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Abstract

When individual subjects are imaged with multiple modalities, biological information

is present not only within each modality, but also between modalities – that is, in

how modalities covary at the voxel level. Previous studies have shown that local

covariance structures between modalities, or intermodal coupling (IMCo), can be

summarized for two modalities, and that two-modality IMCo reveals otherwise undis-

covered patterns in neurodevelopment and certain diseases. However, previous

IMCo methods are based on the slopes of local weighted linear regression lines,

which are inherently asymmetric and limited to the two-modality setting. Here, we

present a generalization of IMCo estimation which uses local covariance decomposi-

tions to define a symmetric, voxel-wise coupling coefficient that is valid for two or

more modalities. We use this method to study coupling between cerebral blood flow,

amplitude of low frequency fluctuations, and local connectivity in 803 subjects ages

8 through 22. We demonstrate that coupling is spatially heterogeneous, varies with

respect to age and sex in neurodevelopment, and reveals patterns that are not
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present in individual modalities. As availability of multi-modal data continues to

increase, principal-component-based IMCo (pIMCo) offers a powerful approach for

summarizing relationships between multiple aspects of brain structure and function.

An R package for estimating pIMCo is available at: https://github.com/hufengling/

pIMCo.
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1 | INTRODUCTION

There is increased availability of multi-modality neuroimaging data

on individual subjects, with each modality containing unique infor-

mation about brain structure or function. Such data allow us to

explore patterns in individual modalities as well as patterns in the

relationships between modalities, which we call intermodal coupling

(IMCo), at global, regional, or local resolutions (Baller et al., 2022; Gu

et al., 2021; Honey et al., 2009; Shokri-Kojori et al., 2019; Tak

et al., 2015; Uddin, 2013; Valcarcel, Linn, Khalid, et al., 2018a; Val-

carcel, Linn, Vandekar, et al., 2018b; Vandekar et al., 2016). The pro-

gress made by these IMCo studies have transformed our

understanding of the brain, and it suggests that advancements in the

methodology for studying IMCo have the potential to further enable

such insights.

On the global scale, intermodal relationships have long been of

interest. For example, structural connectivity (SC) and functional con-

nectivity (FC) are globally correlated in adults, but the relationship is

less straightforward in children (Uddin, 2013). Regional studies have

built on this global understanding. For example, studies have found

SC-FC coupling changes regionally in neurodevelopment to support

cognition, and this coupling continues to evolve in aging, decreasing in

sensorimotor systems while persevering in higher-order cognitive sys-

tems (Baum et al., 2020; Esfahlani et al., 2021). Additionally, a number

of studies have investigated how SC-FC coupling varies across

regions, showing this coupling to be strongest in primary sensory and

motor regions, but that structure and function uncouple in higher-

level regions (Gu et al., 2021; Preti & Van De Ville, 2019; Vazquez-

Rodriguez et al., 2019).

In addition to structure–function relationships, regional relation-

ships between metabolism and brain function have also been

explored. In the study of energy utilization in the brain, Shokri-Kojori

et al. showed that regional correspondence between cerebral glucose

metabolism and fluctuations in blood oxygenation not only differed

between brain networks in healthy patients but was also sensitive to

differences between patients with acute or chronic alcohol use

(Shokri-Kojori et al., 2019). Of note, these relationships were not iden-

tifiable by looking at individual modalities alone. Another regional

study on metabolism-function coupling identified significant associa-

tions between cerebral blood flow (CBF) and strength of functional

connectivity in default, frontoparietal, and primary sensory-motor net-

works. No significant association was found between CBF and

functional connectivity strength in regions outside of these networks

(Tak et al., 2015).

On the sub-regional local scale, studies from our group on cou-

pling between cortical thickness and sulcal depth have suggested the

cortical sheet is generally thinner in sulcal locations than in gyral loca-

tions and that this relationship was more spatially heterogeneous than

previously described (Vandekar et al., 2016). A separate study explor-

ing local IMCo between CBF and resting-state amplitude of low-

frequency fluctuations (ALFF) showed that age-related declines in this

measure of neurovascular coupling were most pronounced during

mid-adolescence and were enriched in the dorsal attention network

(Baller et al., 2022). There were also differences in CBF-ALFF coupling

between males and females which were enriched in the frontoparietal

network.

In these local IMCo studies, each vertex-wise coupling value was

defined as the slope of the weighted linear regression (WLR) best-fit

line for that local neighborhood between two modalities. However,

because this method of calculating IMCo is based on regression

slopes, it does not consider vertex-level correlation and suffers from

inherent asymmetry, where coupling values depend on which modal-

ity is defined as the independent variable in the WLR. This asymmetry

necessitates arbitrary, yet influential, choices when it comes to analy-

sis and limits straightforward interpretation. This measure for IMCo is

also limited to only two modalities, so the study of coupling between

more than two modalities using this method would require analysis of

all pairwise couplings. As the number of total modalities increases, this

approach can become challenging to interpret. Additionally, analysis

of all pairwise couplings may not parsimoniously describe the overall

degree of coupling across all modalities.

In response to these limitations, we propose a principal compo-

nent analysis (PCA) based method for estimating IMCo that uses local

covariance decomposition to define symmetric voxel-wise coupling

values valid for two or more modalities. This method reduces complex

local covariance structures into a single value, thus providing an easily

interpretable value that characterizes the strength of coupling in set-

tings with two modalities. It also allows for simplified study of more

complex local covariance structures in settings with more than two

modalities.

To demonstrate its sensitivity to biologically relevant patterns, we

show that PCA-based IMCo (pIMCo) uncovers differences in three-

modality coupling between CBF, ALFF, and regional homogeneity

(ReHo) with respect to age and sex in youth. We chose these
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modalities because local cortical coupling between vascular organiza-

tion and spontaneous resting state fluctuations has been previously

thought of as a measure of neurovascular coupling. Since ReHo

describes local connectivity, or the degree of local neuronal activity

coordination, we were interested in understanding the overall cou-

pling between cerebral blood flow and both spontaneous and locally-

coordinated neuronal activity, which can be thought of as a more

comprehensive measure of neurovascular coupling.

2 | MATERIALS AND METHODS

2.1 | Subjects

We included 803 subjects (340 males) from ages 8–22 (mean = 15.6;

sd = 3.3) from the Philadelphia Neurodevelopmental Cohort (PNC)

(Satterthwaite, Elliott, et al., 2014a). Of the 1601 PNC subjects who

underwent neuroimaging, health screening as well as automated and

manual image quality screening were performed. We excluded sub-

jects in the following order: low T1-weighted MRI quality (n = 61),

low resting-state fMRI (rfMRI) quality (n = 450), and low arterial spin

labeling (ASL) quality (n = 54). Of the remaining subjects, we then

excluded those meeting any of the following health exclusion criteria

(n = 205): history of psychoactive medication, history of inpatient

psychiatric hospitalization, or history of medical disorders that could

impact brain function. Finally, ASL scans for which high-quality partial

volume correction could not be performed were excluded (n = 28).

This resulted in the final set of 803 subjects used for this study.

The Institutional Review Boards of the University of Pennsylvania

and the Children's Hospital of Pennsylvania approved all study proce-

dures. All adult study subjects gave written informed consent; for sub-

jects under the age of 18, parents or guardians provided written

informed consent and subjects provided assent. Additional details of

the PNC study have been previously described (Gur et al., 2020; Sat-

terthwaite, Elliott, et al., 2014a).

2.2 | Image acquisition

All PNC imaging was acquired using a single 3 T Siemens Tim Trio

scanner with a 32-channel head coil. To minimize motion, subjects'

heads were stabilized using one foam pad over each ear and one foam

pad over the top of the head. Image acquisition procedures have been

previously described (Gur et al., 2020; Satterthwaite, Elliott,

et al., 2014a).

T1-weighted structural images were used for alignment of all

scans into a common space. T1-weighted images were acquired using

a 3D-encoded magnetization-prepared, rapid-acquisition gradient

echo (MPRAGE) T1-weighted sequence with the following settings:

TR =1810ms; TE =3.51ms; FoV = 180�240mm; matrix size = 192

x 256; number of slices = 160; slice thickness = 1mm; inter-slice

gap = 0mm; resolution = 0.9375�0.9375�1mm. Cerebral blood

flow (CBF) was estimated from a pseudo-continuous arterial spin

labeling (pcASL) sequence with a spin-echo echoplanar readout and the

following settings: TR =4000ms; TE =15ms; FoV = 220�220mm;

matrix size = 96 x 96; number of slices = 20; slice thickness = 5mm;

inter-slice gap = 1mm; resolution = 2.3 �2.3 �6mm; 80 volumes.

Maps of amplitude of low frequency fluctuations (ALFF) and regional

homogeneity (ReHo) were estimated from 6min of task-free func-

tional data from a blood-oxygen-level-dependent (BOLD) weighted

2D EPI sequence with the following settings: TR =3000ms; TE

=32ms; FoV = 192�192mm; matrix size = 64�64; number of

slices = 46; slice thickness = 3mm; inter-slice gap = 0mm;

resolution = 3mm isotropic; 124 volumes. Subjects were instructed

to stay awake, keep their eyes open, fixate on a displayed fixation

cross, and remain still.

2.3 | Image processing

Image processing of T1-weighted structural images, pcASL scans, and

rfMRI scans have been previously described (Baller et al., 2022; Gur

et al., 2020). They are summarized here in brief. T1-weighted struc-

tural images were processed using tools from Advanced Normalization

Tools (ANTs) (Tustison et al., 2014). pcASL and rfMRI scans were pro-

cessed using an eXtensible Connectivity Pipeline (XCP) which

included tools from FSL and AFNI (Ciric et al., 2018; Cox, 1996;

Jenkinson et al., 2012).

CBF was quantified from control-label pairs using ASLtbx as pre-

viously described in (Satterthwaite et al. 2014b; Wang et al., 2008).

Briefly, this quantification involved measuring the differences in signal

between control and label acquisitions and then using the standard

kinetic model to calculate the CBF estimate. Partial volume correction

was performed on these CBF images using Bayesian Inference for

Arterial Spin Labeling MRI (BASIL) (Chappell et al., 2009; Chappell

et al., 2011).

For rfMRI processing, the XCP pipeline included: (1) field inhomo-

geneity correction with FSL FUGUE, (2) removal of initial rfMRI vol-

umes, (3) alignment of volumes within the time series to a selected

reference volume using FSL MCFLIRT, (4) interpolation of intensity

outliers with AFNI 3dDespike, and (5) demeaning and removal of lin-

ear or quadratic trends. Images were then denoized using a

36-parameter confound regression model that has been shown to

minimize impact of motion artifact (Ciric et al., 2017). Finally, BOLD-

weighted time series as well as artifactual model time series were fil-

tered using a first-order Butterworth filter with a passband between

0.01 and 0.08 Hertz.

Voxel-wise ALFF was defined as the sum of frequency bins

between 0.01 and 0.08 Hertz using a Fourier transform of the time-

domain signal (Yang et al., 2007). Voxel-wise ReHo was defined as

Kendall's coefficient of concordance computed over the rfMRI time

series in each voxel's 26-voxel local neighborhood (Zang et al., 2004).

Voxel-wise maps were smoothed with a 6 mm full width at half maxi-

mum (FWHM) kernel to improve signal-to-noise ratio. CBF, ALFF, and

ReHo images were co-registered to the T1-weighted structural image

using boundary-based registration and then normalized to a custom
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adolescent template using the top-performing SyN registration pro-

vided by ANTs (Avants et al., 2011; Ciric et al., 2021; Greve &

Fischl, 2009). Finally, a gray matter mask was generated as the inter-

section between a gray matter mask from T1-weighted images with

90% coverage over all subjects and overall coverage masks from regis-

tered pcASL and rfMRI scans.

2.4 | Methodology for estimating pIMCo

For each subject, we calculated voxel-wise coupling between CBF,

ALFF, and ReHo images to produce one pIMCo image per subject.

The full pIMCo estimation pipeline is summarized in Figure 1. On

average, pIMCo estimation for one subject took approximately 5 min.

First, we applied the gray matter mask to each of the three

modalities. Then, within each masked modality, we globally scaled

intensities to a mean of 0 and a variance of 1 across all voxels in the

gray matter mask. This scaling is necessary because eigendecomposi-

tion is later performed on local covariance matrices; if modalities are

defined on drastically different scales, decomposition outputs would

reflect differences in scale between modalities rather than local

covariance structures. Next, for each voxel, we extracted local neigh-

borhoods from each of the three modalities and weighted voxels

within these local neighborhoods proportional to a Gaussian kernel

over their Euclidean distances from the central voxel – in our study,

we used FWHM = 3 mm, which corresponds to 7 � 7 � 7 voxel

(14 � 14 � 14 mm) local neighborhoods and a standard deviation of

1.27 mm for the Gaussian kernel, as prior WLR-based IMCo studies

have found this FWHM to be informative (Valcarcel, Linn, Vandekar,

et al., 2018b). We also show that the FWHM can be varied parametri-

cally in the Supplementary Materials; however, with even a small

increase in FWHM to 5 mm, which corresponds to 11 � 11 � 11

voxel neighborhoods, pIMCo estimation for one subject took approxi-

mately 12 min.

Then, we calculated the 3 � 3 weighted covariance matrix

between the neighborhoods, performed eigendecomposition on it

using the eigen() function in R, and extracted the proportion of vari-

ance explained by the first/largest eigenvalue.

Finally, once all the voxel-wise proportional first eigenvalues were

extracted, we linearly shifted and scaled these values such that their

theoretical range was [0, 1] and performed a logit transformation.

While this monotonic transformation makes the coupling value more

challenging to interpret, it appropriately emphasizes extreme values of

coupling and changes the domain of coupling values from the

bounded domain 1
m ,1
� �

to an unbounded domain �∞,∞ð Þ, where m is

the total number of modalities. The transformation results in a

F IGURE 1 Step-by-step
diagram of pIMCo estimation
pipeline as described in the
methods. Coupling images are
generated from intermodal
images for each subject
individually. pIMCo estimation is
performed at each voxel location
across subject-specific images
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coupling value that more closely follows a normal distribution and is

thus expected to have improved behavior with post-hoc statistical

analyses (Supplementary Figure S1).

This resulted in our voxel-level pIMCo image for that subject.

For any voxel in that image, a large value suggests that the voxel's

local covariance matrix across modalities could be well-

summarized in a single dimension while a small value suggests mul-

tiple dimensions would be necessary to characterize the covari-

ance structure.

For reference, in the three-modality setting, coupling values of

�2, 0, and 2 correspond to the first eigenvector explaining 41%, 67%,

and 92% of the total variance in that local neighborhood respectively.

In the two-modality setting, coupling values of �2, 0, and 2 corre-

spond to the first eigenvector explaining 56%, 75%, and 94% of the

total variance in that local neighborhood respectively.

2.5 | Voxel-wise statistical analysis

We created descriptive coupling maps by taking the means and vari-

ances across all 803 subjects' pIMCo values at each voxel location in

volumetric space. We then projected these mean and variance images

to the cortical surface using PySurfer for visualization of spatial het-

erogeneity and cortical patterns (Waskom et al., 2020).

To investigate the biological relevance of pIMCo, we used linear

regression at each voxel to explore whether coupling was associated

with age or sex. In all linear regressions, we controlled for in-scanner

motion for both ASL and rfMRI scans. To account for multiple com-

parisons in these voxel-level tests, we controlled the false discovery

rate at 5% (Benjamini & Hochberg, 1995). Then, we created binary

thresholded masks indicating which voxels displayed a significant

effect for each of age and sex. For this and following analyses, we per-

formed identical modeling of each of the three modalities individually

to explore whether age and sex effects were present and corre-

sponded to the observed associations with pIMCo.

2.6 | Spin testing

To visualize the extent of voxels where coupling was associated with

age and sex, we counted the proportion of voxels with statistically sig-

nificant age or sex effects in each of the Yeo 7 functional networks on

the cortex as well as in subcortical regions in the Automated Anatomi-

cal Labeling (AAL) atlas (Thomas Yeo et al., 2011; Tzourio-Mazoyer

et al., 2002).

Next, we tested whether the proportion of significant voxels in

each functional network was enriched when compared to the pro-

portion of significant voxels overall. Because there is an underlying

spatial distribution of significant voxels, we used the spin test

(Alexander-Bloch et al., 2018). Briefly, the spin test is a permutation-

inspired testing procedure that rotates the FreeSurfer sphere ran-

domly to create an underlying null distribution that preserves spatial

patterns. The null hypothesis is that there is no spatial enrichment of

the proportion of significant voxels in the specified functional net-

work compared to across the cortex overall. In our study, we esti-

mated the null distribution over 2000 permutations – for each

permutation, we recorded the Jaccard similarity index between the

thresholded p-value map and each of the Yeo 7 networks. Finally,

for each network, we calculated the p-value as the proportion of null

Jaccard similarity indices equal to or greater than the observed Jac-

card similarity index.

2.7 | Code and data availability

An R package for calculating pIMCo images is available at: https://

github.com/hufengling/pIMCo. All code for analysis is available at:

https://github.com/hufengling/IMCo_analyses. Software and pack-

ages used for pre-processing, pIMCo calculation, or analysis are cited

in the references – R Core Team (2021); Wickham (2019); Xie

(2021a); Xie (2021b); Allaire et al. (2021); Xie (2016); Wickham et al.

(2019); Muschelli (2021a); Avants (2020); Kandel et al. (2020); Müller

(2020); Fischl (2012); Schäfer (2021); Jenkinson et al. (2012);

Muschelli et al. (2015); Ren (2021); Muschelli (2021b); Yushkevich

et al. (2006).

PNC data are publicly available in raw format at https://www.

ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=

phs000607.v3.p2.

3 | RESULTS

3.1 | Coupling varies across the cortical surface
and is increased in discrete regions, bilaterally

We calculated voxel-wise mean and variance maps of coupling

values to characterize spatial patterns in CBF-ALFF-ReHo coupling

and visualized these on the cortical surface. Throughout the cortical

surface, all voxels, on average, showed strong coupling, and voxels

with stronger average coupling also tended to have higher variance

between subjects (Pearson correlation = 0.69). The average voxel-

wise mean coupling value was 0.99 (sd = 0.37; range = [0.27,

3.30]). The average voxel-wise variance was 0.91 (sd = 0.20;

range = [0.45, 2.64]).

Visual comparison of voxel-wise descriptive maps with the

Desikan-Killiany cortical atlas (Desikan et al., 2006) suggested that

coupling is especially strong in the following regions, bilaterally:

superior frontal gyrus, paracentral gyrus, caudal anterior cingulate,

posterior cingulate, isthmus cingulate, pericalcarine, lateral occipi-

tal, and insula (Figure 2). Comparing to the Yeo 7 functional net-

works, areas of strong coupling are observed primarily in the

frontoparietal (p = 0.0125) and default networks (p = 0.039;

Figure 3).

These voxel-wise descriptive maps of coupling showed unique

information when compared to the descriptive maps of each of the

individual modalities (Supplementary Figure S2).
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3.2 | CBF-ALFF-ReHo coupling evolves with age
throughout gray matter structures

Linear associations between strength of coupling and age were present in

subcortical structures and cortical networks (Figure 3; corrected p < 0.05).

Figure 4 shows an example of such an association between coupling and

age as well as individual modalities and age at one voxel in the default net-

work. In subcortical structures, age-related changes in CBF-ALFF-ReHo

coupling occurred primarily in the caudate and pallidum, though such

changes were also common in the hippocampus, putamen, and thalamus.

In cortical networks, coupling and age associations were rare in

all networks except the frontoparietal and default networks

F IGURE 3 Proportion of voxels in automated anatomical labeling subcortical regions and Yeo 7 cortical networks that showed significant
coupling-age and coupling-sex associations when in-scanner motion was included as a covariate (FDR corrected p < 0.05). Spin test was
performed for all Yeo 7 networks; significant p-values are reported (p < 0.05)

F IGURE 2 Coupling values are spatially heterogeneous across the cortical surface. (a) Voxel-wise means across subjects of cortical
coupling values between cerebral blood flow (CBF), amplitude of low-frequency fluctuations (ALFF), and regional homogeneity (ReHo).
Larger values indicate stronger coupling. (b) Voxel-wise variances across subjects of cortical coupling values between CBF, ALFF,
and ReHo
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(Figure 5). These two networks were also the networks in which the

average strength of coupling across subjects appeared to be highest

(Figure 2). Spin testing between functional networks and age-related

changes in coupling showed enrichment of coupling and age associa-

tions in the frontoparietal (p = 0.013) and default networks

(p = 0.039).

Similar patterns were observed when FWHM was varied to

either 2 or 5 mm instead of 3 mm (Supplementary Figures S3 and

S4). Of interest, the overall proportions of voxels showing signifi-

cant coupling-age associations was highest at FWHM of 5 mm,

intermediate at FWHM of 3 mm, and lowest at FWHM of 2 mm.

This trend suggests that using a larger FWHM may result in cou-

pling values that are more sensitive to group differences as pIMCo

estimation is smoothed over a larger local neighborhood, though a

trade-off with spatial specificity and computational resources must

be considered.

F IGURE 4 Example of associations between individual modalities and age as well as associations between coupling and age at a single
voxel in the default network. Each point represents the value at that voxel for one subject. Best-fit lines from univariate linear regression
are shown

F IGURE 5 (a)Thresholded maps of voxels with significant coupling associations with age after FDR correction at 0.05. (b) Thresholded maps
of voxels with significant coupling associations with sex after FDR correction at 0.05
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3.3 | CBF-ALFF-ReHo coupling varies between
males and females, primarily in subcortical regions

Associations between CBF-ALFF-ReHo coupling and sex were pre-

sent primarily in the hippocampus and thalamus (Figure 3; cor-

rected p < 0.05). Sex differences in coupling were rare in other

subcortical structures and all functional networks – only 1% to 3%

of voxels in these regions showed coupling and sex associations

(Figure 5). Spin testing between functional networks and sex-

related changes in coupling revealed enrichment of coupling and

sex associations in the frontoparietal network (p = 0.012), despite

the small proportion of the frontoparietal network that exhibited

coupling associations with sex. Again, similar results were observed

when the FWHM parameter was varied (Supplementary Figures S3

and S4).

3.4 | pIMCo provides a consistent estimator of
local coupling compared to WLR-based IMCo

In 2016, Vandekar et al. introduced a method to study IMCo relation-

ships at the single voxel level based on local weighted linear regres-

sion (WLR) slopes (Vandekar et al., 2016). Because this method relies

on estimating WLR slopes between modalities, it is inherently limited

to the two-modality setting, cannot account for statistical relationship

between modalities, and requires specification of one modality as the

independent variable, leading to asymmetry. These limitations are

demonstrated by a two-modality example in Figure 6. This figure was

generated by choosing a random voxel with high coupling, as esti-

mated by pIMCo, from a random subject and then calculating the

WLR-based IMCo value with ALFF as the independent variable (WLR-

ALFF), the WLR-based IMCo value with CBF as the independent vari-

able (WLR-CBF), and the pIMCo coupling value.

We see that the WLR-ALFF coupling value is 0.25, indicating little

coupling, but the WLR-CBF coupling value is 1.25, indicating five

times as much coupling. Thus, when using WLR-based IMCo, two pos-

sible coupling values exist at every voxel, and there are no guarantees

that analyses will show comparable findings between the two. Addi-

tionally, these WLR coupling values only describe the trend of the

relationship between ALFF and CBF, but do not account for the sta-

tistical strength of that relationship.

In contrast, the pIMCo coupling value is 2.13 and does not

require specification of which modality is treated as the independent

variable, leading to a symmetric and consistent definition of coupling.

This pIMCo value does not describe the effect size of the relationship

between ALFF and CBF and instead describes the strength and shape

of the relationship – a high value of coupling suggests that the shape

of data from that neighborhood looks like a long ellipsoid, while a low

value of coupling suggests that the shape is more spherical.

We then repeated this comparison for 100 randomly sampled

voxels across 50 randomly sampled subjects for a total of 5000 vox-

els. Again, for each voxel, we computed the WLR-ALFF value, the

WLR-CBF value, and the pIMCo coupling value. Figure 7 shows the

results of this random sampling comparison.

F IGURE 6 Two-modality example showing pIMCo results in comparison to weighted linear regression (WLR)-based IMCo results. Blue line
represents coupling value from WLR-based IMCo if amplitude of low-frequency fluctuations is defined as the independent variable
(slope = 0.25). Orange line represents coupling value from WLR-based IMCo if cerebral blood flow is defined as the independent variable
(slope = 1.25). Black line and ellipse represent principal component analysis (PCA) results; no reference specification is needed (coupling
value = 2.13). Larger dot sizes correspond to increased weights in the WLR and weighted PCA
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Panel A shows a strong inverse relationship between the WLR-

ALFF and WLR-CBF values such that, if the WLR-ALFF value is very

close to 0, suggesting no coupling, the WLR-CBF value is unstable

and is either very small or very large; the vice versa is also true. Panel

B shows that when the pIMCo value is small, the WLR-ALFF value is

also small; however, when the pIMCo value is large, the WLR-ALFF

value can be small, large, or close to zero, suggesting either strong

coupling or no coupling. Thus, Panel B shows that pIMCo and WLR-

ALFF estimates can lead to seemingly contradictory results. Coloring

the points by their respective WLR-CBF magnitudes reveals that this

contradiction is due to the inverse relationship shown in Panel A –

voxels with large pIMCo values and zero WLR-ALFF values have large

WLR-CBF magnitudes. Similar trends can be observed when plotting

pIMCo values against WLR-ALFF magnitudes and WLR-CBF magni-

tudes (Supplementary Figure S5).

In Panel C, we plot pIMCo values against the maximum magni-

tude of the WLR-ALFF and WLR-CBF values at each voxel and see

strong correlation between the two. Voxels with large maximum

WLR magnitudes can be interpreted as voxels that either WLR-ALFF

or WLR-CBF identifies as having strong coupling. This is further sup-

ported by Panel D, which displays pairwise Kendall correlations for

pIMCo values, WLR-ALFF values, and maximum WLR magnitudes

and shows pIMCo values and maximum WLR magnitudes are highly

correlated.

Overall, these results illustrate the asymmetry of WLR-based

IMCo estimates in the two-modality setting and show that apparent

contradictions between pIMCo and WLR-based IMCo estimates are

resolved when the asymmetry of WLR-based IMCo is taken into

account. Thus, pIMCo provides a more consistent estimate of local

coupling than WLR-based IMCo even in the two-modality setting.

F IGURE 7 Comparison between pIMCo coupling values and weighted linear regression (WLR)-based IMCo coupling values across 5000
randomly sampled voxels. (a) Relationship between WLR-amplitude of low-frequency fluctuations (ALFF) and WLR-cerebral blood flow (CBF)
coupling values showing a strong inverse relationship with instability when WLR-ALFF approaches 0 and when WLR-CBF approaches
0. (b) Relationship between pIMCo and WLR-ALFF coupling values. Color of points corresponds to the magnitude of the WLR-CBF coupling
value, with lighter color indicating higher magnitude. (c) Relationship between pIMCo and maximum WLR magnitude showing strong correlation.
(d) Pairwise non-parametric Kendall correlations between pIMCo values, WLR-ALFF values, and maximum WLR magnitudes showing the pIMCo
and maximum WLR magnitude have the strongest pairwise correlation
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4 | DISCUSSION

As growing emphasis is placed on the acquisition of multi-modal data,

new methodologies are necessary to enable these analyses. In this

manuscript, we introduce pIMCo, a generalized approach to estimat-

ing local IMCo that can be applied to two or more modalities, can be

interpreted as a direct summary of local covariance matrices, and is

symmetric (Figure 6). We show that pIMCo not only allows for cou-

pling analyses in more than two modalities, but also is superior to

WLR-based IMCo in the two-modality setting. Our method can be

used with any combination of volumetric images to produce single-

subject, voxel-resolution coupling images which can then be analyzed

using standard techniques. We applied our proposed method to show

significant coupling between cerebral blood flow, resting state fluctua-

tions, and local connectivity throughout the brain. We then used

voxel-level analyses to characterize how coupling varies in

neurodevelopment.

4.1 | Coupling of cerebral blood flow, resting state
fluctuations, and local connectivity vary with age
and sex

Neurovascular coupling measured by CBF and ALFF has been previ-

ously thought of as a measure of the process by which neuronal activ-

ity induces changes in local vasculature to support nutrient demands

(Armstead, 2016; Presa et al., 2020). This neurovascular coupling has

been shown to evolve over neurodevelopment as well as in disease

(Baller et al., 2022; Girouard & Iadecola, 2006; Hu et al., 2019; Jin

et al., 2020). Here, we extend this concept of neurovascular coupling

and use CBF-ALFF-ReHo coupling to explore not only the relationship

between neuronal activity and blood flow, but also how this relation-

ship is attenuated or enhanced by the additional consideration of the

degree of local neuronal activity coordination. Thus, regions with

strong CBF-ALFF-ReHo coupling may potentially reflect improved

local optimization, where neuronal activity at a voxel induces, or is

induced by, additional neuronal activity within its local network, and

together influence local changes in blood flow.

We found that CBF-ALFF-ReHo coupling was spatially heteroge-

neous and varied with age and sex in neurodevelopment in both sub-

cortical structures and functional networks. These findings, which

uncover otherwise undetectable intermodal interactions, are unique

to those from individual modality analyses.

We noticed that regions with higher CBF-ALFF-ReHo coupling

across subjects also tended to have higher variance in coupling. This

suggests that these regions may be biologically interesting in the con-

text of CBF-ALFF-ReHo coupling and important regions for future

exploration, since they appear to demonstrate pronounced differ-

ences in coupling phenotypes between subjects and could be associ-

ated with other variables of interest, such as clinical phenotypes.

Spin testing showed that the high proportion of coupling-age

associations in the frontoparietal and default networks were enriched

when compared to the cortex overall. This suggests that in

neurodevelopment, there is change in not only blood flow, resting

state fluctuations, and local connectivity individually, but also in the

strength of interaction among these features. These findings are

consistent with and fortify the literature demonstrating the impor-

tance of frontoparietal and default networks as regions for change in

neurodevelopment (Baller et al., 2022; Chai et al., 2017; Fair

et al., 2008; Lin et al., 2019). Outside of neurodevelopment, our find-

ings are consistent with previous work showing that coupling

between CBF and functional connectivity strength is stronger in

frontoparietal and default networks than regions outside these net-

works (Tak et al., 2015). In subcortical structures, high proportions of

coupling associations with age seen in the caudate, pallidum, hippo-

campus, and thalamus suggest that modulation of vascular, resting

state fluctuations, and local connectivity coupling may be necessary

in the development of movement, memory, and fundamental brain

activities.

In adolescent neurodevelopment, in response to hormonal

changes and environmental exposures, myelinogenesis remains active,

regional neurocircuitry is strengthened, and brain plasticity is sup-

ported by neuronal proliferation, rewiring, and dendritic pruning

(Arain et al., 2013; Baum et al., 2020; Giedd et al., 1999; Yurgelun-

Todd, 2007). Additionally, cerebral blood flow has been shown to

decrease rapidly in early adolescence (Satterthwaite, Shinohara,

et al., 2014b). Together, these age-related microstructural changes

facilitate more efficient inter-neuron communication in terms of both

nutrient demand and local network efficiency, thus changing the over-

all coupling between blood flow, neuronal activity, and local connec-

tivity (Bercury & Macklin, 2015).

High proportions of coupling associations with sex in the hippo-

campus and thalamus suggest that male–female differences in mem-

ory and related cognitive functions between males and females could

be explained in part by the strength of regional brain metabolism as

measured by cerebral blood flow, resting state fluctuations, and local

connectivity coupling. In the cortex, the rarity of coupling-sex associa-

tions suggests that this coupling may not play a role in explaining cor-

tical sex-based differences or that this relationship is more complex

than our analyses could uncover. These cortical findings are of inter-

est when compared to previous work showing a high proportion of

the cortex had significant associations between sex and CBF-ALFF

coupling (Baller et al., 2022). Together, these studies demonstrate that

three-modality coupling identifies unique relationships when com-

pared to two-modality coupling.

Notably, despite low coupling-sex signal in the frontoparietal net-

work, spin testing showed enrichment of coupling associations with

sex in this network. Since spin testing is a spatial permutation test that

uses the coupling-sex association thresholded p-value map to gener-

ate data under the null, this significant finding is likely due to a combi-

nation of overall rare coupling-sex associations in the cortex and the

spatial distribution of these associations within the frontoparietal net-

work. This finding highlights potential shortcomings of using the spin

test for enrichment analysis. Additionally, statistical analysis of enrich-

ment in subcortical structures is not yet possible, so more methods

development is needed in this area.
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4.2 | Limitations and future directions

pIMCo is designed to summarize a complex local covariance struc-

ture, which necessarily leads to outputs that cannot fully character-

ize the intricacies of coupling. This is especially true in settings with

more than two modalities – the covariance structure becomes even

more complex, and more information is lost when it is summarized.

As such, high coupling values can result from many different covari-

ance features, and it is challenging to understand the basis of these

high values.

The symmetric nature of pIMCo is conducive to more consistent

interpretation when compared to slope-based IMCo, since pIMCo

does not depend on reference modality specification. However, while

slope is a biologically intuitive measure that can be interpreted as cap-

turing the directionality and effect size of a relationship, the generaliz-

able nature of the pIMCo value makes it challenging to interpret

biologically, especially when used on more than two modalities.

Instead, it is most accurately interpreted in statistical terms – as a

measure of the proportion of variance explained by the first eigenvec-

tor, as a measure of how well the local covariance structure could be

summarized in one dimension, or as a measure of how ellipsoidal the

neighborhood is instead of spherical. This is shown in Figure 6, where

the WLR coupling value estimates that, on average, a 1 unit increase

in CBF corresponds to a 1.25 unit increase in ALFF, while the pIMCo

coupling value describes the ratio of the ellipse's major axis to minor

axis and suggests that the statistical strength of the relationship

between ALFF and CBF is strong.

Next, since PCA functions as a linear dimension reduction tech-

nique, it is most effective at summarizing data whose shape is roughly

ellipsoid. However, it is unlikely that such an assumption holds for all

voxels and all combinations of different modalities. For example, in a

two-dimensional neighborhood, it could be possible that there is a

strong quadratic relationship between modalities, but the data is not

well-summarized by one eigenvalue and its corresponding eigenvec-

tor. In such cases, an IMCo technique based on manifold learning con-

cepts could be a useful improvement that picks up on otherwise

undetected intermodal relationships.

Finally, pIMCo is designed to estimate coupling in cross-sectional

multi-modality data sets. However, there is also rich covariance infor-

mation in longitudinal data sets with one or multiple modalities.

Future implementations of pIMCo suitable for longitudinal data could

investigate whether IMCo changes over time in neurodevelopment or

disease, and if so, whether such changes may be useful in identifying

biomarkers for clinical phenotypes.

5 | CONCLUSION

pIMCo offers a novel perspective for summarizing the overall covari-

ance structure between more than two modalities as well as a gener-

alized, symmetric approach for describing coupling in the two-

modality setting. Here, we applied this method to the analysis of cou-

pling between cerebral blood flow, resting state fluctuations, and local

connectivity images. This analysis revealed patterns in neurodevelop-

ment with respect to age and sex that differed from those present in

any individual modality. As multi-modal data becomes more common,

we hope that pIMCo will serve as a tool for capturing complex inter-

modal relationships and enable more sophisticated descriptive ana-

lyses, improved prediction efforts, and novel methodological

advances, among others.
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