages (MDMs), G1), FCNloSPP1hi (pre-

fibrotic macrophages, G2), and intermediary G1/2 macrophages. Conversely, the majority of adaptive 

immune cell signatures (CD4 and CD8 T cells) were higher in LTBI and TB contacts who didn’t 

progress to TB (figure 2). In general, T cell populations are depleted during severe COVID-19 

infection13,20,22 and a lower COVID-19 risk scores for these signatures in the active and progressive 

TB patients could reflect a similar depletion of these populations. In the Wei et al. study of patients 

recovering from COVID-1920, the monocyte signature was associated with the early recovery stage 

indicating persistence of hyperinflammatory response, whereas the NK cell, T cell and B cell 

signatures were enriched in the late recovery stage, explaining the low COVID-19 risk scores 

associated with these signatures in ATB cases. 

The mild/moderate and severe COVID-19 WB signatures23 (figure 2, Hadjadj et al.) showed 

significant differences in COVID-19 risk scores between ATB and LTBI (p<0·00001 and p<0·005, 

respectively) while the critical signature generated a low COVID-19 risk score which was 

significantly higher in the Leicester ATB cases than the LTBI cases (p<0·0001). COVID-19 disease 

severity blood transcriptional module (BTM) signatures24 included genes involved in IFN responses 

and antigen processing and presentation and clearly separated active disease samples from LTBI and 

QFT-negative TB contact samples (P<0·0001).  
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Assessing COVID-19 risk scores after further stratifying the Leicester TB contacts and ATB index 

cases by the location of index case TB (pulmonary [PTB] or extrapulmonary [EPTB]) revealed higher 

COVID-19 risk scores in contacts of PTB and PTB patients than those of EPTB, respectively 

(appendix 1 p6). 

 

COVID-19 signatures separate latent tuberculosis cases from those who progress to active 

disease by COVID-19 risk score 

Thirteen signatures having significantly higher COVID-19 risk score (with an associated adjusted 

p<0·005) in at least two ATB groups, compared with LTBI, were selected for validation in the 

additional two TB progressor RNA-seq datasets: the ACS25 and GC6 cohorts including 153 and 407 

individuals, respectively.26 Both datasets exhibited the same trend of increased COVID-19 risk score 

for all 13 signatures in progressors compared with LTBI (p≤0·01), whilst scoring zero for the 

influenza signature. The COVID-19 IFN signatures23,27,28 were associated with the greatest difference 

in COVID-19 risk score between LTBI and progressor groups, p<0·001 for both datasets). Plotting by 

days to TB diagnosis revealed an additional trend of higher risk of severe COVID-19 associated with 

proximity to ATB disease in the ACS cohort (figure 3A), but not the GC6 cohort (figure 3B). 

 

High concordance between monocyte subpopulations identified in BALF of severe COVID-19 

patients and those in circulation during active TB disease 

Reported similarities between BALF and WB scRNA-seq expression profiles observed in COVID-19 

patients led us to investigate whether the BALF macrophage sub-lineages13 that associated with 

COVID-19 risk in ATB patients (figure 2) could be detected in circulation during TB infection. An 

integrated scRNA-seq analysis was performed using publicly available TB scRNA-seq PBMC data, 

consisting of both active and LTBI samples with BALF scRNA-seq data13, from COVID-19 patients 

of varying disease severity (appendix 1 p7). A high concordance was observed between the immune 

cell populations present within ATB PBMC and severe COVID-19 BALF after tSNE dimensionality 

reduction (figure 4A, left panel). Canonical cell type marker genes were identified for each cluster 

and assigned to the tSNE plot to identify shared and unique subpopulations (figure 4A, right panel). 

Three major macrophage sub-lineage markers identified in the original BALF scRNA-seq analysis13, 

FCN1, SPP1 and FABP4, were separately profiled on the macrophage clusters of the COVID-19 and 

TB samples. Of the three markers, FCN1 had highest expression in the TB PBMCs, while FABP4 was 

completely absent. The FCN1-expressing pro-inflammatory monocyte-derived macrophage 

population was the most abundant of the sub-lineages in severe COVID-19 patients13. Zooming in on 

the FCN1- and SPP1-expressing clusters, the additional inflammatory markers that were identified for 

these populations in the original analysis were profiled. Both ATB and severe COVID-19 samples 
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had high expression of these markers (figure 4C) indicating that these immune cell sub-lineages are 

active in the inflammatory response elicited by both diseases in the lungs and the blood.  

Highly similar enriched ontologies are shared between COVID-19 and tuberculosis 

A meta-pathway enrichment analysis was performed using the transcriptomic data from the Leicester 

TB19, the COVID-19 WB scRNA-seq data21, and the influenza viral control cohort9. Among the top 

1000 DEGs (selection explained in appendix 1 p3,8), DEGs from COVID-19, ATB and TB 

progressors were enriched for similar pathways compared to LTBI and influenza (figure 5A, appendix 

1 p8, appendix 2 p5). Among the top 100 pathways across all groups, the highest percentage was 

associated with COVID-19 (96% of those considered), followed by ATB (93%), progressors (88%), 

influenza (64%), and LTBI (28%) (figure 5B). Comparing the twenty most significant ontologies, 

influenza and COVID-19 patients could be distinguished on the basis of an absence of IFN-γ 

response, lack of TNF signalling, both of which were highly enriched in TB progressors and COVID-

19 (figure 5A). Interestingly, LTBI had no enrichment of cytokine production and regulation of innate 

immune response compared with the other disease states, indicating a less active immunological 

response (figure 5A).  

To identify some key effectors responsible for the activation of these pathways, ten significant 

protein-protein interaction (PPI) network clusters were identified and are represented as annotated 

networks in figure 5C. Among the 85 DEGs which were represented in the network analysis, only 

nine belonged to influenza, while there was greater alignment of PPI networks between COVID-19 

and the TB groups, further confirming the similarity between COVID-19 and TB. Antigen processing 

and presentation was the largest cluster and was enriched mostly in COVID-19 and TB groups, with 

only one member gene representing influenza. The second most enriched cluster shared between 

COVID-19 and TB, annotated as epigenetic regulation of gene expression, consisted of many histone 

related proteins, suggesting both result in widespread changes in the epigenome. Other enriched 

clusters included platelet activation, cytokine production, and proteasome were exclusively enriched 

in COVID-19 and TB, indicating extensive commonality between perturbed pathways (figure 5C, p-

values in appendix 2 p6). 

 

Genes clustered based on similarity between COVID-19 and tuberculosis associate with COVID-

19 disease severity 

Three clusters, based on similarity between the other diseases and COVID-19, were identified (figure 

6A). Cluster 1: common to all TB disease states, but absent from influenza, consists of IFN-γ 

response, apoptosis signalling and B cell activation pathway enrichment. Cluster 2: common across 

all disease groups, except for LTBI, consists of complement activation, inflammatory response, 

apoptotic signalling, T cell receptor signalling, and IFN-γ production. Cluster 3: shared between ATB 

and TB progressors, but absent from LTBI and influenza, was enriched for platelet degranulation, 
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autophagy, antigen processing and presentation, TNFA signalling, IL6/JAK/STAT3 signalling, and 

cellular processes indicating higher metabolic requirements of cells in response to infection. 

Regulation of mTORC1 signalling was the only pathway exclusively enriched in COVID-19 from the 

top 100 enriched pathways (figure 6A). To further explore if the enriched pathway DEGs were 

associated with severity of COVID-19, GSEA was used to determine enrichment of the three 

identified clusters in a WB bulk RNA-seq dataset containing samples from different clinical stages of 

COVID-1921. Cluster 1, was found to be enriched in all three COVID-19 disease severity categories 

with moderate effect size, while cluster 2 and cluster 3 were enriched in more severe disease states 

with larger effect sizes as indicated by the q-values in figure 6B. DEGs common to COVID-19 and 

TB states were significantly enriched with increasing COVID-19 severity; 17% were enriched in 

moderate COVID-19, 18% were enriched in severe COVID-19 and the greatest proportion, 32%, 

were enriched in the ICU group (appendix 1 p9).  

The overlap between DEGs associated with COVID-19 disease severity and TB raised the possibility 

of an impediment to the discovery of a specific COVID-19 diagnostic WB biomarker. 

TBSignatureProfiler was run on cluster-specific DEGs using TCC data. In all three clusters, groups 

ranging from TB progressors to ATB showed significant COVID-19 risk scores compared with the 

LTBI control group (figure 6C). Cluster 3, which contains the most shared DEGs between COVID-

19, ATB and TB progressors, exhibited the most graded significant increase in COVID-19 risk scores 

among the three clusters, suggesting that shared DEGs between COVID-19 and TB would interfere 

with the derivation of a COVID-19-specific diagnostic signature (figure 6C, appendix 2 p9).  

To determine whether a more specific COVID-19 diagnostic signature could be identified what would 

not be affected by TB co-infection, DEGs from the only COVID-19-specific pathway, mTORC1 

signalling (figure 6C), were used to compare the COVID-19 risk scores between the Leicester TB 

cohort and the COVID-19 disease severity data. The mTORC1 signature demonstrated a clear 

increase in COVID-19 risk score with increasing COVID-19 disease severity (figure 6D); lower 

COVID-19 risk scores were generated from the ATB group, with the LTBI contacts and the healthy 

controls having similar scores. Using the full list of 820 exclusive pathways enriched in COVID-19 

(appendix 2 p10) a 20-gene signature was derived by selecting genes from the top 10 significant 

pathways and excluding DEGs shared between any other disease group, enriched for significance 

using a ranked GSEA on the COVID-19 severity data (appendix 1 p10–11). This reduced signature 

yielded significant differences in risk scores between healthy controls and severe COVID-19 

(p<0·005) and ICU patients (p<0·0005), and not TB groups (figure 6D, appendix 2 p13). 
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Discussion 

Emerging findings to aid rapid responses to the COVID-19 pandemic has led to an increased 

deposition of manuscripts on pre-print servers. Whilst they require rigorous peer-review, they have 

served as a valuable resource for further hypothesis generation and testing. We used several such 

studies to augment investigation of our hypothesis using these sequencing data in combination with 

new bioinformatics packages developed for assessing TB diagnostic signature performance.10,12 

Substituting TB signatures for COVID-19 signatures, within the TBSignatureProfiler package, we 

demonstrate the overlap between severe COVID-19 transcriptional signatures and WB TB disease 

phenotypes found in ATB patients and importantly those with asymptomatic TB who progress to 

symptomatic TB over 1–2 years. 

The most compelling overlaps between COVID-19 signatures and the TB datasets reside in the 

circulating innate immune cells. Classical monocyte and neutrophil signatures derived from severe 

COVID-19 patients were associated with the highest COVID-19 risk scores when profiled across the 

TB spectrum. Circulating monocyte activation status is a determining factor for COVID-19 prognosis, 

with specific phenotypes leading to poorer outcomes29. Similar monocyte phenotypes have been 

detected during TB infection30 and the presence of these in circulation prior to SARS-CoV-2 co-

infection may be detrimental to the activation of key adaptive antiviral immune responses. 

Conversely, adaptive immune cell populations enriched in milder COVID-19 cases were associated 

with lower risk scores in ATB and progressors. Both T and B cells were significantly reduced in 

COVID-19 ICU patient samples compared to pre and post ICU20. Impairment of functional CD4+ and 

CD8+ T cells has been associated with severe COVID-1931 and may be exacerbated by the presence of 

exhausted T cell phenotypes indicative of chronic Mtb infection which display reduced capacity to 

produce effector cytokines32. 

SARS-CoV-2-infected macrophages are known to accumulate in lungs of patients who died from 

COVID-1933. Activated macrophages play a major role in chronic inflammation in TB and HIV and 

increase the likelihood of severe COVID-19 infection (odds ratios: 1·7 and 2·3, respectively)34. 

FCN1hi macrophages are abundant in the BALF of severe COVID-19 patients13 and in BALF 

indicating their migration to the lungs from the blood, substantiated by an integrative analysis 

between COVID-19 blood and BALF scRNA-seq samples performed by Silvin et al.21. We show that 

both the FNC1hi and FCN1loSPP1+ sub-lineages associated with significantly higher COVID-19 risk 

scores in recent contacts of TB patients, progressors, and ATB patients. Our integrative analysis of 

TB PBMC and COVID-19 BALF scRNA-seq samples showed the presence of these phenotypes in 

circulation during ATB, indicating that the presence of these sub-lineages in the blood may 

predispose TB patients to more severe lung inflammation. 

The importance of neutrophils has largely been underestimated in existing scRNA-seq workflows, 

due to technical issues associated with the preservation and sequencing of neutrophils, despite 
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evidence that neutrophils are correlated with poor prognosis and disease severity in COVID-1921,35,36, 

and out-of-control inflammation or a failure to establish adequate adaptive immune responses in 

severe TB37. The upregulation of calprotectin subunit genes S100A8 and S100A9 in these neutrophils 

may account for or trigger the cytokine storm that is characteristic of severe COVID-1921 and 

S100A8/A9-dependent neutrophilic accumulation in the lungs of ATB patients leads to induction of 

inflammatory mediators and promotes lymphocyte trafficking38. These findings underscore the need 

for more WB single-cell studies rather than PBMCs in order to characterise the important contribution 

of neutrophils to severe COVID-19. 

IFN-induced transcriptional signatures were among the most significantly upregulated in severe 

disease in the studies selected risk profiling20,24,27,28 and generated high COVID-19 risk scores among 

ATB cases. Dysregulation of IFN production23,39 and the nature of type I and III IFN responses 

(location, timing, and duration) in COVID-1940,41 and TB42 guide disease progression and outcomes. It 

is therefore plausible that dysregulation of type I IFN responses during SARS-CoV-2 co-infection 

may also have an impact on TB disease progression. 

At a systems levels, shared biological pathways showed a graded enrichment of similar pathways 

between COVID-19 and TB, particularly ATB. A PPI-based network analysis identified common 

genes, highlighting that shared molecular determinants between COVID-19 and TB disease states can 

influence the clinical outcome if both diseases affect the same individual i.e., during co-infection. 

Common enriched pathways between COVID-19 and TB signify activation of innate immune 

responses directed against both Mtb and SARS-CoV-2 and include antigen presentation27,43, 

membrane trafficking44,45, ROS/RNS production46,47, activation of complement48,49, cytokine 

production50,51, and platelet activation52,53. This suggests that both hyperactivation of these responses 

or evasion by the pathogen may lead to severe clinical presentations for both of these infections and 

be synergistically exacerbated in co-infection. These mechanistic similarities would complicate 

efforts to derive a COVID-19-specific transcriptional signature. We demonstrated this with a 20-gene 

COVID-19-specific signature that gave rise to significantly higher scores among severe COVID-19 

cases compared with healthy controls, but also produced slightly elevated scores in TB-infected 

individuals. 

Although several of the pre-print manuscripts identified at the beginning of our study have since been 

published in high-impact journals, our COVID-19 signature search was complicated by the limited 

availability of comprehensive supplementary data detailing cluster markers or DEG lists. 

Furthermore, the COVID-19 studies performed to date are confined to small numbers of patients in 

each group that exhibit inter-individual variability in immune cell phenotypes. We counteracted this 

limitation by including signatures from multiple studies for each immune cell population. 

In summary, we show for the first time through large scale meta-analysis of the available 

transcriptomic data, that advanced COVID-19 and TB disease states overlap at the gene, cell, and 

systems levels. These shared disease mechanisms could prove to be hotspots for immune 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.25.20236646doi: medRxiv preprint 

https://doi.org/10.1101/2020.11.25.20236646
http://creativecommons.org/licenses/by-nc-nd/4.0/


exacerbation, inducing greater immunopathology, in the case of co-infection. We report a new 20-

gene gene signature which distinguishes severe COVID-19 from active and LTBI that should be 

investigated further for its disease classification value in larger datasets as they become available. 

Taken together, the data presented here along with the emerging case reports identifying TB as a risk 

factor for severe COVID-19 suggesting that individuals with known previous TB history, recent TB 

exposures or LTBI with pre-existing lung pathology, are at increased risk of severe COVID-19 

disease and, potentially, early progression to TB disease, following SARS-CoV-2 infection. Given the 

medical capacity to do so, we therefore propose that such individuals should 1) be closely followed to 

allow early detection of respiratory symptom onset, 2) be screened for SARS-CoV-2 and TB at 

symptom onset, and 3) be followed up for TB in the months subsequent to SARS-CoV-2 diagnosis. 

Diagnostic and clinical outcome data arising from early stages of the COVID-19 outbreak should be 

stratified by TB history in order to determine the effects of these co-infections as soon as possible. 
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Tables 

Table 1. Characteristics of the datasets used to profile COVID-19 risk from COVID-19 immune cell and pathway signatures. 

 

Setting Samples included Study design Population Sampling TB case definition 

Follow-up 

duration and 

method 

TB contacts 

cohort (TCC) 

London, UK 

54 

(21 active TB, 33 LTBI 

non-progressors) 

Cohort 

 

HIV-negative adults (18 –78 yrs.) 

TB cases and TB contacts 

Baseline 

TB: Culture confirmed or clinically 

diagnosed 

 

LTBI: QFT positive 

1.9* 

Cape Town, 

South Africa 

47 

(16 active TB, 31 LTB 

non-progressors I) 

Leicester, UK 

313 

(53 active TB, 23 

progressors,  

118 LTBI non-

progressors, 119 

healthy non-

progressors) 

Cohort 
HIV-negative individuals (16–84 yrs.) 

TB cases and TB contacts 

Baseline plus serial for 

a subset 

 

TB: Culture-confirmed or Xpert 

MTB/RIF 

 

LTBI: QFT positive 

2 years, active 

Adolescent 

cohort study 

(ACS) 

Cape Town, 

South Africa 

355 

(110 progressors, 245 

matched non-

progressors) 

Nested case-

control 

HIV-negative adolescents (12–18 

yrs.)  

with latent TB infection 

Serial (0, 6, 12, and 24 

months) 

TB: Intrathoracic disease with 2 

positive smears or 1 positive culture 

 

LTBI: QFT positive 

2 years, active 
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Table 2. Characteristics of studies used to derive signatures for risk profiling on tuberculosis datasets. 

 
Tissue Sequencing platform Cohort Severity Eligible signatures  

Wilk et al.26 PBMCs Seq-Well 

7 patients hospitalized with confirmed 

COVID-19 (all male, aged 20-80+ yrs.), 

6 healthy controls 

3 COVID-19 patients were on ventilation and diagnosed with ARDS; 

4 were less severely ill patients. Samples collected 2-16 days 

following symptom onset 

4 

Huang et al.27 PBMCs 10X Chromium 

8 active disease patients, 2 cured patients, 

3 healthy controls, and non-COVID-19 

patients 

Active disease patients: 1 critical case, 1 severe case, 6 moderate 

cases. Non-COVID-19 patients: 1 case of influenza A, 1 case of acute 

pharyngitis, and 1 case of cerebral infarction 

1 

Wen et al.20 PBMCs 10X Chromium 
10 recovering patients (5 male, 5 female, 

aged 40-70 yrs.), plus healthy controls 

5 early-recovery stage (ERS) and 5 late-recovery stage (LRS) 

patients, classified by days between blood sampling date and negative 

qPCR 

5 

Liao et al.13 BALF 10X Chromium 

6 COVID-19 patients (5 male, 1 female, 

median age: 49.5), 8 previously reported 

healthy lung controls 

3 severe, 3 mild 6 

Xiong et al.x 
BALF and 

PBMCs 
MGISEQ-2000 

3 COVID-19 patients and 3 healthy 

controls 
No severity information provided 2 

Hadjadj et al.22 
Whole 

blood 
nanoString nCounter 

50 COVID-19 patients with a spectrum 

of disease severity 
15 mild/moderate, 17 severe, and 18 critical 5 

Wei et al.21 PBMCs 10X Chromium 4 COVID-19 patients Patients sampled before, during, and after ICU care 4 
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Silvin et al.28 
Whole 

blood 
10X Chromium 

3 COVID-19 patients and 3 healthy 

controls 
1 mild, 2 severe patients sampled at day 0 and day 10 3 

Arunachalam et 

al.23 
PBMCs 10X Chromium 

7 COVID-19 patients and 5 healthy 

controls 
No severity information provided for scRNA-seq samples 5 

Dunning et al.9 
Whole 

blood 
Illumina GenomeStudio 

131 influenza patients, 155 healthy 

controls 
Not applicable 1 
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Figure captions 

 

Figure 1. PRISMA flow chart of study selection. PBMCs, peripheral blood mononuclear cells; BALF, 

bronchoalveolar lavage fluid. 

 

Figure 2. Profiling immune cell signatures from COVID-19 patients highlights increasing risk of severe disease 

associated with progression to active tuberculosis. COVID-19 immune cell signatures were derived from bulk and 

single-cell RNA-sequencing (RNA-seq) studies and used to generate putative “COVID-19 risk scores” from a 

tuberculosis (TB) whole blood bulk RNA-seq dataset using the TBSignatureProfiler package. TB samples are grouped 

according to disease state and COVID-19 signatures were categorised by immune cell or signature type. Scores for 

each signature were compared by contrasting each group with the London Latent group using a t-test adjusted for 

multiple testing using a Bonferroni correction. All signatures were derived from peripheral blood mononuclear cells 

(PBMCs) unless otherwise stated in the boxplot title. WB, whole blood; Mφ, macrophage; BALF, bronchoalveolar 

lavage fluid; ISG, interferon (IFN)-stimulated gene; NK, natural killer; ICU, intensive care unit; BTM, blood 

transcriptional module. *<0·05, **<0·005, ***<0·0005, ****<0·00005. 

 

Figure 3. Risk of developing severe COVID-19 is significantly elevated in patients that progress from latent to 

active tuberculosis disease. COVID-19 immune cell signatures that were associated with significant differences in 

COVID-19 risk score between controls and progressor/active tuberculosis (TB) cases were validated on two additional 

whole blood RNA-sequencing TB datasets - (A) the Adolescent Cohort Study and (B) the Grand Challenges 6 study. 

TB samples were classified as latent or progressors and COVID-19 signatures were categorised by immune cell or 

signature type. Samples from patients that progressed to active TB disease during the study follow-up period are 

coloured and scaled according to time to TB diagnosis, measured in days and plotted on a log2 scale. Scores for each 

signature were compared by contrasting progressor with latent cases using a t-test adjusted for multiple testing using a 

Bonferroni correction. All signatures were derived from whole blood unless otherwise stated in the boxplot title. 

*<0·05, **<0·005, ***<0·0005, ****<0·00005. 

 

Figure 4. Macrophage subpopulations upregulated in the lungs of severe COVID-19 patients can also be found 

in the circulation during active tuberculosis disease. Single-cell RNA-sequencing (scRNA-seq) data from 

bronchoalveolar lavage fluid (BALF) of severe COVID-19 patients (n = 6) and peripheral blood mononuclear cells 

(PBMCs) from patients with active tuberculosis (TB) disease (n = 3) were integrated. (A) t-distributed stochastic 

neighbour embedding (tSNE) plot of integrated scRNA-seq data in the left panel, with cells from severe COVID-19 

patients in guava and those from active TB patients in cyan, with corresponding cell clusters annotated based on 

identified markers in the right panel. (B) Macrophage clusters from the severe COVID-19 patients (left column) and 

active TB patients (right column), with the expression of major macrophage subpopulation markers identified in the 

original COVID-19 study - FCN1, high in G1, low in G2; SPP1, G2 and G3; FABP4, G4 - highlighted in red. (C) 

Violin plots depicting the expression levels of additional inflammatory marker genes associated with the macrophage 

subpopulations also present in the TB PBMC data, for each macrophage cluster. 
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Figure 5. Active TB disease and COVID-19 have similar perturbed pathways and gene networks. (A) Heatmap 

of the top 20 enriched pathways from the meta-analysis across the groups with the best p-values. Cells are coloured by 

their -log10(p-values), grey cells indicate a lack of significant enrichment for that term/ontology in the corresponding 

DEGs list. (B) Upset intersection plot showing the number of pathways shared between COVID-19 and the other 

groups compared. Wherever the genes are shared the specific coloured dots appear below the column bar graph which 

show the number of shared pathways, which are connected by vertical lines, denoting shared categories. The 

horizontal bars represent the category gene count and the numbers on the horizontal axes represent the common 

pathways between the represented category and COVID-19. (C) All MCODE components from a protein-protein 

interaction (PPI) network analysis of all merged gene lists are displayed as networks, nodes are displayed as pie 

charts, colour coded by disease group. The labels are added manually and are derived from functional labels based on 

the top three enriched terms for that cluster. 

 

Figure 6. Shared COVID-19 and TB cluster differentially expressed genes correlate with disease severity and 

interfere with COVID-19-specific gene signature detection. (A) Heatmap of the top 100 enriched pathways and 

three identified gene clusters, the circle colours correspond to the groups that formed part of the cluster, the letters in 

the circle indicate the groups: C, COVID-19; A, active TB; P, TB progressors; L, latent TB; F, influenza. (B) Bubble 

plot depicting the enrichment of identified cluster differentially expressed genes (DEGs) by COVID-19 disease 

severity (appendix 2 p8). The size and shade of the circle correspond to the -log10 q-value, represented as a scale on 

the right. (C) Box plots of the gene set variation analysis (GSVA) of COVID-19 scores based on the DEGs of each of 

the three identified clusters. Membership of the groups in the cluster is indicated in the circle appearing in the title of 

each boxplot. Scores for each signature were compared between each group at the “London Latent” control group 

using a t-test adjusted for multiple testing using a Bonferroni correction. (D) All pathways identified in the pathway 

meta-analysis were considered and selected based on COVID-19 exclusivity; bar plot of GSVA for mTORC1 

signalling pathway genes and the reduced COVID-19 20-gene signature, when profiled on the Leicester cohort and 

COVID-19 disease severity data. Scores for each signature were compared between each group at the “Healthy 

(Arunachalam et al.)” control group using a t-test adjusted for multiple testing using a Bonferroni correction. *<0·05, 

**<0·005, ***<0·0005, ****<0·00005.
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Figures 

110 potentially eligible studies 

identified by database search of 

PubMed, bioRxiv, medRxiv, and 

SSRN servers.

9 reviewed in-depth

101 excluded:

- Cell lines.

- Non-human studies

- Not sequenced on whole 

blood, PBMCs, or BALF

6 eligible studies 

performed on PBMCs:

- 4 sequenced on 10X 

Chromium

- 1 Sequenced on Seq-well

- 1 Sequenced on 

MGISEQ-2000

- 4 with COVID-19 

severity information

- 1 with no severity 

information 

2 eligible studies 

performed on BALF:

- 1 sequenced on 10X 

Chromium

- 1 Sequenced on 

MGISEQ-2000

- 1 with COVID-19 

severity information

- 1 with no severity 

information

2 eligible studies 

performed on Whole 

Blood:

- 1 sequenced on 

microarray Nanostring

- 1 sequenced on 10X 

Chromium

- 2 with COVID-19 

severity information
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