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Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected
transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology
that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization
(PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these
algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections
or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness
of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error
(CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN
designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation
and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern
classification problems.

1. Introduction

Artificial Neural Networks (ANNs) are system composed of
neurons organized in input, output, and hidden layers. The
neurons are connected to each other by a set of synaptic
weights. An ANN is a powerful tool that has been applied
in a broad range of problems such as pattern recognition,
forecasting, and regression. During the learning process, the
ANN continuously changes their synaptic values until the
acquired knowledge is sufficient (until a specific number of
iterations is reached or until a goal error value is achieved).
When the learning process or the training stage has finished,
it is mandatory to evaluate the generalization capabilities of
the ANN using samples of the problem, different to those
used during the training stage. Finally, it is expected that the
ANN can classify with an acceptable accuracy the patterns

from a particular problem during the training and testing
stage.

Several classic algorithms to train an ANN have been
proposed and developed in the last years. However, many
of them can stay trapped in nondesirable solutions; that is,
they will be far from the optimum or the best solution.
Moreover, most of these algorithms cannot explore multi-
modal and noncontinuous surfaces. Therefore, other kinds
of techniques, such as bioinspired algorithms (BIAs), are
necessary for training an ANN.

BIAs have a good acceptance by the Artificial Intelligence
community because they are powerful optimization tools
and can solve very complex optimization problems. For
a given problem, BIAs can explore big multimodal and
noncontinuous search spaces and can find the best solution,
near the optimum value. BIAs are based on nature’s behavior
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described as swarm intelligence. This concept is defined in [1]
as a property of systems composed of unintelligent agents
with limited individual capabilities but with an intelligent
collective behavior.

There are several works that use evolutionary and bioin-
spired algorithms to train ANN as another fundamental form
of learning [2]. Metaheuristic methods for training neural
networks are based on local search, population methods, and
others such as cooperative coevolutionary models [3].

An excellent work where the authors show an extensive
literature review of evolutionary algorithms that are used to
evolve ANN is [2]. However, most of the reported researches
are focused only on the evolution of the synaptic weights,
parameters [4], or involve the evolution of the neuron’s
numbers for hidden layers, but the number of hidden layers
is established previously by the designer. Moreover, the
researches do not involve the evolution of transfer functions,
which are an important element of an ANN that determines
the output of each neuron.

For example, in [5], the authors proposed a method
that combines Ant Colony Optimization (ACO) to find a
particular architecture (the connections) for an ANN and
Particle Swarm Optimization (PSO) to adjust the synaptic
weights. Other researches like [6] implemented a modifi-
cation of PSO mixed with Simulated Annealing (SA) to
obtain a set of synaptic weights and ANN thresholds. In
[7], the authors use Evolutionary Programming to get the
architecture and the set of weights with the aim to solve
classification and prediction problems. Another example is
[8] where Genetic Programming is used to obtain graphs
that represent different topologies. In [9], the Differential
Evolution (DE) algorithm was applied to design an ANN
to solve a weather forecasting problem. In [10], the authors
use a PSO algorithm to adjust the synaptic weights to model
the daily rainfall-runoff relationship in Malaysia. In [11], the
authors compare the back-propagation method versus basic
PSO to adjust only the synaptic weights of anANN for solving
classification problems. In [12], the set of weights are evolved
using the Differential Evolution and basic PSO.

In other works like [13], the three principle elements of
an ANN are evolved at the same time: architecture, transfer
functions, and synaptic weights.The authors proposed a New
Model of a PSO (NMPSO) algorithm, while, in [14], the
authors solve the same problem by means of a Differential
Evolution (DE) algorithm. Another example is [15], where
the authors used an Artificial Bee Colony (ABC) algorithm
to evolve the design of an ANN with two different fitness
functions.

This research has significant contributions in comparison
with these last three works. First of all, eight fitness functions
are proposed to deal with three common problems that
emerge during the design of the ANN: accuracy, overfitting,
and reduction of the ANN. In that sense, to handle better
the problems that emerge during the design of the ANN, the
fitness functions take into account the classification error,
mean square error, validation error, reduction of architec-
tures, and a combination of them. Furthermore, this research
explores the behavior of three bioinspired algorithms using

different values for their parameters. During the experimen-
tation phase, the best parameter’s values for these algorithms
are determined to obtain the best results. In addition, the
best configuration is used to generated a set of statistically
valid experiments for each selected classification problem.
Moreover, the results obtained with the proposed method-
ology in terms of the connection’s number, the neuron’s
number, and the transfer functions selected for each ANN
are presented and discussed. Another contribution of this
research is related to a new metric that allows comparing
efficiently the results provided by an ANN generated with the
proposed methodology. This metric takes into account the
recognition rate obtained during training and testing stages
where testing accuracy is more weighted in comparison to
training accuracy. Finally, the results achieved by the three
bioinspired algorithms are compared against those achieved
with two classic learning algorithms. The selection of the
three bioinspired algorithms was done because NMPSO is a
relatively new algorithm (proposed in 2009) which is based
on the metaphor of basic PSO technique so it is important
to compare its performance with others inspired in the same
phenomenon.

In general, it is possible to define the problem to be solved
as giving a set of input patterns 𝑋 = {x1, . . . , x𝑝}, x ∈ R𝑛,
and a set of desired patterns 𝐷 = {d1, . . . , d𝑝}, d ∈ R𝑚,
and finding the ANN represented by𝑊 ∈ R𝑞×(𝑞+3) such that
a function defined by min(𝐹(𝐷,𝑋,𝑊)) is minimized and 𝑞

defined the maximum number of neurons. It is important to
remark that the search space involves three different domains
(architecture, synaptic weight, and transfer functions).

This research provides a complete study about how an
ANN can be automatically designed by applying bioinspired
algorithms, particularly using the Basic Particle SwarmOpti-
mization (PSO), Second Generation PSO (SGPSO), and New
Model of PSO (NMPSO).Theproposedmethodology evolves
at the same time the architecture, the synaptic weights, and
the kind of transfer functions in order to design the ANNs
that provide the best accuracy for a particular problem.
Moreover, a comparison of the Particle Swarm algorithmper-
formance versus classic learning methods (back-propagation
and Levenberg-Marquardt) is presented. In addition, in this
research is presented a new way to select the maximum
number of neurons (MNN). The accuracy of the proposed
methodology is tested solving some real and synthetic pattern
recognition problems. In this paper, we show the results
obtained with ten classification problems of different com-
plexities.

The basic concepts concerning the three PSO algorithms
and ANN are presented in Sections 2 and 3, respectively.
In Section 4 the methodology and the strategy used to
design the ANN automatically are described. In Section 5 the
eight fitness functions used in this research are described.
In Section 6, the experimental results about tuning the
parameters for PSO algorithms are described. Moreover, the
experimental results are outlined in Section 7. Finally, in
Sections 8 and 9 the general discussion and conclusions of
this research are given.
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2. Particle Swarm Optimization Algorithms

In this section, three different algorithms based on PSO
metaphor are described. The first one is the original PSO
algorithm. Then, two algorithms which improve the original
PSO are shown: the Second Generation of PSO and a New
Model of PSO.

2.1. Original Particle Swarm Optimization Algorithm. The
Particle Swarm Optimization (PSO) algorithm is a method
for the optimization of continuous nonlinear functions pro-
posed by Eberhart et al. [16]. This algorithm is inspired
by observations of social and collective behavior on the
movements of bird flocks in search of food or survival as
well as fish schooling. A PSO algorithm is inspired on the
movements of the best member of the population and at
the same time also on their own experience. The metaphor
indicates that a set of solutions is moving in a search space
with the aim to achieve the best position or solution.

The population is considered as a cumulus of particles
𝑖 where each represents a position x𝑖 ∈ R𝐷, 𝑖 = 1, . . . ,𝑀
in a multidimensional space. These particles are evaluated in
a particular optimization function to recognize their fitness
value and save the best solution. All the particles change their
position in the search space according to a velocity function
k𝑖 which takes into account the best position of a particle in a
population p𝑔 ∈ R𝐷 (i.e., social component) as well as their
own best position p𝑖 ∈ R𝐷 (i.e., cognitive component). The
particles will move in each iteration to a different position
until they reach an optimum position. At each time 𝑡, the
particle velocity 𝑖 is updated using

k𝑖 (𝑡 + 1) = 𝜔k𝑖 (𝑡) + 𝑐1𝑟1 (p𝑖 (𝑡) − x𝑖 (𝑡))

+ 𝑐2𝑟2 (p𝑔 (𝑡) − x𝑖 (𝑡)) ,
(1)

where 𝜔 is the inertia weight and typically set up to vary
linearly from 1 to 0 during the course of an iteration run; 𝑐1
and 𝑐2 are acceleration coefficients; 𝑟1 and 𝑟2 are uniformly
distributed randomnumbers between (0, 1).The velocity k𝑖 is
limited to the range [Vmax, Vmin]. Updating velocity in this way
enables the particle 𝑖 to search for its best individual position
p𝑖(𝑡), and the best global particle position 𝑖 is computed as in

x𝑖 (𝑡 + 1) = x𝑖 (𝑡) + k𝑖 (𝑡 + 1) . (2)

2.2. Second Generation of PSO Algorithm. The SGPSO algo-
rithm [17] is an improvement of the original PSO algorithm
that considers three aspects: the local optimum solution of
each particle, the global best solution, and a new concept,
the geometric center of optimum swarm.The authors explain
that the birds keep a certain distance from the swarm center
(food). On the other hand, no bird accurately calculates the
position of the swarm center every time. Bird flocking always
stays in the same area for a specified time, during which the
swarm center will be kept fixed in every bird eyes. Afterward,
the swarm moves to a new area. Then all birds must keep a
certain distance in the new swarm center.This fact is the basis
of the SGPSO.

The position of the geometric centre 𝑃 ∈ R𝐷 of the
optimum swarm is updated according to

𝑃 =
1
𝑀

𝑀

∑

𝑖=1
p𝑖, if CI mod 𝑇 = 0, (3)

where 𝑀 is the number of particles in the swarm, CI is
the current iteration number, and 𝑇 is the geometric centre
updating time of optimum swarm with a value between
[1,MAXITER].

In SGPSO the velocity is updated by (4) and the position
of each particle by (5):

k𝑖 (𝑡 + 1) = 𝜔k𝑖 (𝑡) + 𝑐1𝑟1 (p𝑖 (𝑡) − x𝑖 (𝑡))

+ 𝑐2𝑟2 (p𝑔 (𝑡) − x𝑖 (𝑡))

+ 𝑐3𝑟3 (𝑃− x𝑖 (𝑡)) ,

(4)

x𝑖 (𝑡 + 1) = x𝑖 (𝑡) + k𝑖 (𝑡 + 1) , (5)

where 𝑐1, 𝑐2, and 𝑐3 are constants called acceleration coeffi-
cients, 𝑟1, 𝑟2, and 𝑟3 are random numbers in the range [0, 1],
and 𝑤 is the velocity inertia.

2.3. New Model of Particle Swarm Optimization. This algo-
rithm was proposed by Garro et al. [13] and is based on some
ideas that other authors proposed to improve the basic PSO
algorithm [4]. These ideas are described in next paragraphs.

Shi and Eberhart [18] proposed a linearly varying inertia
weight over the course of generations, which significantly
improves the performance of Basic PSO. The following
equation shows us how to compute the inertia:

𝑤 = (𝑤1 −𝑤2) ×
MAXITER − iter

MAXITER
+𝑤2, (6)

where 𝑤1 and 𝑤2 are the initial and final values of the inertia
weight, respectively, iter is the current iteration number, and
MAXITER is the maximum number of allowable iterations.
The empirical studies in [18] indicated that the optimal
solution could be improved by varying the value of 𝑤 from
0.9 at the beginning of the evolutionary process to 0.4 at the
end of the evolutionary process.

Yu et al. [4] developed a strategy that when the global
best position is not improving with the increasing number
of generations, each particle 𝑖 will be selected by a predefined
probability from the population, and then a random pertur-
bation is added to each velocity vector dimension k𝑖 of the
selected particle 𝑖. The velocity resetting is computed as in

v𝑖 = v𝑖 + (2× 𝑟 − 1) × Vmax, (7)

where 𝑟 is a uniformly distributed random number in the
range (0, 1) and Vmax is the maximum random perturbation
magnitude to each selected particle dimension.

Based on some evolutionary schemes of Genetic Algo-
rithms (GA), several effective mutation and crossover opera-
tors have been proposed for PSO. Løvberg et al. [19] proposed
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(1) Given a population of x𝑖 ∈ R𝐷, 𝑖 = 1, . . . ,𝑀 individuals.
(2) Initialize the population at random.
(3) Until a stop criteria is reached:
(4) if p𝑔 is not improved during NITER then
(5) Perform a velocity resting, (7).
(6) end if
(7) if 𝑟(0, 1) > 𝛾 then
(8) Create new neighbourhoods.
(9) end if
(10) Modify inertia weight, (6).
(11) for each individual x𝑖 do
(12) Evaluates their fitness.
(13) end for
(14) for each individual 𝑖 do
(15) Update its best position p𝑖.
(16) end for
(17) for each neighbourhood 𝑘 do
(18) Update the best individual p𝑔𝑘 .
(19) end for
(20) for each individual 𝑖 and each dimension: do
(21) Compute the velocity update equation v𝑖(𝑡 + 1), (11).
(22) Compute the current position x𝑖(𝑡 + 1).
(23) if 𝛾(0, 1) > 𝛼 then
(24) Apply crossover operator, (8) and (9).
(25) end if
(26) if 𝛾(0, 1) > 𝛽 then
(27) Apply mutation operator, (10).
(28) end if
(29) end for

Algorithm 1: New Model of PSO pseudocode.

a crossover operator in terms of a certain crossover rate 𝛼

defined in

ch1 (x𝑖) = 𝑟𝑖 par1 (x𝑖) + (1− 𝑟𝑖) par2 (x𝑖) , (8)

where 𝑟𝑖 is a uniformly distributed random number in the
range (0, 1), ch1 is the offspring, and par1 and par2 are the
two parents randomly selected from the population.

The offspring velocity is calculated in the following
equation as the sum of the two parents velocity vectors,
normalized to the original length of each parent velocity
vector:

ch1 (k𝑖) =
par1 (k𝑖) + par2 (k𝑖)
󵄨󵄨󵄨󵄨par1 (k𝑖) + par2 (k𝑖)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨par1 (k𝑖)
󵄨󵄨󵄨󵄨 . (9)

Higashi and Iba [20] proposed a Gaussian mutation
operator to improve the performance of PSO in terms of a
certain mutation rate 𝛽 defined in

ch (x𝑖) = par (x𝑖) +
MAXITER − iter

MAXITER
𝑁(0, 1) , (10)

where ch is the offspring, par is the parent randomly selected
from the population, iter is the current iteration number and
MAXITER is the maximum number of allowable iterations,
and 𝑁 is a Gaussian distribution. Utilization of these oper-
ators in PSO has the potential to achieve faster convergence
and find better solutions.

Mohais et al. [6, 21] used random neighborhoods in PSO,
together with dynamism operators.

In the NMPSO, the use of dynamic random neigh-
borhoods that change in terms of certain rates 𝛾 is pro-
posed. First of all, a maximum number of neighborhoods
MAXNEIGH is defined in terms of population size divided
by 4. With this condition at least each neighborhood 𝐾𝑛,
𝑛 = 1, . . . ,MAXNEIGH, will have 4 members. Then, the
members of each neighborhood 𝐾𝑛 are randomly selected,
and the best particle p𝑔𝐾𝑛 is computed. Finally, the velocity
of each particle 𝑖 is updated as in

k𝑖 (𝑡 + 1) = 𝜔k𝑖 (𝑡) + 𝑐1𝑟1 (p𝑖 (𝑡) − x𝑖 (𝑡))

+ 𝑐2𝑟2 (p𝑔𝐾𝑛 (𝑡) − x (𝑡)) ,
(11)

for all 𝑖 ∈ 𝐾𝑛, 𝑛 = 1, . . . ,MAXNEIGH.
The NMPSO combines the varying schemes of inertia

weight 𝜔 and acceleration coefficients 𝑐1 and 𝑐1, velocity
resetting, crossover and mutation operators, and dynamic
random neighbourhoods [13]. The NMPSO algorithm is
described in Algorithm 1.

3. Artificial Neural Networks

An ANN is a system that performs a mapping between input
and output patterns that represent a problem [22].The ANNs
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learn information during the training process after several
iterations. When the learning process finishes, the ANN is
ready to classify new information, predict new behaviours, or
estimate nonlinear function problems. Its structure consists
of a set of neurons (represented by functions) connected
among others organized in layers. The patterns that codify
the real problem codification a ∈ R𝑁 are sent through layers
and the information is transformed with the corresponding
synaptic weights W ∈ R𝑁 (values between 0 and 1). Then,
neurons in the following layers perform a summation of this
information depending on whether there exists a connection
between them. In addition, in this summation another input
called bias is considered where the value of its input is 1. This
bias is a threshold that represents the minimum level that
a neuron needs for activating and is represented by 𝜃. The
summation function is presented in

𝑜 =

𝑁

∑

𝑖=1
𝑎𝑖𝑤𝑖 + 𝜃. (12)

After that, the result of the summation is evaluated in
transfer functions 𝑓(𝑜) activated by the neuron input. The
result is the output neuron, and this information is sent to
the other connected neurons until they reach the last layer.
Finally, the output of the ANN is obtained.

The learning process consists of adapting the synaptic
weights until they reach the desire behaviour. The output is
evaluated to measure the performance of the ANN; if the
output is not as desired, the synaptic weights have to be
changed or adjusted in terms of the input patterns a ∈ R𝑁.
There are two ways to verify if the ANN has learned: first, the
ANN computes grades similarity between input patterns and
information that it knew before (nonsupervised learning).
Secondly, the ANN output with desire patterns y ∈ R𝑀

is compared (supervised learning). In our case, supervised
learning where the objective is to produce an output approx-
imation with the desired patterns of a input-output samples
set 𝑝 is applied (see the following equation):

T𝜉 = {(a𝜉 ∈R𝑁, d𝜉 ∈R𝑀)} ∀𝜉 = 1, . . . , 𝑝, (13)

where a is the input pattern and d the desired response.
Given the training sample T𝜉, the requirement is to

design and compute the neural network free parameters
so that the actual output y𝜉 of the neural network due
to a𝜉 is close enough to d𝜉 for all 𝜉 in a statistical sense
[15]. We may use the mean square error (MSE) given by
(14) as the first objective function to be minimized. There
are algorithms that adjust the synaptic weights to obtain a
minimum error such as the classic back-propagation (BP)
algorithm [23, 24]. This algorithm like others is based on the
descendant gradient technique, which can stay trapped in a
local minimum. Furthermore, a BP algorithm cannot solve
noncontinuous problems. For this reason, the applications of
other techniques that can solve noncontinuous and nonlinear
problems are necessary to implement for obtaining a better

performance of the ANN and solving really complex prob-
lems:

𝑒 =
1

𝑝 ⋅ 𝑀

𝑝

∑

𝜉=1

𝑀

∑

𝑖=1
(𝑑
𝜉

𝑖
−𝑦
𝜉

𝑖
)
2
. (14)

4. Proposed Methodology

The most important elements to design and improve the
accuracy of an ANN are the architecture (or topology),
the set of transfer functions (TF), and the set of synaptic
weights and bias. These elements should be codified into
the individual that represents the solution of our problem.
The solutions generated by the bioinspired algorithms will
be measured by the fitness function with the aim to select
the best individual which represents the best ANN.The three
bioinspired algorithms (basic PSO, SGPSO, andNMPSO) are
going to lead the evolutionary learning process until finding
the best ANN by using one of the eight fitness functions
proposed in this paper. It is important to remark that only
pattern classification problems will be solved by the proposed
methodology.

The methodology is evaluated with three particle swarm
algorithms and eight fitness functions. Therefore, this
involves an extensive behavioral study for each algorithm.
Another point to review is the maximum number of neurons
(MNN) used by the methodology to generate the ANN
which is directly related to the dimension of the individual.
Due to the information needed to determine the size of the
individuals for a specific problem only depending on the
input and output patterns (because the supervised learning is
applied), it was necessary to propose an equation that allow
us to obtain the MNN to design the ANN. This equation is
explained in the individual section.

In Figure 1, a diagram of the proposed methodology is
shown. During the training stage, it is necessary to define
the individual and the fitness functions to evaluate each
individual. The size of the individual depends on the size of
the input patterns aswell as the desire patterns.The individual
will be evolved during a certain time to obtain the best
solution (with a minimum error). At the end of the learning
process, it is expected that the ANN provides an acceptable
accuracy during the training and testing stage.

4.1. Individual. When solving an optimization problem, the
problem has to be described as a feasible model. After the
model is defined, the next step is focused on designing the
individual that codifies the solution for the problem. Equa-
tion (15) shows an individual represented with a matrix that
codifies the ANN design. This codification was previously
described in [13–15]. As it is necessary to evolve the three
ANN elements at the same time, a matrix W ∈ R𝑞×(𝑞+3)

is composed by three principal parts with the following
information: first, the topology (𝑇), second the synaptic
weights and bias (SW), and third the transfer functions (TF),
where 𝑞 is the maximum number of neurons (MNN) defined
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Figure 1: General diagram of the proposed methodology.

by 𝑞 = 𝑚 + 𝑛 + ((𝑚 + 𝑛)/2), 𝑛 is the input patterns vector
dimension, and𝑚 is the desired patterns vector dimension:

[
[
[
[

[

𝑥1,1

.

.

.

𝑥MNN,1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑇

𝑥1,2 ⋅ ⋅ ⋅ 𝑥1,MNN+2

.

.

. d
.
.
.

𝑥MNN,2 ⋅ ⋅ ⋅ 𝑥MNN,MNN+2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

SW

𝑥1,MNN+3

.

.

.

𝑥MNN,MNN+3

]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

TF

. (15)

The matrix that represents the individual codifies three
different types of information (topology, synaptic weights,
and transfer function). In that sense, it is necessary to
determine the exploring range of each type of information in
its corresponding search space. For the case of the topology,
the range is set between [1, 2MNN

− 1] due to the integer
number of this part being codified into a binary vector
composed of MNN elements that indicates if there is a
connection between neuron 𝑖 and neuron 𝑗.

The synaptic weights and bias have a range between
[−4, 4] and [−2, 2] and for the transfer functions the range
is [1, nF], where nF is the total number of transfer functions.

4.2. Architecture and Synaptic Weights. Once the individuals
or possibles solutions are obtained, it is necessary to decode
thematrix informationW into anANN for its evaluation.The
first element to decode is the topology in terms of the synaptic
weights and transfer functions that are stored in the matrix.

This research is limited to a kind of feed-forward ANN,
for this reason some rules were proposed to guarantee that
no recurrent connections will appear in the ANN (the unique
restriction for the ANN). In future works, we will include
recurrent connections and study the behavior of this type of
ANNs.

The architectures generated by the proposed methodol-
ogy will be composed of only three layers: input, hidden, and
output. To generate valid architectures the following three
rules must satisfied.

Let ILN be the set of 𝐼 neurons composing the input layer,
HLN the set of 𝐽 neurons composing the hidden layer, and
OLN the set of 𝐾 neurons composing the output layer.

(1) For the input layer neurons (ILN), the ILN𝑖, 𝑖 =

1, . . . , 𝐼, neuron only can send information to HLN𝑗
and OLN𝑘.

(2) For the hidden layer neurons (HLN), the HLN𝑗, 𝑗 =

1, . . . , 𝐽, neuron only can send information to OLN𝑘
and HLN𝑗 with one restriction for the last. For HLN𝑗
there is a connection only with HLN𝑗+1, . . . ,HLN𝐽.

(3) For the output layer neuron (OLN), the OLN𝑘, 𝑘 =

1, . . . , 𝐾 neuron only can send information to other
neurons of their layer but with a restriction, for OLN𝑘
there is a connection only with OLN𝑘+1, . . . ,OLN𝐾.

To decode the architecture taking into account these
rules, the information inW𝑖𝑗 with 𝑖 = 1, . . . ,MNN and 𝑗 = 1
(which is in decimal base) is codified based on the binary
square matrix Z. This matrix will represent a graph where
each component 𝑧𝑖𝑗 indicates the links between neuron 𝑖 and
neuron 𝑗 when 𝑧𝑖𝑗 = 1. For example, suppose that W𝑖𝑗 has
an integer number “57.” It is necessary to transform it into a
binary code “0111001.” The binary code is interpreted as the
connections of a 𝑖th neuron to seven neurons (number of
bits). In this case, only neurons two, three, four, and seven
(from left to right) links to neuron 𝑖 are observed.

Then, the architecture is now evaluated with the corre-
sponding synaptic weights of the component W𝑖𝑗 with 𝑖 =

1, . . . ,MNN and 𝑗 = 2, . . . ,MNN + 1. Finally, each neuron
computes its output with its corresponding transfer function
shown in the same array. In the case of bias, it is encoded in
the componentW𝑖𝑗 with 𝑖 = 1, . . . ,MNN and 𝑗 = MNN + 2.

4.3. Transfer Functions. The TF are represented in the com-
ponent W𝑖𝑗 with 𝑖 = 1, . . . ,MNN and 𝑗 = MNN + 3. The
transfer functions are in the range of [0, 5] representing one
of the six transfer functions selected in this work.

Although there are several transfer functions that can be
used in the ANN context, in this work the most popular
and useful transfer functions in several kinds of problems
are selected.The transfer functions in this research with their
labels to identify them are Sigmoid function (LS), hyperbolic
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(1) for 𝑖 = 1 to 𝑛 do
(2) Compute the output 𝑜𝑖 = 𝑎𝑖.
(3) end for
(4) for 𝑖 with 𝑖 = 𝑛 + 1 to MNN do
(5) Get connections by using individual x1,𝑖.
(6) Get connections vector z for neuron 𝑖 from𝑊𝑖.
(7) Get synaptic weights s for neuron 𝑖 from𝑊𝑖.
(8) Get the bias 𝑏 for neuron 𝑖 from𝑊𝑖.
(9) Get the transfer function index 𝑡 for neuron 𝑖 from𝑊𝑖.
(10) Compute the output of neuron 𝑖 as 𝑜𝑖 = 𝑓𝑡(∑

𝑖

𝑗=1 𝑠𝑗 ⋅ 𝑧𝑗 ⋅ 𝑜𝑖 + 𝑏).
(11) end for
(12) for 𝑖 = MNN − 𝑚 to MNN do
(13) Compute the ANN output with 𝑦𝑖−(MNN−𝑚+1)+1 = 𝑜𝑖.
(14) end for

Algorithm 2: Output of the ANN pseudocode.

tangent function (HT), sinusoidal function (SN), Gaussian
function (GS), linear function (LN), and hard limit function
(HL).

4.4. ANN Output. Once decoded the information from the
individual is necessary to know its efficiency to be evaluated
with any of the fitness functions. To do this, it is necessary to
calculate the output of the ANN designed during the training
stage and generalization stage.This output is calculated using
Algorithm 2, where 𝑜𝑖 is the output of the neuron 𝑖, 𝑎𝑗 is the
input pattern that feeds the ANN, 𝑛 is the dimensionality
of the input pattern, 𝑚 is the dimensionality of the desired
pattern, and 𝑦𝑖 is the output of the ANN.

5. Proposed Fitness Functions

Each individual must be selected based on their fitness,
and the best solution is taken depending on the evaluation
(performance) of each individual. In this work, we propose
eight different fitness functions to design an ANN. It is
important to remark that fitness functions only are used
during the training stage to evaluate each solution. After
designing the ANN, we use a new metric that allows us
to compare efficiently the results provided by the ANN
generated with the proposed methodology.

5.1. Mean Square Error. The mean square error (MSE) rep-
resents the error between the ANN output and the desire
patterns. In this case, the best individual is the one which
generates the minimumMSE (see the following equation):

𝐹1 = MSE = (
1

𝑝 ⋅ 𝑀

𝑝

∑

𝜉=1

𝑀

∑

𝑖=1
(𝑑
𝜉

𝑖
−𝑦
𝜉

𝑖
)
2
) , (16)

where 𝑦𝑖 is the output of the ANN.

5.2. Classification Error. The classification error (CER) is
calculated as follows: the output of theANN𝑦𝑖 is transformed
into binary codification by means of the winner-take-all
technique. The binary chain must have only a number 1 and

the rest is composed of 0s. This indicates that the position
with 1 is the class to which the input pattern belongs. This
binary chain is compared against the desire pattern, if they
are equal the classification was done correctly.

In this case, the best ANN is the one which generates the
minimum wrong classified patterns. The CER is represented
by

𝐹2 = CER = (1− npbc
tpc

) , (17)

where npbc represents the number of patterns well classified
and tpc is the total of patterns to classify.

5.3. Validation Error. When theANN is trained during a long
period, the ANN could get a maximum learning in which
the ANN becomes adept (overfitting). However, this has a
disadvantage because if the input data during the testing stage
are contaminated with a negligible amount of noise, the ANN
will not be able to recognize new patterns.

For that reason, we need to include a validation phase
to prevent overfitting and thus guarantee an adequate gen-
eralization. Therefore, we designed a fitness function that
integrates the assessment of both the training and validation
stages.

Based on this idea, two fitness functions were generated:
the first evaluates the mean square error (MSE) on the
training set MSE𝑇 and the MSE on the validation set MSE𝑉;
see (18). The second function takes into account both the
classification error (CER) on the training set CER𝑇 and the
classification error on the validation set CER𝑉; see (19):

𝐹3 = 𝑉MSE = 0.6× (MSE𝑉) + 0.4× (MSE𝑇) , (18)

𝐹4 = 𝑉CER = 0.6× (CER𝑉) + 0.4× (CER𝑇) . (19)

In order to evaluate the fitness of each solution using (18)
and (19), it is necessary to first computed the MSE or CER
using the training set; after that, the MSE or CER using the
validation set is computed. It is important to notice that the
error achieved with the validation set is more weighted than
the error obtained with the training set.
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Table 1: Classification problems description.

ID problem Classification problems Pattern description Total patterns
1 Spiral 2 characteristics that describe 2 classes 194
2 Synthetic 1 2 characteristics that describe 2 classes 300
3 Synthetic 2 2 characteristics that describe 2 classes 450
4 Iris plant 4 characteristics that describe 3 classes 150
5 Breast cancer 9 characteristics that describe 2 classes 683
6 Diabetes 8 characteristics that describe 2 classes 768
7 Liver disorders 6 characteristics that describe 2 classes 345
8 Object recognition 7 characteristics that describe 5 classes 100
9 Wine 13 characteristics that describe 3 classes 178
10 Glass 9 characteristics that describe 6 classes 214

5.4. Reduction of the Architecture. In order to generate a
smaller ANN in terms of the number of connections, it is
necessary to design a fitness function that takes into account
the performances of the ANN in terms of the MSE or CER as
well as a factor related to the number of connections used in
the ANN.

In that sense, we proposed the following equation for
computing the factor that allows us to measure the size of the
ANN in terms of the number of connections:

RA =
NC

NMaxC
, (20)

where NC represents the number of connections when the
proposed methodology is applied and NMaxC represents the
maximum number of connection that an ANN can generate
which is computed as in

NMaxC =

MNN
∑

𝑖=𝑛

𝑖, (21)

where MNN is the maximum number of neurons.
It is important to mention that not necessarily less or

more connections generate a better performance; however, by
using factor RA, it is possible to weight other metrics that can
measure the performance of the ANN and find the ANNwith
less connections with an acceptable performance.

In that sense, we proposed two new fitness functions
in terms of the MSE function equation (22) and in terms
of the CER function equation (23). These fitness functions
tend to the global minimum when the factor RA and the
performance are small; however, when one of these terms
tends to increase, the fitness function tends to move away
from the global minimum:

𝐹5 = RAMSE = RA ⋅MSE, (22)

𝐹6 = RACER = RA ⋅CER. (23)

5.5. Architecture Reduction and Validation Error with MSE
and CER Errors. At last, two fitness functions RA𝑉MSE and
RA𝑉CER were generated: the first reduces simultaneously
the architecture, the validation error, and the MSE; see (24).

The second function reduces the architecture, the validation
error, and the CER equation (25):

𝐹7 = RA𝑉MSE

= RA ⋅ (0.6× (MSE𝑉) + 0.4× (MSE𝑇)) ,
(24)

𝐹8 = RA𝑉CER

= RA ⋅ (0.6× (CER𝑉) + 0.4× (CER𝑇)) .
(25)

6. Tuning the Parameters for PSO Algorithms

Ten classification problems of different complexity were
selected to evaluate the accuracy of the methodology: Iris
plant, wine, breast cancer, diabetes, and liver disorder datasets
whichwere taken from theUCImachine learning benchmark
repository [25]. The object recognition problem was taken
from [26], and the spiral, synthetic 1, and synthetic 2 datasets
were developed in our laboratory. The pattern dispersions of
these datasets are shown in Figure 2.

Table 1 shows the description for each classification prob-
lem.

Each dataset was randomly divided into three sets for
training, testing, and validating the ANN as follows: 33% of
the total patterns for the training stage, 33% for validation
stage, and 34% for testing stage.

After that, the best parameter values for each algorithm
were found to obtain the best performance for each classifica-
tion problem.Then, the best configuration for each algorithm
was used to validate statistically the accuracy of the ANN.

To determine which parameters generate the best ANN
in terms of its accuracy, it is necessary to analyze training
and testing performance. Although the accuracy of the ANN
should be measured in terms of the testing performance, it
is also important to consider the performance that achieves
the ANN during the training stage, in order to find the
parameters that provoke the best results during training and
testing stages. Instead of analyzing the training and testing
performances separately, we proposed a new metric that let
us consider the accuracy of the ANN during training and
testing stages. This metric allows us to weight the testing
performance to validate the accuracy of the proposal and, at
the same time, to have the confidence that training stage was
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Figure 2: Pattern dispersion for the three synthetic problems. (a) Pattern dispersion for spiral problem. (b) Pattern dispersion for synthetic
1 problem. (c) Pattern dispersion for synthetic 2 problem.

done with an acceptable accuracy. This metric computed a
weighted recognition rate (wrr) and it is described in

wrr = 0.4× (Trrr) + 0.6× (Terr) , (26)

where Trrr represents the recognition rate obtained during
the training stage and Terr represents the recognition rate
obtained during the testing stage.

From (26), we could observe that testing and training
stages were weighted by a factor of 0.6 and 0.4, respectively.
Using these factors, we can avoid that high wrr value may be
obtained by a higher training recognition rate and a lower
testing recognition rate.

The analysis to select the best values of each algorithmwas
performed taking into account the ten classification problems
described above.The different parameters for each algorithm
were varied in different ranges to evaluate the performance of
the algorithms over different pattern recognition problem. In
order to find the best configuration for the parameters of each
algorithm, several experiments were done assigning different
values to each parameter in the three bioinspired algorithms
(original PSO, SGPSO, and NMPSO).

The parameters were divided into two types: the param-
eters that are shared or common to all algorithms, such
as the number of generations, the number of individuals,

the range of variables, and the fitness function. The specific
parameters are those that are unique or specific to each
algorithm, for example, for the basic PSO algorithm, inertia
𝜔 and the two coefficients of acceleration 𝑐1 and 𝑐2 are the
parameters that change. In the case of SGPSO algorithm takes
two parameters, the coefficient of acceleration 𝐶3 and the
geometric center 𝑃. Finally, the NMPSO algorithm has the
crossover operator 𝛼, the mutation operator 𝛽, and 𝛾 which
determine when each neighborhood should be updated.

For each parameter configuration and each problem 5
experiments with 2000 generations were performed. Once
theANNswere designedwith the proposedmethodology, the
average weighted recognition rate wrr was obtained.

Next is described which values were taken for each
parameter to obtain the best configuration for each bioin-
spired algorithm.

The common parameters for the three algorithms are
represented as follows: for the population size, in the variable
V = {50, 100} the first element corresponds to 50 individuals
and the second corresponds to 100 individuals. In the case
of the search space size 𝑤 = {2, 4} the first element
indicates that the range is set to [−2, 2] and the second item
indicates that the range is between [−4, 4]. The type of fitness
function used with the bioinspired algorithm is represented
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Figure 3: SomeANNgenerated using basic PSO algorithm. (a)The best architecture for spiral problem. (b)The best architecture for synthetic
1 problem. (c) The best architecture for synthetic 2 problem. (d) The best architecture for Iris plant problem.

by the variable 𝑥 and can take one of the eight elements,
𝑥 = {MSE,CER, 𝑉MSE, 𝑉CER,RAMSE,RACER,RA𝑉MSE,
RA𝑉CER}.

All the possible combinations using the different param-
eter values were tested.The eighth fitness function was tested
using all the classification problems proposed in this research
to see which provides the best accuracy.

The configuration to determine the value for each param-
eter for original PSO is determined by the following sequence:
V − 𝑤 − 𝑥 − 𝑢 − 𝑦 − 𝑧.

The basic PSO algorithm has three unique parameters:
the inertia weight 𝜔 represented by 𝑢 which can take the
following values 𝑢 = 0.3, 0.5, 0.7, 0.9 and the two acceleration
coefficients 𝑐1 and 𝑐2 represented by𝑦 and 𝑧, respectively, with
the values 𝑦 = 𝑧 = 0.5, 1.0, 1.5. Once we finished the set of
experiments to test the performance of the original (basic)
PSO algorithm with all the previous values combinations,
we found that the best parameter configuration was 100 −

[−2, 2] − 𝑉CER − 0.3 − 1.0 − 1.5.
SGPSO algorithm has two unique parameters: the accel-

eration coefficient 𝐶3 represented by the variable 𝑦 whose
values are 𝑦 = 0.5, 1.0, 1.5 and the geometric center 𝑃

represented by the variable 𝑧 with values 𝑧 = 100, 200, 300.
In the case of the acceleration coefficients 𝑐1 and 𝑐2, it took
the best values found for the basic PSO algorithms: 𝑐1 = 1.0,
𝑐2 = 1.5, and 𝜔 = 0.3. After several experiments, the best
parameter configuration for SGPSOwas 100−[−2, 2]−CER−
0.5 − 100.

The NMPSO algorithm has three unique parameters: the
updating neighborhood rate 𝛾 which takes the values 𝑢 =

100, 200, 300, the crossover factor 𝛼, and the mutation factor
𝛽, which are represented by the variables 𝑦 and 𝑧; both
take the values 𝑦 = 𝑧 = 0.1, 0.5, 0.9. The best parameter

configuration found for NMPSO was 100 − [−4, 4] − CER −

200 − 0.1 − 0.1.

7. Experimental Results

Once we determined the best configuration for each algo-
rithm, we performed an exhaustive testing of 30 runs for
each pattern classification problem.The accuracy of the ANN
generated by the methodology was measured in terms of
the weighted recognition rate (26).The following subsections
describe the results obtained for each database and each
bioinspired algorithm.These experiments show the evolution
of the fitness function during 5000 generations, the weighted
recognition rate, and some examples of the architectures
generated with the methodology.

7.1. Results for Basic PSO Algorithm. In Figure 3 are shown
some of the ANNs generated using the PSO algorithm that
provide the best results for the recognition problem.

Figure 4(a) showed the evolution of the fitness function
𝑉CER where we can appreciate the tendency for each
classification problem. These results were obtained with the
best configuration of basic PSO.

The evolution of the fitness function represents the aver-
age of the 30 experiments for each problem. It is observed that
the value of the fitness function for the glass, spiral, liver dis-
orders, diabetes, and synthetic 2 problems slightly decreases
despite the number of generations. Smaller values for the
fitness function were achieved with the Iris plant, breast
cancer, and synthetic 1 problems.With the object recognition
andwine problems, the value of the fitness function decreased
when approaching the limit of generations. The average
weighted recognition rate for each problem is presented in
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Table 2: Number of times that transfer function was selected by basic PSO algorithm.

ID
problem

Classification
problems

Sigmoid
function (LS)

Hyp. Tan.
function (HT)

Sinusoid
function (SN)

Gaussian
function (GS)

Linear function
(LN)

Hard limit
function (HL)

1 Spiral 3 3 66 32 9 0
2 Synthetic 1 1 10 51 29 18 2
3 Synthetic 1 2 12 57 29 9 7
4 Iris plant 6 27 51 63 25 1
5 Breast cancer 2 40 51 61 32 8
6 Diabetes 4 30 57 76 26 0
7 Liver disorders 3 18 62 65 19 4

8 Object
recognition 6 33 116 126 40 6

9 Wine 1 46 98 125 42 3
10 Glass 5 54 140 145 46 0

Total 33 273 749 751 266 31
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Figure 4: Average results for ten classification problems using basic PSO algorithm. (a) Average error evolution. (b) Average weighted
recognition percentage.

Figure 4(b). It can be observed that, for the glass problem,
the ANN achieved the smallest average weighted recognition
rate (52.67%), followed by the spiral (53.39%), liver disorders
(68.74%), diabetes (76.90%), object recognition (80.22%),
synthetic 2 (82.96%), and wine (86.49%).The highest average
weighted recognition rates were achieved for the synthetic 1
(95.03%), the Iris (96.35%), and the breast cancer (96.99%).

Table 2 presents the frequency at which the six different
transfer functions were selected for the ANN during the
training stage. Applying the PSO algorithm, we see that
there is a small range of selected functions. For example, the
sinusoidal function was selected more often for the spiral,

synthetic 1, and synthetic 2 problems. The Gaussian transfer
function was selected more often for Iris plant, breast cancer,
diabetes, liver disorders, object recognition, wine, and glass
problems.

Table 3 shows the maximum, minimum, standard devia-
tion, and average number of connections used by the ANN.
As you can see, in average, the number of connections is low
for the problems of spiral, synthetic 1, and synthetic 2. For the
glass and wine, in average, 97.43 and 91.1 connections were
used, respectively.

Table 4 shows the maximum, minimum, standard devi-
ation, and average the number of neurons used in the ANN
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Table 3: Number of connections used by the ANN generated with the basic PSO algorithm.

ID problem Classification problems Connection number
Minimum Maximum Average Std. dev.

1 Spiral 4 10 7.2667 1.4126
2 Synthetic 1 5 10 7.0667 1.2576
3 Synthetic 2 5 9 7.5 1.3326
4 Iris plant 14 23 18.9667 2.4563
5 Breast cancer 19 50 38 6.9926
6 Diabetes 8 47 35 7.0759
7 Liver disorders 16 31 24.6667 3.8177
8 Object recognition 54 71 62.8 4.9578
9 Wine 59 109 91.1 13.2336
10 Glass 81 108 97.4333 6.3933

Table 4: Number of neurons used by the ANN generated with the basic PSO algorithm.

ID problem Classification problems Neurons number
Minimum Maximum Average Std. dev.

1 Spiral 3 4 3.7667 0.4302
2 Synthetic 1 2 4 3.7 0.5350
3 Synthetic 2 3 4 3.8667 0.3457
4 Iris plant 5 6 5.7667 0.4302
5 Breast cancer 3 7 6.4667 0.9371
6 Diabetes 2 7 6.4333 1.0063
7 Liver disorders 4 6 5.7 0.5350
8 Object recognition 10 11 10.9 0.3051
9 Wine 8 11 10.5 0.8610
10 Glass 13 13 13 0

generated with the proposed method. In this table, we can
see that the number of neurons in the ANN for the ten
classification problems was no more than 13.

7.2. Results for SGPSOAlgorithm. In Figure 5 are shown some
of the best ANNs generated with the SGPSO algorithm.
You can also observe an example of an ANN with a input
neuron without any connection; see Figure 5(c). The lack
of connection in the ANN indicates that the input feature
was not necessary to solve the problem. In other words, a
dimensionality reduction of the input pattern was also done
by the proposed methodology.

Figure 6(a) shows the evolution of the fitness function
CERwhere we can see the tendency of the fitness function for
each classification problem.These results were obtained with
the best parameter configuration for the SGPSO algorithm.
In general, the problems whose values are near to the optimal
solution are the breast cancer, Iris plant, and synthetic 1, being
in last place with high errors the liver disorders, glass, and
spiral problems.

The average weighted recognition rate for each problem
is presented in Figure 6(b). It was observed that for the glass
problem the proposed methodology achieved the smallest
weighted recognition rate (54.31%), followed by the spiral
(55.60%), liver disorders (69.19%), diabetes (76.09%), object
recognition (80.45%), synthetic 2 (81.39%), wine (82.47%),

and synthetic 1 (93.61%).The second highest weighted recog-
nition rate was achieved for the Iris plant (96.45%). The
highest weighted recognition rate was achieved for the breast
cancer problem (97.03%).

Table 5 presents the number of times that transfer func-
tions were selected using the SGPSO algorithm.The sinusoid
function was the most selected by 9 of the 10 classification
problems: spiral, synthetic 1 and synthetic 2, Iris plant,
diabetes, liver disorders, object recognition, wine, and glass
problems. For the breast cancer problem, sinusoid function
was selected almost at the same rate as the Gaussian function.

Furthermore, Table 6 shows the maximum, minimum,
standard deviation, and average number of connections used
by theANNdesignedwith the proposedmethodology. In this
case, SGPSO generates more connections between neurons
of the ANN for the ten classification problems than those
generated with the basic PSO algorithm.

Table 7 shows the maximum, minimum, standard devia-
tion, and average number of neurons required for the ANN
using SGPSO algorithm.

7.3. Results for NMPSO Algorithm. Figure 7 shows some of
the best ANNs generated with the NMPSO algorithm. The
fitness function used with the NMPSO algorithm was CER
function.
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Figure 5: Some ANN using SGPSO algorithm. (a) The best architecture for Iris plant problem. (b) The best architecture for breast cancer
problem. (c) The best architecture for diabetes problem. (d) The best architecture for liver disorders problem.

The evolution of the fitness function for the 10 classifica-
tion problems is shown in Figure 8(a) where it is observed
that the minimum values are reached with the synthetic 1,
breast cancer, and Iris plant problems. For the case of wine
problem the value of the fitness function improves while the
generation’s number increased. The worst case was observed
for the glass problem.

The weighted recognition rate for each problem is shown
in Figure 8(b). From this graph, we observed that the aver-
age weighted recognition rate for the glass problem was
54.06%, for the spiral problem 62.97% and for liver disor-
ders it achieved 70.01%, the diabetes problem 76.89%, the
object recognition problem 85.73%, and synthetic problem 2
86.30%.The best recognition rate was achieved with the wine

problem (88.62%), Iris plant (96.60%), breast cancer (97.11%),
and synthetic 1 (97.42%).

The number of times that the transfer functions were
selected using NMPSO algorithm is described in Table 8.
Using the sinusoidal function, the ANNs provide better
results for the spiral, synthetic problem 1, synthetic problem2,
and the object recognition problem. For the the Iris plant,
breast cancer, diabetes, liver disorders, wine, and glass prob-
lems the Gaussian function was the most selected.

In general, the transfer functionmost often selected using
NMPSOalgorithmwas theGaussian, second sinusoidal func-
tion, then the hyperbolic tangent, next the linear function,
and the last places the sigmoid and hard limit functions.
Table 9 shows the maximum, minimum, standard deviation,
and average connections number.
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Figure 6: Average results for ten classification problems using basic SGPSO algorithm. (a) Average error evolution. (b) Average weighted
recognition rate.

Table 5: Number of times that transfer function was selected by SGPSO algorithm.

ID
problem

Classification
problems

Sigmoid
function (LS)

Hyp. Tan.
function (HT)

Sinusoid
function (SN)

Gaussian
function (GS)

Linear function
(LN)

Hard limit
function (HL)

1 Spiral 0 9 70 30 1 0
2 Synthetic 1 0 2 72 38 2 0
3 Synthetic 2 0 1 80 29 2 0
4 Iris plant 2 13 103 54 4 0
5 Breast cancer 5 28 71 72 22 1
6 Diabetes 2 17 93 73 6 0
7 Liver disorders 2 12 99 56 2 0

8 Object
recognition 0 11 198 116 3 0

9 Wine 3 34 134 120 24 1
10 Glass 0 24 215 144 4 0

Total 14 151 1135 732 70 2

Table 6: Number of connections used by the ANN generated with the SGPSO algorithm.

ID problem Classification problems Connection number
Minimum Maximum Average Std. dev.

1 Spiral 4 10 6.8667 1.8520
2 Synthetic 1 4 9 6.6333 1.4016
3 Synthetic 2 5 10 7.0667 1.4368
4 Iris plant 12 25 19.7667 3.025
5 Breast cancer 30 49 40.9333 4.2906
6 Diabetes 20 47 36.7 6.8337
7 Liver disorders 14 34 26.9333 4.1517
8 Object recognition 52 79 66.1667 6.2648
9 Wine 71 107 93.833 9.0443
10 Glass 81 109 96.2 7.4575



Computational Intelligence and Neuroscience 15

Table 7: Number of neurons used by the ANN generated with the SGPSO algorithm.

ID problem Classification problems Neurons number
Minimum Maximum Average Std. dev.

1 Spiral 2 4 3.6667 0.5467
2 Synthetic 1 3 4 3.8 0.4068
3 Synthetic 2 3 4 3.7333 0.4498
4 Iris plant 4 6 5.8667 0.4342
5 Breast cancer 5 7 6.6333 0.5561
6 Diabetes 4 7 6.3667 0.8899
7 Liver disorders 4 6 5.7 0.5350
8 Object recognition 10 11 10.9333 0.2537
9 Wine 9 11 10.5333 0.6288
10 Glass 12 13 12.9 0.3051

Table 8: Number of times that transfer function was selected by NMPSO algorithm.

ID problem Classification
problems

Sigmoid
function (LS)

Hyp. Tan.
function (HT)

Sinusoid
function (SN)

Gaussian
function (GS)

Linear function
(LN)

Hard limit
function (HL)

1 Spiral 0 1 80 25 10 0
2 Synthetic 1 1 9 48 44 6 1
3 Synthetic 2 0 3 62 41 6 1
4 Iris plant 5 17 63 68 17 3
5 Breast cancer 2 41 52 62 29 3
6 Diabetes 3 24 55 82 23 1
7 Liver disorders 0 9 65 81 4 0

8 Object
recognition 0 19 174 115 19 0

9 Wine 3 58 76 137 40 5
10 Glass 1 53 114 172 48 2

Total 15 234 789 827 202 16

In Table 10 are shown themaximum,minimum, standard
deviation, and the average number of neurons used by the
ANN generated with the NMPSO algorithm.

8. General Discussion

In general, Table 11 shows a summary of results taking into
account the average weighted recognition rate obtained with
the three bioinspired algorithms.

For the cases of the spiral, synthetic 1, Iris plant, breast
cancer, liver disorders, object recognition, andwine problems
the algorithm providing better results was the NMPSO algo-
rithm. For the glass problem the best accuracy was achieved
with SGPSO algorithm and for the case of diabetes the best
performance was achieved using the basic PSO algorithm.

From Table 11, it is possible to see that the best algorithm,
in terms of the weighted recognition rate, was NMPSO
(81.57%), the second best algorithm was basic PSO (78.97%),
and the last was SGPSO algorithm (78.65%) for the ten
classification problems.

Moreover, these results were compared with results
obtained from classic algorithms such as the gradient descent
and Levenberg-Marquardt. Due to the classic techniques

needing a specific architecture, it was proposed to design
manually two kinds of ANN.The first consists of one hidden
layer and the second consists of two hidden layers.

To determine the maximum number of neurons MNN
used to generate the ANN we follow the same rule proposed
in the methodology. For the ANN with two hidden layers,
there was a pyramidal distribution using

DN = 0.6× (MNN) + 0.4× (MNN) , (27)

where the first hidden layer has the 60% of the total hidden
layers and the second hidden layer has the 40% of the total
hidden layers.

Two stop criteria for the gradient descent and Levenberg-
Marquardt algorithms were established: until the algorithm
reach 5000 epochs or until reach an error of 0.000001.
The classification problems were divided into three subsets:
40% of the overall patterns were used for training, 50% for
generalization, and 10% for validation. The learning rate was
set to 0.1.

In Table 12 is shown the averageweighted recognition rate
using the classic training algorithms: one based on gradient
descent (backpropagation algorithm) and the other based on
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Figure 7: Some ANN using NMPSO algorithm. (a) The best architecture for liver disorders problem. (b) The best architecture for object
recognition problem. (c) The best architecture for wine problem. (d) The best architecture for glass problem.

the Levenberg-Marquardt algorithm. From this set of experi-
ments, we observed that the best algorithm was Levenberg-
Marquardt with a single layer. This algorithm solved eight
of ten problems with the best performance (spiral, synthetic
1, synthetic 2, Iris plant, breast cancer, diabetes, liver dis-
orders, and object recognition). For the case of the wine
problem, the best algorithm was the gradient descent algo-
rithm composed of one single layer. The glass problem was
solved better using Levenberg-Marquardt with two hidden
layers.

Considering Tables 12 and 11, the best techniques to
design ANN were the NMPSO algorithm followed by the
Levenberg-Marquardt with one hidden layer. On the other
hand, the basic PSO and SGPSO algorithms as well as the
gradient descend and Levenberg-Marquardt with two layers
did not provide a good performance.

Besides that Levenberg-Marquardt obtained better results
than PSO and SGPSO algorithms, there are some important
points to consider: first, the ANN designed with the pro-
posedmethodology includes the selection of the architecture,
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Figure 8: Average results for ten classification problems using NMPSO algorithm. (a) Average error evolution. (b) Average weighted
recognition rate.

Table 9: Number of connections used by the ANN generated with the NMPSO algorithm.

ID problem Classification problem Connections number
Minimum Maximum Average Std. dev.

1 Spiral 4 10 7.1333 1.4320
2 Synthetic 1 3 10 6.5333 1.4559
3 Synthetic 2 4 10 7.4667 1.5916
4 Iris plant 15 24 19.2667 2.6121
5 Breast cancer 22 51 38.6333 7.7792
6 Diabetes 12 44 34.5667 7.6775
7 Liver disorders 16 30 22.8667 4.9461
8 Object recognition 51 70 62.8667 5.3223
9 Wine 76 109 92.9333 9.1007
10 Glass 79 107 95.4333 6.8213

Table 10: Number of neurons used by the ANN generated with the SGPSO algorithm.

ID problem Classification problem Connections number
Minimum Maximum Average Std. dev.

1 Spiral 3 4 3.8667 0.3457
2 Synthetic 1 2 4 3.6333 0.5561
3 Synthetic 2 3 4 3.7667 0.4302
4 Iris plant 5 6 5.7667 0.4302
5 Breast cancer 4 7 6.3 0.9154
6 Diabetes 3 7 6.2667 0.9803
7 Liver disorders 4 6 5.3 0.7944
8 Object recognition 10 11 10.9 0.3051
9 Wine 9 11 10.6333 0.6149
10 Glass 13 13 13 0



18 Computational Intelligence and Neuroscience

Table 11: Average weighted recognition rate (wrr) for the three bioinspired algorithms.

Classification problems Basic PSO algorithm SGPSO algorithm NMPSO algorithm
Spiral 0.53389 0.55601 0.62969
Synthetic 1 0.95033 0.93608 0.97417
Synthetic 2 0.82955 0.81386 0.86299
Iris plant 0.96346 0.96453 0.96604
Breast cancer 0.96993 0.9703 0.97113
Diabetes 0.76895 0.76092 0.76885
Liver disorders 0.68736 0.69187 0.70007
Object recognition 0.80222 0.80453 0.85733
Wine 0.86485 0.82471 0.88621
Glass 0.52666 0.54305 0.54062
Average wrr 0.78972 0.78658 0.81571

Table 12: Average weighted recognition rate (wrr) for the classic algorithms.

Classification problems Descent gradient
(one layer)

Descent gradient
(two layers)

Levenberg-Marquardt
(one layer)

Levenberg-Marquardt
(two layers)

Spiral 0.50082 0.50137 0.5092 0.50137
Synthetic 1 0.74991 0.77044 0.79008 0.77728
Synthetic 2 0.54485 0.51442 0.69997 0.56248
Iris plant 0.93226 0.65226 0.97911 0.75626
Breast cancer 0.96769 0.94475 0.96926 0.95741
Diabetes 0.75786 0.7276 0.76526 0.7609
Liver disorders 0.60443 0.57651 0.67561 0.66258
Object recognition 0.74453 0.69413 0.98213 0.72746
Wine 0.98292 0.93378 0.96861 0.9791
Glass 0.70704 0.68535 0.78903 0.79838
Average wrr 0.74923 0.70006 0.81283 0.74832

synaptic weights, bias, and transfer functions. For the case
of classic techniques, the architectures must be carefully and
manually designed by an expert in order to obtain the best
results; this process can be a time-consuming task for the
expert. On the opposite side, the proposed methodology
automatically designs the ANN in terms of the input and
desire patterns that codified the problem to be solved.

9. Conclusions

In this paper, we proposed three connection rules for generat-
ing feed-forward ANN and guiding the connections between
neurons.These rules allow connections among neurons from
the input layer to the output layer. These rules also allow to
generate lateral connections among neurons from the same
layer.

We also observed that some ANNs designed by the
proposed methodology do not have any connection from the
input neurons. It means that the feature associated to this
neuron was not relevant to compute the output of ANN.This
is known as dimensionality reduction of the input pattern.

Eight transfer functions, which involve the combination
of the MSE, CER validation error, and architecture reduction

(of connections and neurons), were implemented to evaluate
each individual. From these experiments, we observed that
the fitness functions that generated the ANN with the best
weighted recognition rate were those that used the classi-
fication error CER. The three bioinspired algorithms based
on PSO were compared in terms of the average weighted
recognition rate.

On the other hand, the NMPSO algorithm achieved the
best performance followed by the basic PSO and SGPSO
algorithm.

To validate statistically the accuracy of the proposed
methodology, first of all, the parameters for the three bioin-
spired algorithms were selected. For the case of basic PSO
the best fitness function selected was 𝑉CER with a variable
range between [−2, 2]. After tuning the parameters of each
algorithm and choosing the best configuration, we observe
that the parameters were different from those proposed in
the literature; these values for the parameters were set to
𝜔 = 0.3, 𝑐1 = 1.0, and 𝑐2 = 1.5. For the SGPSO algorithm,
the best fitness function selected was CER with a variable
range between [−2, 2]. The values for the parameters were
set to 𝑐3 = 0.5 and the geometric centre 𝑃 = 100. For the
NMPSO algorithm, the best fitness function was CER with
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a variable range between [−4, 4]. The parameters for the best
configuration were set to 𝛾 = 200, crossover rate 𝛼 = 0.1, and
mutation rate 𝛽 = 0.1.

After tuning the parameters of the three algorithms,
30 runs were performed for each of the ten classification
problems. In general, whereas the problems that achieved
a weighted recognition rate of 100% were the synthetic
problem 1, Iris plant, and object recognition problems, a lower
performancewas obtainedwith the glass and spiral problems.

The transfer functions that more often were selected for
each algorithmwere: the Gaussian function for the basic PSO
algorithm, the sinusoidal function for SGPSO algorithm and
the Gaussian function for NMPSO algorithm.

In general, the ANNs designed with the proposed
methodology were very promising. The proposed methodol-
ogy automatically designs theANNbased on determining the
set connections, the number of neurons in hidden layers, the
adjustment of the synaptic weights, the selection of bias, and
transfer function for each neuron.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors thank Universidad La Salle for the economic
support under Grants number I-61/12. Beatriz Garro thanks
CONACYT and UNAM for the posdoctoral scholarship.

References

[1] G. Beni and J. Wang, “Swarm intelligence in cellular robotic
systems,” in Robots and Biological Systems: Towards a New
Bionics? vol. 102 of NATO ASI Series, pp. 703–712, Springer,
Berlin, Germany, 1993.

[2] X. Yao, “Evolving artificial neural networks,” Proceedings of the
IEEE, vol. 87, no. 9, pp. 1423–1447, 1999.

[3] E. Alba and R. Mart́ı, Metaheuristic Procedures for Train-
ing Neural Networks, Operations Research/Computer Science
Interfaces Series, Springer, New York, NY, USA, 2006.

[4] J. Yu, L. Xi, and S. Wang, “An improved particle swarm opti-
mization for evolving feedforward artificial neural networks,”
Neural Processing Letters, vol. 26, no. 3, pp. 217–231, 2007.

[5] M. Conforth and Y. Meng, “Toward evolving neural networks
using bio-inspired algorithms,” in IC-AI, H. R. Arabnia and Y.
Mun, Eds., pp. 413–419, CSREA Press, 2008.

[6] Y. Da and G. Xiurun, “An improved PSO-based ANN with
simulated annealing technique,” Neurocomputing, vol. 63, pp.
527–533, 2005.

[7] X. Yao and Y. Liu, “A new evolutionary system for evolving arti-
ficial neural networks,” IEEE Transactions on Neural Networks,
vol. 8, no. 3, pp. 694–713, 1997.

[8] D. Rivero and D. Periscal, “Evolving graphs for ann develop-
ment and simplification,” in Encyclopedia of Artificial Intelli-
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