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Simple Summary: The European wildcat is a species of conservation concern protected across its
range in Europe, where it occurs in five discontinuous populations. The Balkan population has
received little attention, making it difficult to assess whether the ecological traits reported for other
populations apply also to this population. This hampers the development of targeted conservation
measures. The present study reports the first findings on the spatial ecology and daily activity pattern
of wildcats in a human modified landscape in Greece, using cutting edge data loggers attached to
wildcat collars. In Greece, wildcat home range sizes are within the range of those reported for other
populations. Male wildcats are active primarily at night and near dawn and dusk, as is typical for
the species. However, the activity of some females varied from this pattern in late spring, in ways
expected for wildcats, caring for offspring at a den. Overall, our findings help fill the ecological
knowledge gap of the species in Greece and suggest that lowland agricultural areas with patches of
natural habitats may have a significant role in the future conservation of the species.

Abstract: The Balkan populations of the European wildcat are among the least studied. This study
reports the first findings on the spatial ecology and activity pattern of the wildcat in Greece and
compares them to those of better studied northern populations. We fitted five wildcats (two males,
three females) with collars containing GPS and accelerometer loggers (E-obs 1A) and collected
data from fall to early summer. All animals moved within a mosaic of lowland agricultural fields,
woodland patches, riparian forests and wetlands near the banks of a lake. The trapping rate was the
highest reported for the species. The home range sizes, estimated using Brownian bridge movement
models, ranged from 0.94 to 3.08 km2 for females and from 1.22 to 4.43 km2 for males. Based on overall
dynamic body acceleration (ODBA) values estimated from the accelerometer data, the diel activity of
male wildcats followed the species’ typical nocturnal pattern with crepuscular peaks. Female activity
varied seasonally, at times being cathemeral. We found only weak effects of environmental variables
on wildcat activity, and no significant difference in the activity in open versus forested areas. Our
findings suggest that human modified landscapes can play a significant role in the conservation of
this typically forest-associated species.

Keywords: European wildcat; telemetry; accelerometer; home range; activity pattern; ODBA; Greece

1. Introduction

The European wildcat (Felis silvestris), hence “wildcat”, is a small carnivore with a
wide but discontinuous distribution (Figure 1) [1,2]. While IUCN classifies the species
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as one of “Least Concern” [3], several populations are declining due to threats such as
habitat fragmentation, [4–6] human-induced mortality [7–9] and hybridisation with the
domestic cat (Felis catus) [10,11]. In Europe, five main biogeographic wildcat groups
have been identified, supported by recent genetic studies: Iberian Peninsula, central
Germany, (western) central Europe, Eastern Alpine (Italian Peninsula) and southeast
Europe (Dinaric Alps and the Balkans) [12,13]. Among these, the Balkan populations have
received the least scientific attention to date. Although Romanian populations appear
stable [14], the National Red Data Books list the wildcat as endangered in Bulgaria ([15]),
near threatened in Kosovo [16] and data deficient in Greece [17].
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ago [18]. The study reported the species’ presence at 40 sites (0 m to 1500 m altitude), 
primarily in mainland Greece, based on direct observations, tracks and dead animals. 
Habitats used included pine, oak and birch, and riparian forests, maquis, wetlands, semi-
intensive agricultural areas and orchards. Since then, information on the species distribu-
tion and conservation status has been opportunistic, e.g., as by-catch detections in camera 
trap surveys aimed at other species, and available only in hard to access grey literature 
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Understanding a species’ spatiotemporal activity patterns is key baseline knowledge 
for assessing its susceptibility to current or future threats, and for designing efficient pop-
ulation monitoring protocols. For instance, home range size estimates could inform both 
conservation efforts to assess habitat availability and fragmentation [19,20], and the de-
sign of abundance surveys employing spatially explicit capture-recapture methods (e.g., 
by ensuring that >1 camera is within an average home range; [21,22]. Likewise, knowledge 
of wildcat diel and seasonal activity patterns can help assess temporal overlap with fe-
ral/domestic cats and human activities (e.g., hunting, road traffic), and therefore provide 
insight on possible underlying ecological processes increasing the risk of hybridization 
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The sole publication on wildcat distribution and ecology in Greece was three decades
ago [18]. The study reported the species’ presence at 40 sites (0 m to 1500 m altitude),
primarily in mainland Greece, based on direct observations, tracks and dead animals.
Habitats used included pine, oak and birch, and riparian forests, maquis, wetlands, semi-
intensive agricultural areas and orchards. Since then, information on the species dis-
tribution and conservation status has been opportunistic, e.g., as by-catch detections in
camera trap surveys aimed at other species, and available only in hard to access grey
literature reports.

Understanding a species’ spatiotemporal activity patterns is key baseline knowledge
for assessing its susceptibility to current or future threats, and for designing efficient
population monitoring protocols. For instance, home range size estimates could inform
both conservation efforts to assess habitat availability and fragmentation [19,20], and the
design of abundance surveys employing spatially explicit capture-recapture methods (e.g.,
by ensuring that >1 camera is within an average home range; [21,22]. Likewise, knowl-
edge of wildcat diel and seasonal activity patterns can help assess temporal overlap with
feral/domestic cats and human activities (e.g., hunting, road traffic), and therefore provide
insight on possible underlying ecological processes increasing the risk of hybridization
and anthropogenic mortality (e.g., poaching, vehicle collisions) [9]. While some ecological
traits of the wildcat are universal across its range, such as its solitary and territorial nature
(e.g., [8,19] and crepuscular/nocturnal activity [23,24] space use has been shown to vary
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widely. For example, home range size reports of both sexes vary by as much as a degree
of magnitude across studies (males: 1.9–50.2 km2; females: 0.7–13.9 km2; [5,20]). These
pronounced variations limit the confidence with which ecological knowledge from better
studied populations can be transferred, untested, to less studied ones, like the wildcat
populations in the Balkans.

In this study, we report the first ever findings on the spatial ecology and activity
pattern of the wildcat in Greece (and the Balkans, as far as we are aware) using GPS
telemetry. In doing so, the study contributes towards bridging the current knowledge
gap in the ecology of the species in southeast Europe. It is also one of the few studies to
use very high temporal resolution accelerometer logged data to examine wildcat activity.
Specifically, the aims of the study were to:

(a) estimate the home range of two male and three female wildcats in Koronia and Volvi
Lakes National Park (NPKV) in northern Greece,

(b) describe the diel activity of both sexes,
(c) identify potential environmental variables (e.g., weather, day length, moon phase)

significantly affecting wildcat activity,
(d) evaluate whether non-resting wildcat activity differs in open vs. forested areas, and
(e) ascertain resting wildcat site fidelity across seasons.

Finally, by nature of our study area being in a wetland-agricultural mosaic, a landscape
where the species appears to have one of the highest densities in Greece, our findings add
to increasing evidence challenging the once accepted notion that the wildcat is primarily
a forest resident of broad-leaved or mixed forests ([3]). Our study further investigates
the importance of open-closed mosaic environments, where both hiding and hunting
sites are available, for the species’ survival [8,25]. Their importance has been previously
demonstrated in other Mediterranean areas [20,26,27] and recently in central Europe [28]
for shrubland-pasture landscape mosaics.

2. Materials and Methods
2.1. Study Area

This study was conducted within the core zone of Koronia and Volvi Lakes National
Park (NPKV) (41◦ N; 23.12◦ E to 40.46◦ N; 23.52◦ E; 21.200 km2, Figure 2), an important
Ramsar wetland in northern Greece. The core zone is since 2011 included in the Euro-
pean Union’s Natura 2000 network of protected areas as a Special Area of Conservation
(GR1220001; 288.3 km2, 560 m a.s.l). About 57.1% of the area is agricultural land, consisted
mainly of winter cereals, alfalfa and maize fields. Natural habitats consist primarily of reed
beds and humid grasslands around the lakes, riparian gallery forests and thickets along
the many rivulets and intermittently flowing rivers draining into the lakes, and a mosaic of
small forest patches (Quercus ilex and Q. rotundifolia), hedges and tree lines. The climate
is typical Mediterranean. Annual rainfall ranges from 400 to 450 mm, distributed almost
entirely during the winter. Winter flooding and summer droughts are common [29]. Daily
temperature ranges from −10 ◦C to 17 ◦C in the winter and 12 ◦C to 42 ◦C in the summer.
To the north and south of the lakes the terrain is mountainous (up to 1.165 m a.s.l.) and
rugged. A motorway (fenced) runs east-west north of the lakes, as does a high speed and
traffic (dual-way) road to the south (Figure 2). There are several small villages within and
in the periphery of the study area, with human activities being mostly agricultural. Earlier
camera trapping by the authors (D.M., G.B.) has confirmed the presence of wild boar, stone
marten, badger, otter, wolves and dogs.
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attracting other mesocarnivores (e.g., stone marten Martes foina), animal baiting was 
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showed that wildcats did not appear attracted to hair trap sticks treated with valerian 
root, based on examination of footage from camera traps aimed at the hair trap stations 
(unpublished data). Therefore, we decided to proceed without any bait, especially since 
unbaited wildcat trapping had been previously proven possible [30]. All cage traps were 
carefully camouflaged with military, cameo-colored, net and natural vegetation to match 
the surrounding environment. If required, branches were placed at the flanks or on top of 
the traps to block animals passing around the trap. (Figure 3). Given the quick success of 
this trap setting, we did not further consider baiting the traps. 
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Figure 2. Map depicting the boundary of the Koronia-Volvi lakes National Park (dotted black line)
and core zone (dashed area; Natura 2000 area GR1220001). Wildcat trapping was conducted near
the southern banks of Lake Volvi, within the core area. [Grey areas mark urban areas incl. the
metropolitan area of Thessaloniki, red lines motorways, orange lines primary and secondary two-
way roads, and red dotted polygon the area within which the collared wildcats moved during the
study period].

2.2. Trapping and Handling

Trapping took place from September to November 2020. During the preceding month,
we identified passages through dense vegetation (e.g., bramble) that were regularly used by
wildcats, using trail cameras and frequent surveys for felid feces and tracks. Eight two-door
live animal cage traps (102 × 32 × 35 cm) were set along such passages so that an animal
could pass, without a detour, only by walking through the trap. To avoid attracting other
mesocarnivores (e.g., stone marten Martes foina), animal baiting was avoided. Moreover, an
earlier six-month study in the same National Park by the authors showed that wildcats did
not appear attracted to hair trap sticks treated with valerian root, based on examination of
footage from camera traps aimed at the hair trap stations (unpublished data). Therefore,
we decided to proceed without any bait, especially since unbaited wildcat trapping had
been previously proven possible [30]. All cage traps were carefully camouflaged with
military, cameo-colored, net and natural vegetation to match the surrounding environment.
If required, branches were placed at the flanks or on top of the traps to block animals
passing around the trap. (Figure 3). Given the quick success of this trap setting, we did not
further consider baiting the traps.

Animals 2021, 11, 3030 4 of 17 
 

 
Figure 2. Map depicting the boundary of the Koronia-Volvi lakes National Park (dotted black line) 
and core zone (dashed area; Natura 2000 area GR1220001). Wildcat trapping was conducted near 
the southern banks of Lake Volvi, within the core area. [Grey areas mark urban areas incl. the met-
ropolitan area of Thessaloniki, red lines motorways, orange lines primary and secondary two-way 
roads, and red dotted polygon the area within which the collared wildcats moved during the study 
period]. 

2.2. Trapping and Handling 
Trapping took place from September to November 2020. During the preceding 

month, we identified passages through dense vegetation (e.g., bramble) that were regu-
larly used by wildcats, using trail cameras and frequent surveys for felid feces and tracks. 
Eight two-door live animal cage traps (102 × 32 × 35 cm) were set along such passages so 
that an animal could pass, without a detour, only by walking through the trap. To avoid 
attracting other mesocarnivores (e.g., stone marten Martes foina), animal baiting was 
avoided. Moreover, an earlier six-month study in the same National Park by the authors 
showed that wildcats did not appear attracted to hair trap sticks treated with valerian 
root, based on examination of footage from camera traps aimed at the hair trap stations 
(unpublished data). Therefore, we decided to proceed without any bait, especially since 
unbaited wildcat trapping had been previously proven possible [30]. All cage traps were 
carefully camouflaged with military, cameo-colored, net and natural vegetation to match 
the surrounding environment. If required, branches were placed at the flanks or on top of 
the traps to block animals passing around the trap. (Figure 3). Given the quick success of 
this trap setting, we did not further consider baiting the traps. 

 
Figure 3. Preparation and placement of the cage traps used. Figure 3. Preparation and placement of the cage traps used.



Animals 2021, 11, 3030 5 of 17

Traps were checked daily. Ketamine (5 mg/kg) with medetomidine (40 µg /kg), IM was
administered to the wildcats to produce the required sedation. Recovery was expedited
by the administration of atipamezole (100 µg/kg), IM. All animals were released only after
having recovered and being fully alert. We recorded the following information for each animal:
gender, weight, morphological measurements and approximate age (juvenile = 0–12 months;
subadult = 12–24 months; adult >24 months) as estimated based on body size, tooth wear
and—for females—the presence or not of pre- or post-reproductive teats [31,32]. We also
collected blood samples for a concurrent parasitological study and to confirm genetically
the phenotype-based identification of each animal as a European wildcat. Morphological
identification and assignment to the European wildcat were performed based on coat
pattern markings as per Kitchener [33] (Figure 4).

The research met all the welfare and ethical criteria concerning research involving
wildlife set by the General Directorate of Forests and Forest Management (Hellenic Ministry
of Environment and Energy; Research Permit Nr. 8817/242/29 May 2020).
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Figure 4. The seven key pelage characteristics of the European wildcat (1) Shape of tail tip: blunt
(2) Distinctness of tail bands: Distinct—not fused or joined with dorsal line (3) Extent of dorsal
line: stops at base of tail (4) Broken stripes on flanks and hindquarters: <25% broken (5) Stripes on
shoulder: Two thick stripes (6) Stripes on nape: four thick stripes (7) Spots on flanks and hindquarters:
none [33,34].

2.3. GPS Collaring

Captured wildcats were fitted with 69 gr collar-mounted global positioning system
(GPS) and tri-axial accelerometer (ACC) loggers and a UHF radio transmitter (e-obs 1A,
e-obs GmbH, Grünwald, Germany). The collars accounted for less than 3% of the ani-
mal’s body mass (range: 2.6–3.7 kg) as per the recommendations of Kenward [35] The
loggers recorded position at 30 min intervals (48 waypoints/day) and acceleration on three
axes in 4 sec bursts every 2 min (10 Hz). When accelerometer readings exceeded 10,000,
the position interval was halved to capture in higher spatial resolution the animals’ travel
route. The data were stored on board the collar until they were transferred to a base station
(e-obs GmbH, Grünwald, Germany) every 1–2 weeks via a VHF connection from up to
2 km. We searched for the UHF signal of each collar using an AR8200 (AOR Ltd., Tokyo,
Japan) receiver with a 10-element Yagi antenna, in order to approach the animals enough
to establish a data transfer connection. In order to reduce the daily energy consumption of
the loggers, data transfer was enabled only for a 2 h window each day.

2.4. Home Range Estimation

Wildcat space use was assessed using the Brownian bridge movement model (BBMM),
a home range (HR) estimator that uses animal movement paths rather than discrete lo-
cations to quantify the relative intensity of use of a landscape [36] Movement paths are
estimated empirically using the distance and relatively short time interval between succes-
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sive pairs of locations. A BBMM assumes that locations are not independent, and therefore
is ideal for the temporally auto-correlated data obtained from GPS telemetry studies
like ours.

We did not consider locations taken during the first 24 h after releasing the GPS
collared animals, to reduce the chance of including atypical movement patterns related to
the capture and handling process. For all animals, we used the following model parameters
in order to account for the spatial autocorrelation and locational error of the telemetry
data: 15 min time step, 120 min maximum time lag between successive locations and 20 m
standard deviation of location error (assuming normal distribution; estimated rounding up
the 15.4 m horizontal inaccuracy of the raw collar data). Wildcat utilization distributions
were constructed at 50 m resolution. We considered as HR the area encompassed by the
95% contour. We calculated both seasonal (Oct–Dec, Jan–Mar, Apr–June) and total HRs,
depending on the data available for each animal.

To facilitate comparison of our results with earlier studies, we also calculated total
and seasonal HRs using the 95% minimum convex polygon (MCP) estimator. Home range
models were developed with R [37] packages BBMM [38] and adehabitatHR [39].

2.5. Activity Pattern Analysis

We calculated the overall dynamic body acceleration (ODBA) for each 2 min interval
of the tri-axial accelerometer data using the Movebank Acceleration Viewer (v.34; [40]).
ODBA has been used as a proxy of an animal’s energy expenditure [41] providing very high
temporal resolution on animal activity that GPS data alone cannot provide with 15–30 min
intervals between locations. This is especially true for a small animal like the European
wildcat, where displacements can at times be small, making differentiation between resting
and foraging location clusters challenging.

To examine the diel activity of the wildcats, we calculated hourly ODBA values
by averaging all 2 min interval values of any given hour. To examine activity patterns
across the study period, we averaged the hourly ODBA values at the 24 h and nighttime
(6:30 pm–6:30 am) level. We used a series of generalized mixed effect models (identity
link function, constant error distribution) in R package lme4::lmer [42] to test how daily
temperature (◦C; minimum, maximum or mean), precipitation (mm), wind speed (m/s),
day length (proportion of 24 h with daylight) and moon phase (0.00–1.00) affect wildcat
24 h or nighttime activity. We examined that the residuals of the models were normally
distributed, and that there was a constant error distribution (homoscedasticity) using
informal diagnostics in R. Weather measurements were obtained from a weather station
located within the NPKV near Lake Koronia, approximately 30 km away. Predictive
variables were standardized when not in 0–1 scale. (z-score, subtracting from each value
the mean and dividing by SD). Each model accounted for individual wildcat differences
by including animals as a nested random effect. We used Akaike Information Criteria
(AIC) [43] for model selection. Variables were included in multivariate models only when
they were informative (i.e., their univariate model had <AIC than the intercept only model).
Among correlated variables, we kept for further consideration the one with the lowest
univariate model AIC. Once a final set of fixed variables was selected, we run all possible
multivariate combinations using MuMIn:dredge [44], using again AIC for model selection.
The p-values for fixed effects were calculated using the Satterthwaite approximation in
lmerTest [45]. Due to the large sample size and random effects, we used p = 0.001 as our
significance threshold. The goodness-of-fit of the best model was assessed by calculating
the coefficient of determination (R2) using R code provided by Byrnes [46], which calculates
the correlation between fitted and observed values.

To examine whether non-resting wildcat activity differed between open and forested
areas, we first assigned 2 min ODBA values to the temporally closer GPS location. Then,
we calculated the mean ODBA of each location using only values up to 15 min before or
after the time the GPS location was recorded (i.e., for a 10:00 am GPS point, we used ODBA
values from 9:45 am to 10:15 am). Locations with less than 13 ODBA values (max. 15)
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were excluded from the analysis. We then removed resting locations, which we considered
those where (a) mean ODBA + 2xSD ODBA was <2000, and (b) maximum 2 min ODBA
value recorded in the 30 min period was <2000. Based on the observations we made of
collar-fitted, resting wildcats prior to their release, as well as the hourly ODBA values from
the diel activity analysis, we are confident that the criteria used to identify GPS locations
where the animal had been resting for at least 30 min are robust.

We constructed generalized mixed effect models (identity link function, constant error
distribution) in lme4::lmer [42] with mean ODBA of wildcats at non-resting GPS locations
as response variable, % forest cover and darkness (0–1; 30 min after sunset up to 30 min
before sunrise) as predictive variables, and individual wildcat as a nested random effect.
We used the same model diagnostics, model selection criterion (AIC), p-value calculation
and significance threshold, and coefficient of determination (R2) calculation as for the
previously described 24 h and nighttime activity pattern analysis. Using Quantum GIS
v.3.10.13 [47] and the Small Woody Features (SWF; 2015; 5 m resolution) and Tree Cover
Density (2018; 10 m resolution) raster layers available at the European Union’s Earth
observation program “Copernicus” [48], we estimated at 10 m resolution the percent forest
cover within a 100 m radius from each GPS location, defining as forested areas with >20%
TCD and/or SWF classification as hedgerow or small woodland patch.

Finally, we identified the frequently used resting sites (>20 resting GPS locations
within a 30 × 30 m area) of each animal per month. We examined whether these resting
sites were the same across the study period.

3. Results

Overall, during 168 trap-nights, we trapped seven wildcats: three males and four
females (trapping rate = 1 wildcat/24 trap-nights). Two were too small (weight and neck
size) to be fitted with our GPS collars. The two males and three females we did collar
were tracked for an average of 218 ± 66 days (range 99–261), with 10,185 ± 3114 fixes
over a period of 274 days (Table 1). Due to our omission, the accelerometer logger was not
activated in one female wildcat, and she was therefore excluded from the activity pattern
analyses. In total, 580111 2 min accelerometer logs were recorded, with an average of
693 ± 24 per wildcat per day (90.9–99.8% of the 720 possible daily logs) (Table 1).

Table 1. Summary table of the tracking period and collected data (GPS locations and accelerometer 2-min logs) for the
monitored wildcats.

Animal Sex Age
(Years)

Weight
(kg) Capture Date Last Relocation

Date
Days

Tracked GPS Fixes 2-min
Acc/Meter Logs

Apollo M 2–3 2.9 29 September 2020 5 January 2021 99 3976 70,190

Aphrodite F 2–3 3.6 1 October 2020 18 June 2021 261 11,951 170,893

Ares M 2–3 2.6 2 October 2020 1 June 2021 243 11,845 167,349

Artemis F 1–2 2.7 30 October 2020 23 June 2021 237 11,278 -

Ira F 3–4 3.7 4 November 2020 30 June 2021 239 11,875 171,679

3.1. Home Range

The overall home range size of female wildcats ranged from 0.94 to 3.08 km2 and of
males from 1.22 to 4.43 km2, as estimated using the 95% BB home range contour (Table 2).
MCP home range size estimates ranged from 1.69 to 4.79 km2 and 2.35 to 58.37 km2

for females and males respectively; an increase of 56–1200% over BB estimates. These
differences are expected as MCP home ranges describe more the extent of distribution of
an animal’s locations rather than its home range, and typically includes large areas never
used by the animals [49]. They provide a value for comparison with older study findings,
but MCP estimates—when viewed in conjunction with BB estimates—also capture the
home range shift of animals within a given study period. In our case, the large MCP home
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range estimate of Ares captures this male’s travel of more than 25 km during the middle
of the study period, and its subsequent return a couple of months later (Figure 5a). It is
probably a similar move—also in the winter—by the other male, Apollo, that resulted in us
losing track of the animal. We report only BB home range estimates in the rest of the results.

Table 2. Home range size (in km2) of wildcats estimated using the 95% Brownian Bridge (BB) and 95% Minimum Convex
Polygon (MCP) home range estimators. Estimates are presented for the total study period and per calendar trimester.

Aphrodite Artemis Ira Apollo Ares Mean

TOTAL
BB 0.94 3.08 0.97 1.22 4.43 2.13 ± 1.40

MCP 1.69 4.79 1.77 2.35 58.37 13.79 ± 22.32

October–December
BB 1.17 1.10 1.13 1.54 1.64 1.32 ± 0.23

MCP 2.10 1.12 1.43 2.07 3.73 2.09 ± 0.90

January–March BB 0.50 2.01 0.87 0.51 1 3.08 1.62 ± 1.012
MCP 0.44 5.01 0.96 0.83 1 37.87 11.07 ± 15.572

April–June BB 0.84 1.90 0.67 - 2.07 1.37 ± 0.622
MCP 1.20 3.31 0.88 - 8.15 3.39 ± 2.912

1 Data only from 5 days in January.
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Figure 5. (a) Minimum convex polygon (solid line) and brownian bridge (filled area) home ranges
(95%) of the five GPS-collar fitted wildcats (male: Ares, Apollo; female: Aphrodite, Ira, Artemis)
for the duration of the study period. [Background: Bing Satellite Image overlayed by green layer
depicting forests and hedges] (b) Temporal variation of brownian bridge home range size of the four
wildcats (Apollo is excluded as available data covered only October–December).
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The variation in home range sizes was pronounced both across individuals and season-
ally within individuals. Seasonal variation was significant in all wildcats, regardless of sex,
but there was no evidence of universal temporal synchrony in these changes (Figure 5b).
The two adult females, Aphrodite and Ira, reduced their home size in January–March and
April–June periods compared to its peak in October–December, which could be related
to denning behavior. On the contrary, the home range size variation of the subadult fe-
male, Artemis, was similar to that of the adult male, Ares. Like Ares, she also shifted
her home range from lowland agricultural area to the slopes of wooded (maquis) hills
during January–March. Moreover, by late spring Artemis made a 5 km linear southward
excursion and subsequent return within 24 h, and an eventual return to her fall home range
(lowland fields).

We did not observe home range overlap between the two female neighbouring animals,
Ira and Aphrodite (Figure 5a), supporting the widely accepted territorial nature of the
species (e.g., [8]).

3.2. Activity Pattern

The male wildcats were on average and across the study period more active than
females, both when measured at the level of mean hourly ODBA (Ares 3393 ± 1249,
Apollo 3481 ± 1185, Aphrodite 2943 ± 814, Ira 2645 ± 693; Figure 6a) and mean 24 h and
nighttime ODBA level. Males also displayed a more typical nocturnal/crepuscular diel
activity with pronounced activity peaks at dawn and dusk (Figure 6a). One female, Ira,
displayed similar diel activity pattern as the males, but with a less pronounced crepuscular
activity peak. This was however due to a more cathemeral activity during the April–June
period (Figure 6b) when denning activity is known to occur. The diel activity during the
non-denning period matches closely the one of the two males. On the contrary, the other
female, Aphrodite, did not show such a seasonal variation in her diel activity pattern,
which is best described as cathemeral, with a single resting period in early morning. This
cathemerality persisted throughout the study period.

Two models with moon phase, day length and minimum temperature as predictors
of mean ODBA activity at the 24 h level were best supported by our data (∆AIC < 2)
(Table S1). We therefore calculated the model average coefficients of these models (Table 3).
The results indicate a significant but small negative relation of day length (i.e., proportion of
24 h with day light) and minimum temperature with wildcat activity. In the case of females,
the effect of day length is reversed (Figures S1 and S2). Moon phase, though in the final set
of variables, did not have a significant effect on wildcat activity of neither males nor females
(Figure S3). The coefficient of determination of the global model (R2 = 0.271) suggests that
these environmental variables explain only moderately the observed variation in 24 h level
ODBA values.

Our data supported one model for mean ODBA activity at nighttime level (∆AIC < 2)
(Table S2). Day length and minimum temperature were once again the sole significant
informative variables (Table 4). The positive effect of minimum temperature observed
at the 24 h activity models was four times stronger at the nighttime level, and observed
for both sexes (Figure S1). Day length was negatively related to nightly ODBA, but this
trend is only true for female wildcats (Figure S2). On the contrary, male wildcats increase
their nightly activity during spring and summer. The coefficient of determination of the
global model (R2 = 0.219) suggests again that these environmental variables explain only
modestly the observed variation in nighttime level ODBA values.
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Table 3. Model averaged estimates and significance of the environmental variables predicting wildcat
24 h activity, as measured in ODBA (daily mean of hourly averages).

Variables Estimate SE z-Value Pr(>|z|)

intercept (βo) 3963.3 207.0 19.122 <0.0001

day length −2086.8 321.4 6.484 <0.0001

moon phase 89.6 58.8 1.522 0.128

min. temperature 20.2 4.5 4.463 <0.0001
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Table 4. Model estimates and significance of the environmental variables predicting wildcat nightt-
time activity, as measured in ODBA (daily mean of hourly averages) (R2 = 0.219).

Variables Estimate SE df t-Value Pr(>|z|)

intercept (βo) 4582.1 395.1 22.918 11.598 <0.0001

day length −2814.1 690.9 797.93 −4.073 <0.0001

min. temperature 81.2 9.7 796.819 8.333 <0.0001

3.3. Resting Sites

We identified a total of 74 resting sites frequently used by the four wildcats for which
we had accelerometer data (9–23 per animal; Table 5). Only a fraction of these sites were
used in any given month (range 5–50%). In general, the wildcats rested throughout their
range and invariably in forest patches and hedges.

Table 5. Number of unique resting sites per month and the duration of the study period for each of the four wildcats with accelerometer.

Individual Sex Unique Sites October November December January February March April May June

Aphrodite F 23 5 4 4 4 6 4 5 2 -

Ira F 19 - 5 3 6 3 5 4 1 3

Apollo M 9 5 1 3 - - - - - -

Ares M 23 4 4 4 4 3 5 5 3 -

3.4. Activity Differences in Open and Forested Areas

The model including % forest cover (+ second order polynomial), darkness and
interaction of % forest cover*darkness as predictors of wildcat activity at non-resting GPS
locations (i.e., mean ODBA value for a period of 15 min before and after the GPS record) was
the one best supported by our data (∆AIC < 2) (Tables S3 and S4). However, the predictive
value of this model is very low (R2 = 0.074), which means that most variation in the ODBA
values remains unexplained.

4. Discussion

Our study is the first systematic effort to describe the spatial ecology and diel activity
of the European wildcat in Greece, and the first one using GPS telemetry within the
Balkan/Southeast Europe range of the species. Although the study area was within the
core of a protected area (NPKV), it is a human transformed landscape, where natural
habitats are interspersed within intensively cultivated monocrop fields, villages and a busy
high-speed motorway. Increasing our understanding of the role of such human-dominated
landscapes for the persistence of the wildcat is important, especially in conjunction with
recent range-wide efforts to examine the drivers of wildcat hybridisation [13] and human-
caused mortality [9]; two major threats to the species [3].

The trapping rate at our site (4.17 wildcats per 100 trap-nights) is the highest reported
both in Mediterranean habitats (Portugal: 1.59 [20], Italy: 0.26–0.48 [31,50]) and central
Europe (Germany: 0.54 [32], Switzerland: 1.89 [51], Slovenia: 1.72 [30]). If the untested
hypothesis of Anile et al. [31] that differences in trapping rates reflect underlying differences
in wildcat density is true, then NPKV is home to one of the densest wildcat populations in
Europe. Such an interpretation assumes similar trapping procedures were used across sites.
A review of the studies cited above showed that, as far as we could deduce, all used same
type of traps and the standard trapping procedures [30,50]. One difference is that we did
not bait our traps, unlike some other studies that used either scent (e.g., valerian, [32]) or
food (e.g., live birds, [20]) as lures. Baiting might increase trapping rate, so this difference is
unlikely to explain the high trapping rate in NPKV. Another difference is that we chose our
trap sites after a brief but intensive survey in the surrounding areas for wildcat signs (feces,
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tracks, camera trap detections). All other studies trapped in areas with confirmed wildcat
presence, but it is unclear at what scale this information was available to the field teams.
Moreover, the linear geometry of many forested areas (e.g., riparian forests, tree hedges)
creates natural movement bottlenecks at our study area (as later observed from the GPS
data) which probably increased wildcat-trap encounters. Finally, although the wildcats in
NPKV demonstrate the species-characteristic elusive and cryptic nature, the proximity to
humans and their activities has rendered them less fearful of traps than other populations.

The size and inter-sexual differences in wildcat home ranges in Greece agrees with findings
from other European populations (males: 1.9–50.2 km2; females: 0.7–13.9 km2; [19,20,23,31,52,53]).
While we did not report overlaps of male and female home ranges, as reported for the
species [52] this is likely due to the small sample size of tracked animals in our study.
Presence of more individuals within the study area is certain, as confirmed by detections
trail cameras during trapping session. The large movement reported by one male in January
(and possibly by the second, resulting in us losing track of it), coincided with the onset of
the wildcat breeding season (e.g., [23,54]). However, the male shifted its territory during
the season, rather than actively patrolling a larger territory during it.

Our observation of the subadult female with a home range size closer to those of
males has been previously reported in Italy [31]. As suggested by these authors, this
female subadult behavior is likely due to a quest for an unoccupied home-range for their
first gestation and parturition. The observed reduction in adult female home range size
during spring and early summer has been previously reported as well [55], though it
is not a universal pattern [31,56]. This period coincides with female wildcats denning
period, during which caring for the offspring keeps them closer to the den. The diel
activity change of this adult female from crepuscular/nocturnal to more cathemeral during
April–June supports this interpretation. On the other hand, the out of season breeding
event of the second adult female, Aphrodite seems to support the breeding pattern that
has been recorded in captive animals and suggests that late litters were mostly from
second gestations (following the loss of the first litter of that year) and females in their first
gestation [54]. Given that the individual was a young adult, the late breeding event in our
study can be explained by any of the two reasons mentioned above.

Overall, the nocturnal activity with crepuscular peaks observed in the two males
and one adult female (Ira, during the non-denning period) in NPKV agrees with most
studies [23,24,31,52,56]. The cathemeral diel activity of the other adult female, Aphrodite,
is more akin to the one of Ira during her presumed denning period (Figure 5a,b). Since
Aphrodite was lactating in October, her activity pattern in the first period could be ex-
plained by her care for non-weaned kittens. However, this does not explain why her
activity remained the same for the rest of the study period.

It is noteworthy that our findings on wildcat diel activity are based on data of un-
precedented temporal resolution: the accelerometer logged activity at 2 min intervals
(using 4 sec burst measurements). In contrast, activity patterns deduced from traditional
telemetry data are limited to a few dozen records per species or individuals. For instance,
Germain et al. [23], using VHF telemetry reported wildcat activity and pause at 4 h time
periods. GPS telemetry upgraded the resolution at the level of the location settings (15 min
to 3–4 h; e.g., [28]). In just the last few years, technological advances in accelerometer
loggers have enabled the kind of data and analyses presented here. Therefore, it is logical to
assume that some of the differences of our findings with earlier studies to be at least in part
due to differences in the temporal resolution of the data rather than solely to behavioral
differences across populations. We anticipate that accelerometer loggers will bring similar
changes to diel activity studies of wildlife as GPS telemetry did in home range estimators,
leading from the now deemed “crude” MCP to the more refined kernel and Brownian
bridge estimators, among others.

The positive relation of minimum daily temperature and wildcat activity (mean
ODBA), especially during nighttime, has not been reported before. In males, this pattern
is also true for mean nightly activity and day length, unlike females, where the trend is
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negative. One possible explanation is that during warmer winter nights, prey may become
more active, leading to increased hunting activity by both sexes. In our study area, murids
are most likely the primary prey for wildcats (DM, personal observations). There are no
rabbits in NPKV; a preferred prey in other wildcat populations [24]. It is unclear why in
females, the increased activity during warmer nights ceases as day length increases but
persists in males. This behavior could be related to a shift to more diurnal prey (for the
female which, during the denning period switched to cathemeral activity) or to a general
preference for year-round different prey (for the female with the constantly cathemeral
activity). More field studies are required to test the veracity of these hypotheses.

Moonlight illumination varies by three orders of magnitude over a course of a
month [57] According to two contrasting hypotheses, small carnivores, like wildcats,
which can be both predators and prey, can adapt their behavior in response to available
moonlight illumination (and therefore the moon phase) in two ways. Either become
more active at bright nights (lunarphilia) since they are visual predators (supporting the
“Visual Acuity Hypothesis”) or decrease their activity (lunarphobia) to reduce predation
risk (supporting the “Predation Risk Hypothesis”) [58]. Our evidence does not support
either of these hypotheses at the level of mean nighttime activity. Studies in tropical felids,
show no effect of the moon on their activity [22,59,60], except for lunarphobia in some
medium-sized species [58,61]. However, in the tropics, annual variations in day length
are minimal compared to the temperate zone, where the European wildcat lives. Potocnik
et al. [30], suggested that in Slovenia, there is evidence of increased wildcat activity near
full moon. It is possible that in some areas wildcats may show lunarphobia or lunarphilia,
in relation to differences in prey and predator community composition. Further field work
is required to elucidate these trends in wildcat behavior.

Adequate resting sites are an important issue in wildlife conservation [62]. Wildcats
seem to use a similar number of resting sites per animal in wetland-agricultural mosaics
when compared to the ones used in forests for an equal time-period, despite the lower
habitat availability. Preserving adequate resting sites must be of high priority for species
conservation, when considering management actions.

Finally, when examining non-resting periods, our wildcats did not show any dif-
ferences in mean activity in areas under or near forest cover and in open areas (fields).
At times, wildcats spent hours in open fields, most likely hunting. Along with the spatial
data showing clusters of activity in fields, our study showed that in human dominated
landscapes, suitable habitat for wildcats is not limited to natural areas but also to the
rodent-rich agricultural fields. Crop identification in the most frequently used fields is
needed, as their cultivation in agricultural landscapes could be used as a conservation tool
for the species.

5. Conclusions

The current study is a first step towards filling the current knowledge gap on the spatial
ecology and activity patterns of the European wildcat in a landscape heavily modified
by humans in Greece and the Balkans in general. This is also the first study to examine
wildcat diel activity using the very high temporal resolution data logged by accelerometers.
We believe that the combination of these two technologies (GPS + accelerometer) will enable
researchers to explore new aspects, not only of wildcat ecology but also of other carnivores
and wildlife in general, that were impossible until now, and revisit older ones. Key to
this will be the development of supervised or unsupervised, through artificial intelligence
(AI) techniques, classifications of accelerometer data, so as to be able to deduce not only
overall activity, but also specific behaviors (such as resting, grooming, walking, stalking,
pouncing, running, etc. e.g., [63,64]). Ideally, these efforts should be coordinated to include
data from wild individuals across the species’ range, so that the developed algorithms have
universal applicability. Animals in captivity can also be used in this effort (e.g., see [65]).
Since trapping and fitting telemetry and bio-logging sensors to cryptic, low-density species,
like the wildcat, will remain expensive in the near future, we propose broad international
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collaborations that will share both the cost and the effort for developing and testing these
behavioral algorithms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
ani11113030/s1, Figure S1: Response curve of mean 24 h and nighttime activity of wildcats to minimum
daily temperature, Figure S2: Response curve of mean 24-h and nighttime activity of wildcats
to day length, Table S1: AICc model selection of the global model log(ODBA)= βo + daylength
+ moon phase + min temperature, where ODBA refers to mean 24 h wildcat activity, Table S2: AICc
model selection of the global model log(ODBA) = βo + daylength + rain + min temperature, where
ODBA refers to mean nightime wildcat activity, Table S3: AICc model selection of the global model
log(ODBA) = βo + % forest + % forest2 + darkness + %forest*darkness, where ODBA refers to mean
nightime wildcat activity Table S4: Model estimates and significance of the environmental variables
predicting wildcat at non-resting points, as measured in ODBA.
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