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Abstract Causal interactions between specific psychiatric symptoms could contribute to the

heterogenous clinical trajectories observed in early psychopathology. Current diagnostic

approaches merge clinical manifestations that co-occur across subjects and could significantly

hinder our understanding of clinical pathways connecting individual symptoms. Network analysis

techniques have emerged as alternative approaches that could help shed light on the complex

dynamics of early psychopathology. The present study attempts to address the two main

limitations that have in our opinion hindered the application of network approaches in the clinical

setting. Firstly, we show that a multi-layer network analysis approach, can move beyond a static
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view of psychopathology, by providing an intuitive characterization of the role of specific

symptoms in contributing to clinical trajectories over time. Secondly, we show that a Graph-Signal-

Processing approach, can exploit knowledge of longitudinal interactions between symptoms, to

predict clinical trajectories at the level of the individual. We test our approaches in two

independent samples of individuals with genetic and clinical vulnerability for developing psychosis.

Novel network approaches can allow to embrace the dynamic complexity of early psychopathology

and help pave the way towards a more a personalized approach to clinical care.

Introduction
Psychiatric disorders are remarkably complex. By the time an individual manifests a sufficient decline

in quality of life to warrant consultation with a mental health professional, he will often present a het-

erogeneous collection of multiple signs and symptoms. The urgent need to provide optimal clinical

care, that is evidence-based and consistent across clinicians requires a systematic approach to

address such complexity and heterogeneity (Kendell and Jablensky, 2003; McGorry and van Os,

2013). In particular, clinical practice involves massively reducing dimensionality of information, from

the quantitation of up to hundreds of symptoms, to a much more limited number of potential treat-

ment options.

Current approaches to tackle complex clinical patterns in psychiatry have invariably merged

together clinical manifestations that tend to co-occur across subjects. The inherent guiding principle

is that if two symptoms co-occur in a sufficiently high proportion of patients, their clinical distinction

becomes redundant for guiding clinical decision-making. The prototypical example of this approach

consists in establishing boundaries within which co-occurrence of psychiatric symptoms is sufficiently

high to warrant a single diagnostic label (Jablensky, 2016). An alternative dimensional approach

consists in progressively merging manifestations of mental health disturbances over progressively

higher levels of complexity, on the basis of their empirically observed pattern of co-occurrence

(Caspi et al., 2014; Krueger et al., 2018). The first approach, based on discrete diagnostic catego-

ries, is intuitive, and has proven extremely useful in increasing communicability and agreement

across clinicians (Kendell and Jablensky, 2003). There is, however, growing concern, that merging

symptoms into discrete diagnostic labels may be a step too far in reducing the complexity of mental

health disturbances (Maj, 2018). Moreover, diagnostic algorithms have demonstrated limited utility

in guiding therapeutic decisions, which strongly supports the need for reform (Reed et al., 2018).

More recent dimensional approaches may provide more accurate representation of mental health

phenomena. However, their utility in guiding clinical decision-making remains very much debate

(Tyrer, 2018). Indeed, while ‘dimension fit the data,’ it is still unclear whether ‘clinicians can fit

dimensions’ (Tyrer, 2018).

The implicit assumption that justifies merging clinical manifestations into diagnostic labels or

dimensions is that symptoms manifest together as consequence of a common underlying disease

mechanism. It has been argued that such underlying conceptualization could be at the origin of the

growing dissatisfaction toward dimensional and categorical approaches (Borsboom, 2017;

Borsboom and Cramer, 2013). Indeed, it is increasingly recognized that, in psychiatry, symptoms

are not only passive expression of common underlying disease processes. Psychiatric symptoms can

often represent active agents, that have the ability to provoke their reciprocal emergence, through

dynamic causal interactions (Borsboom, 2017; Borsboom and Cramer, 2013). For instance, the

observation that in patients with chronic psychosis, thought disorders tend to co-occur with social

retreat could be explained by the fact that early sub-clinical paranoid ideation hindered the subse-

quent maintenance of functional social interactions. This is consistent with the concept of secondary

negative symptoms (Carpenter et al., 1985). Similarly, a causal association between early insomnia

and subsequent mood disturbances could partially account for their co-occurrence in depressed

patients (Franzen and Buysse, 2008).

Importantly, pathways of interactions between individual symptoms are probably not constrained

within current diagnostic boundaries, particularly in the earliest stages of psychopathology

(McGorry and van Os, 2013; McGorry et al., 2018; McGorry et al., 2017; van Os, 2013). For

instance, in at risk-populations, sub-threshold psychotic symptoms increase the likelihood of devel-

oping not only a full-blown psychotic disorder, but also mood, anxiety, and substance use disorders
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Figure 1. Part 1: Methodological pipeline for construction of Temporal MultiLayer Symptom Network (TMSN). (A) Clinical assessment of multiple

symptoms is performed for a cohort of participants over two time points (baseline and follow-up). (B) A single adjacency matrix is constructed,

containing cross-sectional correlations between symptoms measured at baseline and follow-up which are located respectively in the upper left and

lower right quadrants. The off-diagonal quadrant is composed of longitudinal correlations between each symptom at baseline and each symptom at

Figure 1 continued on next page
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(Lin et al., 2015; Rutigliano et al., 2016). On the opposite, the presence of affective and amotiva-

tion symptoms strongly increase the likelihood of conversion to psychosis in individuals with psy-

chotic symptoms (McGorry et al., 2017; Dominguez et al., 2010). In the field of developmental

psychopathology, cross-disorder interactions are particularly prominent, where they have been

described as sequential comorbidity (Caron and Rutter, 1991; Taurines et al., 2010). Such cross-

diagnostic clinical trajectories currently represent a major challenge for decision-making in early

intervention psychiatry (McGorry et al., 2018).

Clinical evidence presented above points to two considerations, which will be relevant for design-

ing novel approaches to the assessment and classification of patients. First, given that individual

symptoms often play an active role in determining clinical trajectories, merging symptoms together

into diagnostic labels or disease dimensions, could significantly hinder our understating of disease

mechanisms at stake. This, in turn, could limit our ability to tailor treatment protocols to the individ-

ual patients need (McGorry et al., 2018; van Os, 2013). Second, given that clinical trajectories are

heterogenous, novel approaches to the assessment and classification of patients, should be broad

and trans-diagnostic, particularly in the early stages of psychopathology (McGorry and Nelson,

2016). Still, modeling pathways of interactions between up to hundreds of symptoms represent a

significant computational challenge. Novel analysis techniques will be required in order to translate

such complex multidimensional information to the clinical setting, in a way that can reliably inform

decision-making. The importance of developing novel data-analysis approaches, specifically con-

ceived for clinical application, will only increase with the advent of digital ‘precision-medicine’

approaches to characterize behavior in psychiatry (Torous and Baker, 2016; Insel, 2018). The hope

is that the tools of data science will allow to embrace the complexity of mental health problems, and

ultimately assist in a personalized approach to clinical care (Torous and Baker, 2016).

Network science is a rapidly expanding branch of mathematics dedicated to the study of graphs,

which can be broadly defined as structures composed of discrete nodes that are connected by

edges (Newman, 2010). Applications of network science range from the study of networks of social

interactions (Wasserman and Faust, 1994) to that of networks of biological interaction between

genetic transcripts (Chen et al., 2014). From a computational perspective, the core appeal of net-

work analyses is the ability to represent broad patterns in the overall structure of a data set, while

conserving highly granular information relative to individual variables. For instance, in terms of

the overall structure, network techniques can identify the propensity groups of variables that are

more densely connected to each other than to rest of the network, which is defined as network

Figure 1 continued

follow-up. (C) Graphical representation of the multilayer symptom network. A first network layer is composed of correlation between baseline

symptoms, represented in green and a second layer is composed of correlations between symptoms at follow-up, represented in yellow. The two cross-

sectional layers are connected by longitudinal edges composed of correlations between baseline and follow-up symptoms represented as dashed lines.
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Eigen-decomposition of the multilayer adjacency matrix. Graph theory is employed to identify longitudinal clinical pathways (shortest paths) connecting

symptoms across temporal layers. Baseline symptoms that broadly influence symptoms at follow-up, have high longitudinal centrality, and can be

conceptualized as gateways of psychopathology (schematically represented as symptom three at baseline). Follow-up symptoms with high longitudinal

centrality are broadly influenced by symptoms at baseline, and can be conceptualized by funnels of psychopathology (schematically represented as

symptom one at follow-up). Part 2: Methodological pipeline for Graph Diffusion-based prediction of clinical evolution. (A) A TMSN is reconstructed

excluding the individual for whom clinical prediction is performed, in a leave-one-out cross-validation loop. (B) In a graph-signal-processing framework

node corresponding to baseline symptoms are assigned a signal that corresponds to their empirically observed severity in the excluded individual. At

the beginning of the diffusion process severity of symptoms at follow-up is considered to be unknown and corresponding nodes are assigned a value

of 0. (C) Using a finite-difference graph diffusion approach signal corresponding to the observed clinical pattern at baseline is diffused on the TMSN.

Compared to simple regression analysis prediction keeps into account both the structure of longitudinal correlations connecting layers of baseline and

follow-up symptoms, which are represented schematically as dashed lines, and the structure of cross-sectional correlations between symptoms at

follow-up. This diffusion approach leads to a progressive evolution of the predicted symptom pattern at follow-up over multiple diffusion iterations. The

symptom pattern at baseline is considered to be known, and is hence re-initialized at each diffusion iteration. This is conceptually similar to modeling

the spread of information in a social network as a function of friendship ties between individuals or the diffusion of temperature as a function of

distance between spatial locations. (D) For temperature, information or psychopathology, the diffusion algorithm will evolve the predicted signal until

the system converges toward an equilibrium that minimizes signal change across time, at which point prediction is considered to be stable the iterative

diffusion will be stopped. This process was repeated to predict symptom severity at follow-up for each individual included in the cohort, in a leave-one-

our cross-validation loop.
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modularity. Moreover, network techniques offer several indices to measure connectivity profiles of

individual variables. For instance, the propensity for an individual variable to strongly mediate the

relationship between other network variables can be defined as a network centrality.

The application of network analysis carries the potential to have a profound theoretical and prac-

tical impact on the study of mental health disturbances. Indeed, according to the network theory of

psychopathology, mental disorders are best conceptualized, as systems of reciprocally interacting

symptoms (Rubinov and Sporns, 2010; Boccaletti et al., 2006). The most widely implemented par-

adigm has consisted of measuring correlations between different pairs of psychiatric symptoms in

cross-sectional samples, reconstructing a network of symptoms-symptoms

interactions (Borsboom and Cramer, 2013; Rubinov and Sporns, 2010; Boccaletti et al., 2006).

Within a network perspective, clinical manifestations that have a high tendency to co-occur across

subjects, and that might otherwise be merged together in single dimension or diagnostic label,

would instead be represented as a highly interconnected network module, composed of individual

symptoms. By conserving the singularity of individual clinical manifestations, it is then possible to

identify symptoms that play a particularly prominent role in mediating the relationship between

other clinical variables, and that are said to have high network centrality. High centrality is commonly

considered to reflect a prominent causal role in influencing other symptoms.

Network approaches are rapidly gaining popularity by demonstrating that exploiting the high-

dimensional granularity of clinical assessments can generate insights that would be missed if symp-

toms were merged in diagnoses or dimensions (Robinaugh et al., 2020). For instance, the applica-

tion of network analysis techniques to the study of schizotypal personality revealed that subclinical

forms of paranoia and of behavioral or thought disorganization play a particularly central role in

influencing the presence of other schizotypal personality traits (Christensen et al., 2018; Fonseca-

Pedrero et al., 2018). Moreover, social anhedonia played a central role in mediating the relationship

between positive and negative schizotypal personality traits (Christensen et al., 2018). In health-

seeking individuals, network analysis revealed that prodromal symptoms mediated the relationship

between basic symptoms and frank symptoms of psychosis, with disorganized communication again

playing a particularly central role (Jimeno et al., 2020). Finally, by using network analysis, studies

have shown that clinical manifestations that are not necessarily specific to psychosis, including in par-

ticular affective dysregulation, may play a prominent role in influencing the presence of psychotic-

like experiences, in adolescence (Fonseca-Pedrero et al., 2021).

Identifying pathways of interactions between individual symptoms carries significant potential, in

terms of assisting in predicting prognosis, and planning treatment strategies. Still, despite

Table 1. Correspondence of items of SIPS and CAARMS clinical interviews.

Corresponding items of SIPS Corresponding items of CAARMS Missing items of SIPS Missing items of CAARMS

P1 Unusual thought 1.1 Unusual thought content D2 Bizarre thinking 3.3 Inadequate affect

P2 Persecutory ideas 1.2 Non-bizarre ideas D4 Personal hygiene 4.1 Alogia

P4 Pperceptual abnormalities 1.3 Perceptual abnormalities G1 Sleep disturbances 5.1 Social isolation’

P5 Disorganized communication 1.4 Disorganized speech 5.4 Aggressive behavior

N1 Social anhedonia 4.3 Anhedonia 6.2 Objective motor functioning

N2 Avolition 4.2 Avolition/apathy 6.3 Subjective bodily sensation

N3 Expression emotion 3.2 Blunted affect 6.4 Subjective autonomic functioning

N4 Experience emotion 3.1 Subjective emotional disturbance 7.1 Mania

N5 Ideational richness 2.2 Objective cognitive change 7.3 Suicidality/self-harm

N6 Occupational functioning 5.2 Impaired role functioning 7.4 Affective instability

D1 Odd behavior 5.3 Disorganized behavior 7.5 Anxiety

G2 Dysphoric mood 7.2 Depression 7.6 OCD

G3 Motor disturbances 6.1 Subjective motor functioning 7.7 Dissociative symptoms’

G4 Impaired tolerance to stress 7.8 Impaired subjective tolerance to normal stress BPRS grandiosity

D3 Trouble attention 2.1 Subjective cognitive change

Sandini et al. eLife 2021;10:e59811. DOI: https://doi.org/10.7554/eLife.59811 5 of 39

Research article Medicine

https://doi.org/10.7554/eLife.59811


considerable promise, network approaches have to date largely remained confined to the labora-

tory. Below, we suggest that recent methodological advances made in the fields of dynamic network

analysis and graph-signal-processing can help to address three main obstacles to the clinical transla-

tion of network approaches to psychopathology.

The first shortcoming is that computational challenges have largely limited the application of net-

work techniques to cross-sectional data. As a consequence, psychiatric symptoms networks typically

lack the essential dimension of time. For instance, high centrality in a cross-sectional sample could
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Figure 2. Structure of Longitudinal Symptom Networks. (A, B) Structure of longitudinal symptom networks in 22q11DS (A) and NEURAPRO samples (B).

Spatial embedding of symptoms according to network dimensions derived from singular value decomposition. The first dimension is plotted along the

horizontal X-axis whereas the second dimension is plotted along the vertical Y-axis. Lines connecting symptoms represent correlations that survive

correction for multiple comparisons at p<0.05 color-coded according to the correlation strength. Symptoms at baseline are displayed in green and

symptoms at follow-up are displayed in yellow. Size of nodes is scaled according to the mean connectivity strength of each symptom. Symptoms that

present a higher than random centrality in mediating clinical pathways going from baseline to follow-up are displayed in bold. (C, D) Association of

Euclidean distance between symptoms after spatial embedding according to the first and second network dimensions and empirically observed

correlation strength between symptoms in 22q11DS (C) and NEURAPRO samples (D). Cross-sectional associations between symptoms at baseline are

displayed in green and between symptoms at follow-up are displayed in yellow. Longitudinal associations between symptoms at baseline and

symptoms at follow-up are displayed in black. (E) Association between the position of symptoms according to the first network dimension across

22q11DS and NEURAPRO cohorts. Two clusters of symptoms that contribute negatively to the correlation between structures of symptom networks

across the two cohorts, suggesting a different pattern of correlation with other forms of psychopathology, are circled. (F) Association between

the position of symptoms according to the second network dimension across 22q11DS and NEURAPRO cohorts.
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imply that a symptom has an active role in broadly influencing subsequent clinical manifestations.

However, an opposite but equally likely interpretation is that high centrality reflects the tendency of

symptoms to be passively influenced by different prior psychiatric manifestations. To address this

limitation, we propose a temporal multilayer symptom network (TMSN) approach mutated from

dynamic network analysis (Mucha et al., 2010). A TMSN, applied to developmental psychopathol-

ogy, would consist of a first temporal layer composed of cross-sectional correlations between symp-

toms at a first baseline assessment. The subsequent network layers are composed of correlations

between symptoms measured at longitudinal follow-ups. Such cross-sectional layers would be con-

nected by longitudinal edges reflecting the association of symptoms across time, namely which

symptoms at baseline predicted which symptoms at follow-up. Analytic tools of network science

could then allow the dissection of longitudinal disease pathways connecting manifestations of psy-

chopathology over time (Mucha et al., 2010). For instance, it would be possible to dissect
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Figure 3. Longitudinal clinical pathways running through gateway symptoms at baseline (C, D) and funnel symptoms at follow-up (A, B) in the 22q11DS

sample. (A) Impaired tolerance to daily stress at follow-up acts as a funnel by broadly mediating the effects of baseline of thought disturbances on

follow-up affective symptoms and of baseline affective symptoms on follow-up thought disturbances. (B) Reduced occupational functioning at follow-

up, acted as a funnel by broadly mediating the effects of negative, disorganized symptoms and ADHD symptoms at baseline on the persistence of

negative and disorganized symptoms at follow-up. (C) BPRS guilt at baseline acts as a gateway by mediating the effects of affective symptoms at

baseline on both affective and thought disturbance symptoms at follow-up. (D) SIPS Odd Behavior acted as a gateway by broadly mediating the effects

of negative symptoms at baseline on both disorganized and negative symptoms at follow-up.
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symptoms at baseline that broadly affect clinical manifestations at follow-up, and can be conceptual-

ized as gateways of psychopathology, from symptoms at follow-up that are broadly affected by psy-

chopathology at baseline, acting as funnels of psychopathology (see Figure 1).

A second limitation is that current representations of network structure arguably remain exces-

sively complex. In the near future, the pursuit of ‘high-definition’ personalized medicine in psychiatry

is likely to provide an even greater wealth of information regarding factors that influence the

dynamic evolution and interaction between symptoms (Torkamani et al., 2017). For instance, expe-

rience-sampling techniques and digital phenotyping will allow the monitoring of fluctuations of mul-

tiple clinical, environmental or physiological variables in a daily life setting (Myin-Germeys et al.,

2018). Network analysis techniques are ideally suited, and are indeed being implemented, to ana-

lyze such rich information, which carries tremendous clinical potential (Myin-Germeys et al., 2018).

Crucially, however, for this complex high-dimensional information to translate into clinical practice,

results will not only need to be statistically significant, but should also be intuitively accessible and

interpretable. Indeed intuitiveness and communicability remain the main advantages of current diag-

nostic systems (Tyrer, 2018). An ideal framework would need to balance a quantitative low-resolu-

tion characterization of the structure of psychopathology similar to factorial analysis, with high-

resolution information regarding relevant pathways of interaction between individual symptoms.

From this perspective, an approach that seems particularly promising is the use of techniques of

dimensionality reduction on graphs, to achieve a topological embedding of individual symptoms
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Figure 4. Longitudinal clinical pathways running through gateway symptoms at baseline (B, D) and funnel symptoms at follow-up (A) in the NEURAPRO

sample. (A) Avolition-apathy at follow-up was also highlighted as a key funnel symptom that broadly mediated the effects of baseline avolition and

affective disturbances on subsequent psychopathology. (B) Avolition-apathy was located on the left side of the graph and was directly associated with

subsequent affective symptoms and indirectly associated with negative and disorganized symptoms, through the mediating role of persistent avolition-

apathy at follow-up. (C) BPRS hostility was also located in proximity to negative and disorganized symptoms at baseline and appeared central in

mediating their effects on subsequent symptoms of mood disturbance. (D) BPRS bizarre behavior was located on the right side of the graph and

appeared to broadly affect negative and disorganized symptoms at follow-up. Moreover, bizarre behavior indirectly affected subsequent affective

disturbances p through the mediating role of emotional withdrawal at follow-up.
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that reflects the most salient aspects of the overall network architecture (Alanis-Lobato et al.,

2016). Employing such topological embedding to a multilayer temporal network of symptoms could

offer an intuitive characterization of clinical pathways contributing to the evolution of

psychopathology.

The third, and arguably major obstacle to clinical translation, is that psychopathology networks

characterize symptom connectivity at the population level, whereas in clinical practice decisions are

made on the basis of symptom severity, at the level of the individual. Despite considerable promise,

no study to date has, to the best of our knowledge, demonstrated the utility of network approaches

in predicting the dynamic development of psychopathology and assist in establishing prognosis.

Graph signal processing (GSP) is a relatively novel field of network science that is interested in mov-

ing beyond the quantitative characterization of network architecture to model how network architec-

ture affects processes that occur on the network (Shuman et al., 2013). Similarly, to other branches

of network science, GSP is devoted to analyzing graphs composed of nodes connected by edges,

such as graphs composed of individuals connected by social ties. The unique aspect of GSP is that

each node in the graph can be assigned a signal such as the amount of information in a social net-

work, or symptom severity in a psychopathology network. Techniques of GSP can then allow us to

study and predict how diffusion of signal on the graph (i.e., diffusion of information among individu-

als) is influenced by the architecture of connections between nodes (i.e., architecture of social bonds)

(Shuman et al., 2013). With regard to psychopathology, techniques of GSP seem extremely attrac-

tive to model how dynamic interactions between multiple symptoms will influence heterogeneous

clinical evolutions. Specifically, once interactions between symptoms are modeled as a multilayer

temporal network, GSP could allow the prediction of how network architecture will influence

the diffusion of psychopathology across temporal layers at the level of individual patients.

In the present study, we implemented tools of multilayer network analysis and GSP to character-

ize and predict clinical pathways of vulnerability to psychopathology in two longitudinal samples of

individuals characterized as being at high risk of developing a psychotic disorder. The first sample is

composed of individuals with 22q11.2 Deletion Syndrome (22q11DS), a homogenous genetic disor-

der, associated with an approximately 30% risk of developing a psychotic disorder (McDonald-

McGinn et al., 2015; International Consortium on Brain and Behavior in 22q11.2 Deletion Syn-

drome et al., 2014). The second sample was composed of individuals at clinical high risk for devel-

oping psychosis, recruited from 10 centers internationally in the context of a clinical trial to test

the efficacy of polyunsaturated fatty acids (PUFAs) (Nelson et al., 2018). This first objective was to

attempt to provide a quantitative and at the same time intuitive representation of clinical pathways

of interaction between symptoms contributing to clinical evolution. The second objective was to use

network interactions between symptoms to predict clinical evolution at the level of individual partici-

pants. For each section we begin by presenting results in the 22q11DS cohort, followed by results of

the replication analysis performed in clinical high-risk individuals.

Materials and methods

Sample and clinical instruments
Primary cohort of individuals with 22q11DS
Individuals with 22q11DS were part of a prospective longitudinal study that has been described in

several previous publications (Sandini et al., 2018; Schaer et al., 2009). Recruitment was performed

through patient associations and word of mouth in French and English-speaking European countries.

Inclusion criteria for the overall longitudinal study were the presence of a genetically confirmed

22q11.2 deletion and willingness of the participant and caregiver to participate in the study. Exclu-

sion criteria for the overall longitudinal study were the inability of the participant to follow the proce-

dures described in the project due to sensory issues (e.g., blindness) or too severe cognitive

impairments. In particular, participants should have sufficient verbal skills to comprehend and answer

to oral questions (i.e., during clinical interviews). For the present study, specific inclusion criteria

were the availability of two longitudinal clinical assessments, including a first baseline assessment

during adolescence, defined between 11 and 19 years of age. Presence of a psychotic disorder at

baseline according to DSM-IV-TR criteria was an exclusion criterion. This yielded a total of 57 individ-

uals (M/F=26/31), for whom a first psychiatric assessment was available during adolescence (age
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range at baseline 11.6–18.4, mean 14.4±1.8) along with a second longitudinal assessment on aver-

age 3.8±1 years later (age range at follow-up 14.2–24.27, mean 18.25±2.0).

Psychiatric diagnoses were assessed with the Diagnostic Interview for Children and Adolescents-

Revised and the psychosis supplement from the Kiddie Schedule for Affective Disorders and
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Figure 5. Performance of graph diffusion approach in predicting patterns of SIPS psychopathology at longitudinal follow-up in the 22q11DS sample.

(A) Correlation of symptom severity across time points for all symptoms across participants. Regression lines for symptoms are displayed in black with

dashed lines indicating correlations that are not significant at p<0.05. Regression lines for individuals are displayed in purple with dashed lines

indicating correlations that are not significant at p<0.05. (B) Correlation between symptom severity at baseline and change in symptom severity

between baseline and follow-up for all symptoms across all participants. (C) Correlation between real and predicted symptom severity at follow-up. (D)

Correlation between real and predicted symptom change between baseline and follow-up. (E) Comparison of accuracy in predicting SIPS at follow-up,

between considering clinical stability and graph diffusion approach using SIPS at baseline. Symptoms are spatially embedded according to two main

network dimensions derived from SVD. Symptoms at baseline are displayed in green. Symptoms at follow-up are color-coded according to

the prediction accuracy of graph diffusion compared to considering clinical stability, with blue symptoms having higher accuracy using graph diffusion

and red symptoms having worsened accuracy. (F) Prediction accuracy of considering the combination of SIPS, BPRS, and CBCL at baseline compared to

using only items of the SIPS. Symptoms are spatially embedded according to two main network dimensions derived from SVD. Symptoms of the SIPS at

baseline are displayed in green. Items of additional clinical instruments are displayed in yellow. Symptoms at follow-up are color-coded according to

the prediction accuracy of considering an additional clinical instrument compared to the accuracy achieved by using only items of the SIPS, with blue

symptoms having higher accuracy and red symptoms having worsened accuracy. (G) Correlation between mean symptom severity at follow-up and

mean predicted symptom severity at follow-up. (H) Correlation between mean symptom change across time points and mean predicted symptom

change.
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Schizophrenia Present and Lifetime Version for individuals below 18 years of age (Kaufman et al.,

1997; Reich, 2000). For adult participants, we used the Structured Clinical Interview for DSM-IV Axis

I Disorders (First MB et al., 1996).
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Figure 6. Performance of graph diffusion approach in predicting patterns of CAARMS psychopathology at longitudinal follow-up in the NEURAPRO

sample. (A) Correlation of symptom severity across time points for all symptoms across participants. Regression lines for symptoms are displayed in

black with dashed lines indicating correlations that are not significant at p<0.05. Regression lines for individuals are displayed in purple with dashed

lines indicating correlations that are not significant at p<0.05. (B) Correlation between symptom severity at baseline and change in symptom severity

between baseline and follow-up for all symptoms across all participants. (C) Correlation between real and predicted symptom severity at follow-up. (D)

Correlation between real and predicted symptom change between baseline and follow-up. (E) Comparison of accuracy in predicting CAARMS at

follow-up, between considering clinical stability and graph diffusion approach using CAARMS at baseline. Symptoms are spatially embedded according

to two main network dimensions derived from SVD. Symptoms at baseline are displayed in green. Symptoms at follow-up are color-coded according to

the prediction accuracy of graph diffusion compared to considering clinical stability, with blue symptoms having higher accuracy using graph diffusion

and red symptoms having worsened accuracy. (F) Prediction accuracy of considering the combination of CAARMS and BPRS at baseline compared to

using only items of the CAARMS. Symptoms are spatially embedded according to two main network dimensions derived from SVD. Symptoms of the

CAARMS at baseline are displayed in green. Items of BPRS at baseline are displayed in yellow. Symptoms of CAARMS at follow-up are color-coded

according to the prediction accuracy of considering an additional clinical instrument compared to the accuracy achieved by using only items of the

CAARMS, with blue symptoms having higher accuracy and red symptoms having worsened accuracy. (G) Correlation between mean symptom severity

at follow-up and mean predicted symptom severity at follow-up. (H) Correlation between mean symptom change across time points and mean

predicted symptom change.
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To assess sub-threshold positive, negative, disorganized, and generalized psychotic symptoms,

individuals completed the Structured Interview for Prodromal Syndromes (SIPS) (Miller et al., 2002).

For a broad characterization of psychopathology, we employed the Brief Psychiatric Rating Scale

(BPRS) (Overall and Gorham, 1962). To quantify global measures of severity of psychopathology,

we employed a combination of the parent-reported versions of the Child Behavior Checklist (CBCL)

and Adult Behavior Checklist (ABCL) (Achenbach, 2003; Tm, 1991). Full clinical characterization was

performed at both baseline and longitudinal follow-up.

For the primary construction of multilayer symptom networks, we initially considered items of the

SIPS and BPRS instruments measured at baseline and longitudinal follow-up. We removed symptoms

that had a non-zero score in less than 1% of the sample leading to the exclusion of SIPS grandiosity

and BPRS grandiosity scales. This yielded a total of 41 clinical measures available at both baseline

and follow-up. All clinical variables were available for all subjects included in the study and we did

not exclude any outliers.

Replication in individuals at Clinical Ultra High Risk for Psychosis in
NEURAPRO cohort
The second cohort of individuals, without a confirmed 22q11.2 Deletion, but meeting criteria for

Clinical Ultra High Risk for Psychosis, was recruited in the context of the NEURAPRO clinical trial,

designed to test effects of w�3 PUFA therapy (McGorry et al., 2017; Nelson et al., 2018). Individu-

als were recruited among help-seeking populations in Australia, Singapore, Italy, Germany, Hong

Kong, Denmark, and Switzerland. Inclusion criteria have been described in detail in previous publica-

tions and yielded a total of 304 subjects with a clinical UHR status at baseline. Once included in the

study, individuals were randomized to a double-blind 6-month treatment with either w�3 PUFA or

placebo, and were then followed up for further 6 months, yielding a total follow-up period of 12

months (McGorry et al., 2017; Nelson et al., 2018). Specific inclusion and exclusion criteria are

detailed in previous publications (Cruz et al., 2017) and yielded an overall sample of 304

individuals.

From the original sample of 304 individuals, we excluded 18 subjects with the missing assessment

of at least one item of the Comprehensive Assessment of At-Risk Mental Sate (CAARMS) at baseline,

one of which subsequently converted to psychosis. Another 89 subjects were excluded due to miss-

ing full characterization at the 12-month follow-up (79 missing CAARMS items, 6 missing BPRS), 19

of which converted to psychosis. This yielded a total of 201 individuals (M/F=98/103) with full clinical

characterization at both baseline and 12-month follow-up (age range at baseline: 13.3–37.8 mean

20±4.5). Excluded subjects were not significantly different from the rest of the sample in terms of

severity of any item the available CAARMS assessment at baseline or follow-up. However, a higher

proportion of individuals who converted to psychosis lacked a full clinical assessment at longitudinal

follow-up, as revealed by a higher proportion of individuals who converted to psychosis among

excluded subjects compared to subjects included in our analysis (19 conversions to psychosis/103

excluded subjects by 17 psychosis conversions/201 included subjects, P-value Chi-Square

test=0.004; see Supplementary files 1 and 2 for details ).

Psychiatric diagnoses were determined with the Structured Clinical Interview for DSM-IV-TR Axis I

Disorders (First MB et al., 1996). Sub-threshold positive, negative, and generalized psychotic symp-

toms were evaluated with the Comprehensive Assessment of the At-Risk Mental State (Yung et al.,

2005). The BPRS was employed for a broad characterization of psychopathology (Overall and Gor-

ham, 1962) and the Montgomery-Asberg Depression Rating Scale (MADRS) was employed to mea-

sure depressive symptoms (Montgomery and Asberg, 1979).

Directly comparing network structure across 22q11DS and NEURAPRO cohorts was complicated

by the use of different SIPS and CAARMS semi-structured clinical interviews across the two samples.

Both interviews are designed to assess clinical high risk for developing psychosis, with similar opera-

tionalized diagnostic criteria and comparable predictive value (Fusar-Poli et al., 2016). Still, there is

no one-to-one correspondence between each item of the two scales. We hence referred to the two

manuals to define items that had sufficiently high correspondence across the two instruments. Based

on this assessment, we excluded three symptoms that were considered as specific on the SIPS in the

22q11DS and 13 symptoms that were considered as specific on the CAARMS in the NEURAPRO

sample. This yielded a total of 37 shared items across the two populations considering both SIPS/
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CAARMS and BPRS instruments. These items were used to construct longitudinal symptom networks

(see Table 1).

Statistical analysis pipeline
Multilayer symptom networks to define clinical pathways of vulnerability
Construction of multilayer symptom networks
Prior to constructing networks, we accounted for the effects of age and sex with linear regression.

We then constructed a single multilayer symptom network for each sample, in which each node rep-

resented a symptom, and the connecting edge between symptoms was weighted by the Pearson

correlation between the two corresponding symptoms across subjects. Graph edges (i.e., correla-

tions between symptoms) were initially computed cross-sectionally at both baseline and follow-up,

composing two separate temporal layers. Such separate temporal layers were connected by longitu-

dinal edges estimated from the correlations between symptoms at baseline and symptoms at follow-

up, producing a single multilayer temporal network. Such multilayer network can be expressed in a

single adjacency matrix composed of both cross-sectional and longitudinal correlations (see

Figure 1).

We thresholded the network by considering only correlations survived correction for multiple

comparisons with false discovery rate (FDR) at p<0.05 using Benjamini-Yekutieli procedure as imple-

mented in Matlab (Benjamini and Yekutieli, 2005). As a supplementary analysis, we also con-

structed networks employing a range of more stringent connectivity thresholds both in 22q11DS

and NEURAPRO samples. Results of such analysis are reported in Appendix 1—figures 4 and 5 and

indicate an overall stability of network structure over a range of connectivity thresholds.

Networks were constructed considering both significant positive and negative correlations. How-

ever, in order to facilitate interpretability of differences in connectivity strength among different net-

work edges, networks represented in the main text include only significant positive correlations.

Significant negative correlations (one correlation in 22q11DS sample and eight correlations in

NEURAPRO sample) are represented separately in Appendix 1—figures 6 and 7.

Network topological embedding
Arguably one of the main challenges of current network models relates to intuitiveness and

interpretability of results. Our objective was hence to provide a low-dimensional, easily interpret-

able, visual representation of the multilayer network that still reflected main patterns of correlations

between symptoms, both within and across time.

To derive such main correlation patterns, we extracted main dimensions of variance in the net-

work, by conducting eigendecomposition on the thresholded adjacency matrix, representing the

multilayer symptom network. Then, network nodes were spatially embedded according to their load-

ing along the two first principal network components.

This procedure yielded a two-dimensional spatial representation that groups together symptoms

that are closely connected in the multilayer network. Indeed, eigenvectors of the network provide a

low-dimensional representation of the main correlation structure between symptoms. However, by

simply using these low-dimensional components for the spatial embedding and keeping every symp-

tom as a single node, we retain the high-dimensional characterization of the relationships between

specific clinical symptoms, both within each time point and across longitudinal time points.

The procedure employed to choose the appropriate number of network components is described

in detail in the supplementary material. It revealed that, for both samples, only the first three princi-

pal components explained higher proportion of variance that what would be expected in a network

with random structure. Spatial embedding of symptoms according to the third network dimension

however did not offer a meaningful representation of the relationship between symptoms across

time and is reported in Appendix 1—figures 9 and 10 for 22q11DS and Neuropro samples,

respectively.

To test whether spatial embedding of symptoms according to the first two principal network

dimensions provided a meaningful representation of network structure we correlated the strength of

correlations between symptoms with their Euclidean distance in two-dimensional space. We

expected to observe an overall negative correlation between Euclidean distance and correlation

strength, indicating that symptoms there were strongly correlated, both with and across time points,
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tended to cluster together in space. We verified that negative association between

Euclidean distance and correlation strength, was present for both correlations and longitudinal cor-

relation, which would indicate that spatial embedding reflected the structure of both the cross-sec-

tional and longitudinal relationship between symptoms. Moreover, we correlated topological

embedding of symptoms according to the two main network dimensions across samples, in order to

have an estimate of the degree of similarity of network structure across samples.

Graph theory analysis of longitudinal clinical pathways
Spatial embedding of symptoms provided an intuitive representation of the major patterns of rela-

tionships between symptoms. We were then interested in complementing this representation with a

quantitative characterization of longitudinal pathways of interactions between symptoms across

time.

To do this, we employed the tools of graph theory, which is a branch of mathematics that is spe-

cifically devoted to the study of graphs, and that has provided multiple quantitative tools to quantify

the connectivity profiles of both the overall network and of individual symptoms/nodes. We specifi-

cally employed the graph-theoretical tools implemented in the Brain-Connectivity-Toolbox for Mat-

lab (The MathWorks, Inc, Natick, MA; http://www.brain-connectivity-toolbox.net). First, the size of

the symptoms in the network was scaled according to their overall connectivity strength. This means

that larger symptoms had an overall stronger cross-sectional and longitudinal correlation with the

rest of the symptoms in the network.

As a supplementary analysis, we employed the predictability algorithm (Haslbeck and Fried,

2017), using the procedure described in Haslbeck and Waldorp, 2018, to estimate how well each

symptom could be predicted by the rest of the symptoms in the multilayer network. Predictability

was estimated for both symptoms and baseline and symptoms at follow-up considering both cross-

sectional and longitudinal relationships between symptoms. Results are reported in Appendix 1—

figure 1.

We were then interested in focusing on pathways of longitudinal interaction between symptoms

across time. To do this, we employed the Floyd-Warshall algorithm, implemented in the brain-con-

nectivity toolbox for Matlab, to identify the shortest clinical paths connecting each symptom at base-

line with each symptom at longitudinal follow-up. We then derived a longitudinal betweenness

centrality measure by counting the number of longitudinal clinical paths running through each indi-

vidual symptom. Such longitudinal centrality measure can be conceptualized as the relative impor-

tance of each clinical variable in mediating the relationship between symptoms at baseline and at

follow-up, across time. In order to identify symptoms with higher longitudinal betweenness centrality

than expected by chance, we constructed 10,000 random networks matched for connectivity by

reshuffling edge position. We computed shortest paths connecting symptoms across time in each

random network deriving a null distribution of longitudinal betweenness centrality. P-values for each

symptom were computed by estimating the probability of observing a higher betweenness centrality

measure than this empirical null distribution. Further, we used the FDR at p<0.05 to correct for multi-

ple comparisons.

First, this approach identified symptoms at baseline that over-proportionately mediated effects

on symptoms at follow-up. Such longitudinal network hubs at baseline can be conceptualized as

gateways of psychopathology. Second, our approach identified symptoms at follow-up that were

over-proportionately affected and mediated the effects of symptoms at baseline. Such longitudinal

network hubs at follow-up can be conceptualized as funnels of psychopathology.

Graph diffusion approach to predict patterns of clinical evolution
Current network approaches to psychopathology have focused on studying the architecture of inter-

actions between psychiatric symptoms mostly by employing techniques of graph theory (Bors-

boom, 2017; Borsboom and Cramer, 2013). It should however be noted that, in a graph theory

framework, symptoms are characterized purely in terms of their connectivity profile with other

nodes/symptoms. For network approaches to inform clinical practice at the level of individual

patients, symptoms would need to be characterized not only in terms of how they interact with each

other, but also in terms of their severity. Indeed, an ideal framework would exploit knowledge of
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network interactions between symptoms to help predict the evolution of symptom severity across

time.

GSP is different from graph theory in that, aside from studying the architecture of network con-

nections, nodes can be assigned a value or signal (Shuman et al., 2013). Once nodes are assigned a

signal in a GSP framework, graph diffusion algorithms have been developed to model how graph

architecture influences the propagation of such signals across nodes (Shuman et al., 2013). An intui-

tive implementation of this approach is to predict how variations in temperature diffuse over time,

across multiple discrete spatial locations. The dynamics of temperature propagation will be deter-

mined by the reciprocal distance between spatial locations, with positions that are closer in space

having a higher likelihood to influence their neighbor’s temperature, over short periods of time.

Graph diffusion addresses this computational problem in a network construct, by modeling discrete

spatial locations as nodes in distances as the inverse of connectivity strength between multiple

nodes of a network. This then allows predicting how topological network structure influences the

dynamics of temperature diffusion.

Graph diffusion approaches are increasingly demonstrating their potential in medical applications.

For instance, applying graph diffusion to a multilayer network has been shown to predict the rela-

tionship between genetic mutations and tumor samples (Timilsina et al., 2019). Moreover, studies

are hinting at the potentials of this approach to model disease progression. Indeed, Raj et al.

showed that modeling the spread of dementia-related neuropathological alterations as a function of

the network architecture of long-range axonal fiber bundles reliably predicts the empirically

observed patterns of brain atrophy (Raj et al., 2012). To the best of our knowledge, graph diffusion

approaches have however not yet been employed in the study of psychopathology. Here, we pro-

pose that applying graph diffusion approaches to multilayer temporal symptoms network can pre-

dict the evolution of symptom severity across time, at the level of individual patients.

Our methodological approach, described schematically in Figure 1, began by constructing a mul-

tilayer temporal symptom network, excluding the subject for whom we attempted to predict clinical

evolution, in a leave-on-out cross-validation loop. As previously described the multilayer temporal

symptom network was composed both of cross-sectional correlations between symptoms with each

time point and longitudinal correlations between baseline and follow-up symptoms. At the begin-

ning of the diffusion process, symptoms at baseline were assigned a signal that corresponded to the

severity that was empirically observed in the excluded subject. Severity of symptoms at follow-up

was considered to be unknown and their signal was initially set to 0. The signal corresponding to the

empirically observed clinical pattern at baseline was then diffused on the multilayer temporal symp-

tom network, in order to predict symptom severity at follow-up. This is conceptually similar to pre-

dicting temperature propagation according to the network structure of distance between nodes.

To predict the spread of symptom severity from baseline to follow-up symptom we employed an

iterative finite-difference graph diffusion approach. Compared to simple regression analysis, this

approach considers both longitudinal correlations across time points and cross-sectional correlations

between symptoms at follow-up, leading to a progressive evolution and refinement in the predicted

symptom pattern. In the example of heat diffusion, the temperature distribution at Time 1 is consid-

ered fixed (and therefore re-imposed at each iteration of the algorithm), while the distribution at

Time 2 evolves by the diffusion process. For both temperature and psychopathology, the diffusion

algorithm will evolve the predicted signal until the system converges toward an equilibrium that min-

imizes signal change across time, at which point the iterative diffusion will be stopped. The graph

diffusion converges to a steady-state solution upon reaching a minimal signal change between itera-

tions that is less than 1e�9. Once such threshold was achieved, the clinical prediction for symptom

severity at follow-up was considered to be stable, and the diffusion process was stopped. This pro-

cess was repeated to predict symptom severity at follow-up for each subject included in the cohort,

in a leave-one-out cross-validation loop.

In mathematical terms, the diffusion equation follows a linear differential equation given as

follows:

qx tð Þ

qt
¼�gLx tð Þ

If we approximate the solution to this differential equation through numerical methods, a finite-

difference approach is employed, wherein in this case, the Laplacian matrix acts as a difference
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operator. One can therefore iteratively apply the Laplacian operator to the signal at each time point

t until we reach a stable solution x(tf inal). Algebraically, this approach can be implemented by solv-

ing the differential equation directly in order to arrive at a closed-form solution in terms of matrix

exponential given as follows:

x¼ exp �gLtð Þx0

This solution is a negative exponential term, which decays for large values of t. Therefore, the

solution is guaranteed to reach a stable form, and hence the convergence of the algorithm is

guaranteed.

The procedure employed to evaluate the algorithm’s accuracy in predicting clinical evolution is

described in the results section.

Results

Structure of multilayer symptom networks and longitudinal clinical
pathways of vulnerability in 22q11DS
Topological embedding of symptoms yielded a strong negative correlation between the

Euclidean distance separating symptoms and the empirically observed correlation strength

(R=�0.465, p<0.0001), observed not only for cross-sectional associations between symptoms at

baseline (R=�0.354, p<0.0001) or at follow-up (R=�0.473, p<0.0001), but also for longitudinal asso-

ciations between symptoms at baseline and at follow-up (R=�0.365, p<0.0001; see Figure 2C). As

shown in Appendix 1—figure 10A, such associations between Euclidean distance and correlation

strength remained significant even after restricting data-range by excluding negative correlations.

These results suggest that an easily interpretable low-dimensional embedding can offer a good

approximation of the structure of the multilayer symptoms network.

The first network dimension, plotted along the horizontal axis in Figure 2A, mainly captured the

structure of cross-sectional correlations between symptoms within each time point. Symptoms

located on the right side of the graph mainly captured disorganization and thought disorder includ-

ing SIPS Odd Behavior and Disorganized communication and BPRS Bizarre Behavior, Mannerism,

and Unusual Thought Content. Negative symptoms were mostly located on the right side of the

graph, near disorganization symptoms. The opposite left side of the graph was, on the other hand,

populated by symptoms of affective dysregulation, including SIPS Dysphonic Mood and Reduced

Tolerance to Normal Stress and BPRS Depression and Anxiety. Symptoms of attention deficit hyper-

activity disorder (ADHD) including SIPS Trouble with Attention, BPRS Distractibility, and Motor

Hyperactivity, were located on the left side of the graph near affective disturbances. Positive symp-

toms had an intermediate position along the first dimensions, with SIPS Perceptual Abnormalities

and BPRS Hallucinations being closer to affective and ADHD symptoms, whereas SIPS and BPRS

Thought Disorder were closer to negative and disorganized symptoms. Loading of symptoms along

this first eigenvector was highly correlated across time points (R=0.7, p<0.0001), pointing an overall

stability in the cross-sectional structure of the symptom network over time, along with an affective to

negative/disorganized dimension.

The second dimension was plotted along the vertical Y-axis and predominantly captured the tem-

poral aspect, with symptoms at baseline located at the bottom of the graph and symptoms at fol-

low-up being located at the top of the graph. Importantly, aside from an overall distinction of

symptoms across time points, we observed a significant variation along the time dimension between

symptoms measured within each time point, which captured the differential propensity of symptoms

to influence one another over time. Indeed, we observed an opposite association across the two

time points between loading of symptoms according to the second time dimension and the mean

strength of longitudinal correlations between symptoms at baseline and at follow-up (at baseline

R=0.3, p=0.05, at follow-up R=�0.22, p=0.16, p of difference=0.0094; see Appendix 1—figure 1C).

In this perspective, symptoms that were higher than average at baseline can be considered more

highly predictive of psychopathology at follow-up. On the opposite, symptoms that were located

lower than the rest at follow-up, were more directly influenced by prior psychopathology at baseline.

This representation offered an intuitive characterization of the relationship between symptoms over

time.
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Subsequently, we were interested in highlighting clinical pathways involving individual symptoms

that played a particularly prominent role in disease progression. Our approach based on graph the-

ory identified four symptoms at baseline that disproportionately affected clinical symptom patterns

at follow-up, and that can be conceptualized as gateways of psychopathology (shown in bold in

Figure 2A). Network embedding presented before provided an intuitive characterization of the dif-

ferent longitudinal clinical pathways affecting such gateway symptoms. The first three symptoms

were located on the right side of the graph and mainly captured thought disorder and disorganiza-

tion including SIPS Disorganized Communication, SIPS Odd Behaviour, and BPRS unusual thought.

Disorganization symptoms, such as SIPS Odd Behavior, acted as a gateway by broadly mediating

the effects of negative symptoms at baseline on both disorganized and negative symptoms at fol-

low-up (see Figure 3D). A fourth gateway symptom was represented by BPRS guilt. BPRS guilt was

located closer to the left side of the graphs and acted as a gateway by broadly mediated the effects

of affective symptoms at baseline on both affective and thought disturbance symptoms at follow-up

(see Figure 3C).

Our approach also identified six symptoms at follow-up, that were broadly affected by psychopa-

thology at baseline, and that can hence be conceptualized as funnels of psychopathology. Two of

these funnel symptoms were captured disorganization and were represented by bizarre behavior

and conceptual disorganization, and mostly mediated the effects of prior disorganization symptoms.

Two more were represented by negative symptoms such as BPRS blunted effect and SIPS occupa-

tional functioning, which were located on the right side of the graph and appeared to importantly

mediated the effects of negative and disorganized symptoms and ADHD symptoms at baseline on

the persistence of negative and disorganized symptoms at follow-up (see Figure 3B). A final funnel

was represented by SIPS reduced tolerance to normal stress, which located left side of the graph

appeared important in mediating the effects of baseline of thought disturbances on follow-up affec-

tive symptoms and of baseline affective symptoms on follow-up thought disturbances (see

Figure 3A).

As a confirmatory analysis, we also constructed multilayer temporal networks, employing Spear-

man’s rank correlations, which are displayed in Appendix 1—figure 3. Results pointed to a strong

similarity of networks reconstructed from Pearson versus Spearman correlations, both in terms of the

loading of symptoms across the two main network dimensions and in terms of longitudinal centrality

of individual symptoms. Still, while most symptoms were identified as longitudinal hubs in both net-

works, conceptual disorganization at follow-up was identified as a significant longitudinal Hub, after

correction for multiple comparisons, only in the Pearson correlation network. Baseline symptoms of

suspiciousness and impaired tolerance and follow-up symptoms of somatic disturbance and manner-

isms were significant only in Spearman networks.

Structure of multilayer symptom networks and longitudinal clinical
pathways of vulnerability in NEURAPRO sample
While the variance explained by the first two dimensions was lower in the NEURAPRO sample, we

still observed a significant negative correlation between the Euclidean distance separating symptoms

and the empirically observed correlation strength (R=�0.249, p<0.000; see Figure 2D), observed for

both cross-sectional associations between symptoms at baseline (R=�0.249, p<0.0001) or at follow-

up (R=�0.238, p<0.0001), and for longitudinal associations between symptoms at baseline and at

follow-up (R=�0.135, p<0.0001). As shown in Appendix 1—figure 10B, such associations between

Euclidean distance and correlation strength remained significant even after restricting data range by

excluding negative correlations. This suggests that spatial embedding of symptoms according to the

two main eigenvectors still offered a meaningful characterization of the interaction between individ-

ual symptoms.

Similar to results in 22q11DS, the first dimension mainly captured variance between cross-sec-

tional correlations within each time point (see Figure 2B). Symptoms located on the right side of the

graph were mostly composed of positive and disorganized symptoms, including Bizarre Behavior,

Unusual Thought, and Hallucinations measured with both BRPS and CAARMS. The left side of the

graph was mostly populated by symptoms of affective disturbances, including Depression and Anxi-

ety, BPRS Guilt, and CAARMS Subjective Reduced Tolerance to Daily Stressors. Negative symptoms

could be divided into two subgroups according to their loading along the first dimension. Specifi-

cally, symptoms of reduced emotional expressiveness, such as Blunted Affect, BPRS Emotional
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withdraw, and CAARMS Anhedonia, were located on the right side of the graph, closer to disorga-

nized symptoms. On the opposite symptoms of reduced motivational drive, such CAARMS Avoli-

tion/Apathy and Impaired Role Functioning, were located closer to the left side of the graph and

closer to anxiety/depressive symptoms. Interestingly, we observed a significant positive correlation

between the loading of symptoms along the first ‘cross-sectional’ dimension (R=0.299, p=0.008)

across 22q11DS and NEURAPRO samples (see Figure 2E). This would suggest a similar structure of

cross-sectional psychopathology across 22q11DS and NEURAPRO samples, mainly reflecting an

overall distinction of affective and negative-disorganized symptoms. Still, in the context of an overall

similar network structure, two groups of symptoms appeared to cluster differently in the networks of

the two samples (circles in Figure 2E). In particular, symptoms of ADHD, including BPRS motor

hyperactivity and distractibility, were in proximity to affective symptoms in 22q11DS, whereas they

were closer to symptoms of thought disorder in the NEURAPRO sample. Moreover, a sub-group of

negative symptoms, including experience of emotion, avolition, social anhedonia, and occupational

functioning, was located closer to other negative and disorganized symptoms in the 22q11DS cohort

whereas they clustered closer to depressive and affective symptoms in the NEURAPRO sample.

The second network dimension mainly captured the dimension of time, with symptoms at base-

line mainly located at the bottom of the graph and symptoms at follow-up mainly located at the top

of the graph. Similarly, what was found in the 22q11DS cohort, there was significant variance within

symptoms at each time point along this time dimension. Interestingly, the correlation of symptom

loading across samples was even stronger along this second longitudinal dimension (R=0.56,

p<0.0001; see Figure 2F), suggesting that the relative predictive value of symptoms at baseline in

influencing symptoms at follow-up, and the relative tendency of symptoms at follow-up to be influ-

enced by prior psychopathology, is similar across the two clinical populations.

Our approach identified three baseline symptoms that presented disproportionately high central-

ity in mediating clinical patterns at follow-up displayed in Figure 4. In particular, BPRS bizarre behav-

ior was located on the right side of the graph and appeared to broadly affect negative and

disorganized symptoms at follow-up. Moreover, bizarre behavior indirectly affected subsequent

affective disturbances p through the mediating role of emotional withdrawal at follow-up. BPRS hos-

tility was also located in proximity to negative and disorganized symptoms at baseline and appeared

central in mediating their effects on subsequent symptoms of mood disturbance. Finally, avolition-

apathy was located on the left side of the graph and was directly associated with subsequent affec-

tive symptoms and indirectly associated with negative and disorganized symptoms, through the

mediating role of persistent avolition-apathy at follow-up. Indeed avolition-apathy at follow-up was

also highlighted as a key funnel symptom that broadly mediated the effects of baseline avolition and

affective disturbances on subsequent psychopathology.

As a confirmatory analysis, we constructed multilayer temporal networks in the

NEURAPRO sample, employing Spearman’s rank correlations, which are displayed in Appendix 1—

figure 2. Similar to what observed in 22q11DS, results pointed to a strong similarity of networks

reconstructed from Pearson versus Spearman correlations, both in terms of the loading of symptoms

across the two main network dimensions and in terms of longitudinal centrality of individual symp-

toms. Minor discrepancies across Spearman versus Pearson correlation networks included the fact

that BPRS symptoms of Hostility at baseline and Emotional Withdrawal at follow-up were identified

as hubs only in the Pearson network whereas centrality of BPRS Uncooperativeness was significant

only in the Spearman network, after FDR correction for multiple comparisons.

Despite an overall similar network structure appeared similar in 22q11DS and NEURAPRO

cohorts, we did not observe a significant association in measures of longitudinal betweenness cen-

trality (R=�0.03, p=0.77). These results suggest that specificities exist in the role of individual symp-

toms in contributing to the evolution of psychopathology, across the two samples.

Graph diffusion approach to predict patterns of clinical evolution
Evaluation of prediction accuracy in 22q11DS and NEURAPRO cohorts
Our primary objective was to predict the multivariate patterns of symptoms included in the SIPS and

CAARMS clinical interviews, designed to assess vulnerability to psychosis. We started by predicting

the severity of SIPS and CAARMS items at follow-up using items of SIPS and CAARMS at baseline.
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Subsequently, we estimated the added benefit of considering additional clinical instruments at

baseline.

Simply correlating severity at baseline against severity at follow-up for each symptom across indi-

viduals, revealed a positive significant correlation both in the 22q11DS cohort for 14/18 symptoms

being tested (R=0.37±0.12) and in the NEURAPRO cohort for 27/28 symptoms (R=0.31±0.1; see

Figures 5A and 6A, respectively). While not surprising, these results suggest that simply considering

a patient as clinically stable across time points provides a highly non-random estimate of the clinical

pattern at follow-up. We computed the mean squared change in symptom severity across

time points across all individuals and symptoms. This mean-squared-error is a measure of prediction

accuracy achieved by simply considering clinical stability across time points, that we used as a base-

line against which we tested the performance of our graph diffusion-based prediction approach.

A perhaps less intuitive observation was that change in symptom severity between baseline and

follow-up was strongly negatively correlated with symptom severity at baseline for all symptoms

being tested in both the 22q11DS (R=�0.65±0.17) and NEURAPRO cohorts (R=�0.63±0.25), sug-

gesting the existence of a phenomenon of regression to the mean (see Figures 5B and

6B, respectively).

Performance of prediction in 22q11DS sample
Considering only the SIPS subscale at baseline yielded a significant prediction of SIPS symptom

severity at follow-up, as revealed by a strongly significant correlation between actual and predicted

symptom severity (R=0.40, p<0.00001) across all items and individuals, that remained significant

when averaging mean and predicted symptom severity in each subject (R=0.64, p<0.00001; see

Figures 5C and 4E). Interestingly, the correlation between empirical and predictive values was even

stronger when considering symptom change across the two time points for all symptoms and indi-

viduals (R=0.57, p<0.00001). However, when averaging symptom change in each subject, we did not

observe a significant correlation between observed and predicted values (R=�0,22, p=0.08). In other

terms, the algorithm predicted both mean and specific symptoms severity at follow-up and specific

change in symptom severity, while it failed to predict the mean change in symptom severity (see

Figure 5F).

Importantly, prediction accuracy of graph diffusion was significantly higher than simply consider-

ing clinical stability (MSE of clinical stability=0.818±0.82, MSE of graph diffusion=0.74±0.62,

p<0.00001; see Figure 3G). Exploring the distribution in the difference of prediction accuracy across

symptoms revealed that accuracy of graph diffusion was higher for all symptoms except personal

hygiene, bizarre thinking, disorganized communication, and trouble with attention (see Figure 5H).

Next, we were interested in assessing the added value of considering additional clinical instru-

ments at baseline. Adding the BPRS evaluation at baseline provided a small but significant improve-

ment in SIPS prediction at follow-up (MSE of SIPS=0.74±0.62, MSE of SIPS+BPRS=0.72±0.60,

p=0.03), whereas adding the CBCL at baseline did not significantly improve the accuracy of symp-

tom prediction at follow-up (MSE of SIPS=0.74±0.62, MSE of SIPS+CBCL=0.73±0.60, p=0.316).

However, when considering the combination of adding CBCL+BPRS, this yielded a strong increase

in prediction accuracy that was highly significant compared to considering only the SIPS (MSE of

SIPS=0.74±0.62, MSE of SIPS+BPRS+CBCL=0.716±0.59, p<0.00001) or separately adding BPRS

(p<0.00001), or CBCL (p<0.00001) (see Figure 3C). Moreover, in addition to significantly predict

mean symptom severity (R=0.69, p<0.00001), relative symptom severity (R=0.45, p<0.00001), and

relative symptom change (R=0.61, p<0.00001), adding BPRS and CBCL significantly predicted mean

change in SIPS symptom severity over time (R=0.35, p=0.006; see Figure 5C and D).

These results point to a synergism of BPRS and CBCL in predicting clinical patterns of the SIPS at

follow-up. Interestingly, this synergism was visually apparent from the position of the items of the

two instruments within the structure of the longitudinal symptom graph. Indeed, while items of the

CBCL clustered on the left side of the graph in proximity to affective and ADHD symptoms, most

items of the BPRS were located on the right side of the graph in proximity to thought disorder and

negative symptoms.
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Performance of prediction in NEURAPRO sample
Similarly, to what was observed in the 22q11DS, the graph diffusion approach yielded a significant

prediction of patterns of symptom severity at follow-up, with an average correlation between real

and predicted symptom severity across all individuals (R=0.26, p<0.0001; see Figure 6C). Correla-

tion was stronger between real and predicted symptom change between baseline and follow-up

(R=0.54, p<0.0001; see Figure 6D). When averaging severity across symptoms for each individual

we observed a significant correlation between mean and predicted symptoms severity

(R=0.51, p<0.0001) but not between mean and predicted change in symptom severity

(R=0.04, p=0.56), similar to what was observed in the 22q11DS cohort (see Figure 6E and F). We

hence compared the prediction accuracy of the graph diffusion approach against that of simply con-

sidering clinical stability across time. As in 22q11DS, this analysis revealed that MSE of the graph dif-

fusion approach was significantly lower than simply considering clinical stability (MSE of clinical

stability=0.871±0.79, MSE of graph diffusion=0.734±0.67, p<0.00001; see Figure 6G). Indeed, accu-

racy of prediction was higher for all items of the CAARMS except inadequate effect, objective motor

functioning, and mannerism (see Figure 6H).

Next, we estimated the additive predictive value of considering additional clinical instruments at

baseline. Adding the BPRS at baseline provided a strong improvement in the prediction of CAARMS

items at follow-up (MSE of CAARMS=0.734±0.67, MSE of CAARMS+BPRS=0.718±0.66, p<0.0001;

see Figure 7C). Moreover in addition to significantly predict mean symptom severity

(R=0.50, p<0.0001), relative symptom severity (R=0.25, p<0.00001), and relative symptom change

(R=0.57, p<0.00001), adding BPRS significantly predicted the mean change in CAARMS symptom

severity over time (R=0.29, p=0.001; see Figure 6 ). On the other hand, adding MADRS scores did

not significantly improve average prediction accuracy (MSE of CAARMS=0.734±0.67, MSE of

CAARMS+MADRS=0.734±0.67, p=0.589). Moreover, considering the addition of BRPS+MADRS

worsened the accuracy of prediction compared to the combination of CAARMS and BPRS (MSE of

CAARMS+BPRS=0.718±0.66, MSE of CAARMS+MADRS=0.723±0.67, p<0.0001). The lack of added

predictive value of the MADRS to the CAARMS would have been predicted from the position of the

MADRS items at baseline within the structure of the longitudinal symptom network. Indeed,

although MADRS items were located on the left ‘affective’ side of the graph, they were located

lower along the time dimension that corresponds to affective items of the CAARMS. This would sug-

gest that the CAARMS characterization of affective dysregulation at baseline is sufficient and indeed

superior to MADRS items in terms of predicting CAARMS psychopathology at follow-up.

Discussion
Current clinical approaches to tackle the complexity of mental health disturbances have almost

invariably merged together clinical manifestations that often co-occur across participants. However,

especially in the earliest stages of psychopathology, merging clinical manifestations may hinder our

understanding of pathways of interaction between individual symptoms, which in turn may be rele-

vant for predicting prognosis or planning treatment strategies. Network approaches to psychopa-

thology represent a promising framework to model complex disease pathways between individual

symptoms, but two main factors may have to date limited their clinical translation.

The first limitation refers to the insufficient intuitiveness and interpretability of results of current

network analyses. We argue that such insufficient interpretability is the combined result of the appli-

cation of network approaches to cross-sectional data, together with the excessive complexity of

resulting symptom networks. In the present study, we propose a methodological approach based on

multilayer network analysis that offers an intuitive and quantitative and quantitative characterization

of clinical pathways of interaction between symptoms over time.

The second main limitation is that current network approaches characterize symptoms exclusively

in terms of their reciprocal interactions, which are estimated at the level of a population. Clinical

practice on the other hand entails making predictions about symptom severity at the level of the

individual. Here, we propose that a network approach inspired by GSP can allow to combine infor-

mation regarding symptom connectivity and severity allowing to predict multivariate patterns of clin-

ical evolution at the level of individual participants.

We test our approach in two independent samples of individuals at risk for developing psychosis.
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Temporal multilayer symptom network approach to characterize clinical
pathways of vulnerability to psychopathology
A prerequisite for interpreting the role of specific symptoms is having a broad characterization of

the overall structure of psychopathology, similar to seeing the outline of the forest before focusing

on the trees. In both samples, the first network component captured to the overall cross-sectional

structure of relationships between symptoms, largely reflected a distinction between affective versus

negative-disorganized psychopathology. Such cross-sectional structure was conserved both across

longitudinal visits and across samples and is consistent with results of classical factorial analysis in

both high-risk populations and schizophrenia (McGrath et al., 2004; Stefanovics et al., 2014;

Lançon et al., 1998; Wallwork et al., 2012). This would suggest that overall network architecture

reflects broad clinical patterns observed in clinical practice, and confirms the previously hypothe-

sized distinction between affective and negative/disorganized dimensions of vulnerability to psycho-

sis (van Os and Kapur, 2009; van Os et al., 2010). It is worth noting, however, that compared to

our approach, factorial analysis separates symptoms that are considered to be the expression of dis-

tinct underlying latent variables. Therefore, by design, factorial analysis sacrifices information resid-

ing in the structure of correlations observed within and a cross large-scale dimensions

(Borsboom and Cramer, 2013). By comparison, spatial embedding of individual symptoms captures

the relationship between large-scale symptoms, such as the relative proximity of negative and disor-

ganized dimensions, as well as the potential existence of relevant sub-clusters within large-scale

dimensions. For instance, in both samples, avolition was located closer to affective and depressive

symptoms compared to symptoms of reduced emotional expressiveness, which is in agreement with

evidence of the existence of sub-dimensions within negative symptoms (Kaiser et al., 2017).

Aside from the structure of cross-sectional psychopathology, the key advantage of the MTSN

approach is the ability to capture pathways of longitudinal interactions between symptoms. Indeed,

despite the inherent dynamic nature of the ‘Network Theory of Psychopathology’ most network anal-

yses are conducted on cross-sectional data, hence lacking the essential dimension of time. In our

approach, the time dimension was intuitively captured in the second network component plotted

along the vertical axis, with symptoms at baseline located at the bottom of the graph and symptoms

at follow-up located at the top. Euclidean distance between symptoms offers therefore an intuitive

characterization of the propensity of different clinical manifestations to influence one another across

longitudinal assessments. For instance, according to the first cross-sectional dimension, negative

symptoms of reduced emotional expressiveness were located in proximity to symptoms of concep-

tual disorganization and thought disturbances. However, in both samples, the second time dimen-

sion clearly distinguished between the two forms of psychopathology, with baseline symptoms of

thought disturbance located much closer to psychopathology at follow-up compared to reduced

emotional expressiveness. This finding would suggest that symptoms of reduced emotional expres-

siveness develop as a consequence of prior thought disturbance and disorganization, and have

hence a less active role in influencing subsequent psychopathology. Such interpretation is consistent

with the literature on basic symptoms of psychosis that suggests that subclinical subjectively experi-

enced thought disturbances lie at the core of the phenomenology of the disorder and play an active

role in influencing clinical evolution and particularly negative symptoms (Schultze-Lutter et al.,

2014).

One of the main challenges in developmental and early intervention psychiatry is the growing

realization that early clinical manifestations of psychopathology are largely not specific to a single

clinical outcome. We propose that cross-diagnostic clinical evolutions may be related to specific

mechanisms that act as developmental crossroads in the evolution of psychopathology. In particular,

some clinical manifestations may broadly increase the risk for subsequent psychopathology, while

others may broadly affect different forms of prior psychopathology. Targeting such symptoms where

the ‘flow’ of psychopathology either broadens or narrows could be particularly effective in prevent-

ing deleterious clinical outcomes. The MLSN is ideally suited to identify such gateways and funnels

of psychopathology, offering an intuitive characterization of longitudinal clinical pathways over time.

For instance, in both samples, our analysis confirmed that sub-threshold manifestation of thought

disturbance, acted as gateways, broadly increasing the risk for subsequent psychopathology. On the

opposite, negative symptoms such as blunted affect and occupational functioning in 22q11DS or

avolition-apathy in the NEURAPRO sample acted as funnels that were broadly passively influenced
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by prior psychopathology. Moreover, some symptoms appeared to act as crossroads bridging across

the affective to negative-disorganized dimensions over time. For instance, Hostility in the NEU-

RAPRO sample was associated with thought disturbances at baseline but increased the risk for

developing affective symptoms at follow-up. On the opposite, guilt in 22q11DS sample was associ-

ated with affective symptoms at baseline but increased the risk for both affective symptoms at

thought disturbances at follow-up. Finally, particularly in the 22q11DS sample, our results pointed to

an important role of reduced tolerance stress at follow-up, in firstly mediating the effects of prior

effective disturbances on subsequent psychotic symptoms. These findings are strongly reminiscent

of the reduced tolerance to stress in the ‘affective pathway’ to psychosis initially proposed by Myin-

Germeys and Van Os (Myin-Germeys et al., 2003). Moreover, our findings also suggest that

reduced tolerance to stress may partially mediate the effects of prior thought disorder on the subse-

quent development of affective disturbances. The prominent role of these pathways in 22q11DS

may be related to recent evidence of dysregulation of the Hypothalamus-Pituitary-Adrenal-Axis

(Sandini et al., 2020) and heightened vulnerability to environmental stress in this population

(Armando et al., 2018).

Altogether results both in 22q11DS and NEURAPRO cohorts highlight the potentialities of an

approach based on multilayer temporal network analysis to provide an intuitive and quantitative

characterization of clinical pathways contributing to heterogenous clinical evolutions in the early

stages of psychopathology.

Predicting clinical evolution of individual patients through multilayer
graph diffusion
Aside from shedding light on underlying disease mechanisms, a major appeal of understanding

pathways of interaction between symptoms is in assisting in establishing prognosis. Still, current net-

work approaches to psychopathology characterize symptoms exclusively in terms of their reciprocal

connectivity profile, sacrificing information regarding symptom severity in individual participants.

The unique feature of GSP is that network nodes are characterized not only in terms of connectivity,

but can also be assigned a value or signal. For instance, in our GSP approach baseline symptoms

were assigned a signal that corresponded to their observed severity in a particular individual. For

each individual, we then predicted the evolution of psychopathology by modeling the diffusion of

symptom severity from baseline to follow-up symptoms, as function of the structure of the multilayer

temporal symptom network (see Figure 2).

To the best of our knowledge, our results are the first to demonstrate the potentialities of a

purely network-based graph diffusion approach in predicting multivariate patterns of clinical evolu-

tion at the level of individual participants. Importantly, in both samples, prediction accuracy was sig-

nificantly higher than simply considering clinical stability across time in both 22q11DS and

NEURAPRO samples. It has been argued that an excessive focus on a single dichotomous clinical

outcome such as conversion to psychosis might represent a major limit of the current UHR frame-

work (van Os and Guloksuz, 2017). Indeed, the presence of a UHR status increases the likelihood of

developing a range of psychopathological outcomes that have the potential to negatively influence

an individual’s functional outcome (McGorry and van Os, 2013; McGorry et al., 2018;

McGorry and Nelson, 2016; van Os and Guloksuz, 2017). The potential for diverse psychiatric out-

comes is also well described in individuals carrying genetic risk for psychosis (Dean et al., 2010)

including in 22q11DS (International Consortium on Brain and Behavior in 22q11.2 Deletion Syn-

drome et al., 2014). Indeed, besides a 30% risk of developing a psychotic disorder individuals with

22q11DS present a 30% likelihood of presenting an anxiety disorder, a 30% likelihood of being diag-

nosed with ADHD, and a 20% risk of developing a mood disorder by adulthood, all of which can

negatively affect the quality of life (International Consortium on Brain and Behavior in 22q11.2

Deletion Syndrome et al., 2014). A significant advantage of a network-based graph diffusion

approach is that clinical prediction is performed at the level of individual symptoms with the poten-

tial of describing mixed and heterogeneous clinical evolutions.

Aside from flexibility in terms of considering clinical outcomes, the network-based graph diffusion

approach is also flexible in terms of integrating multiple predictors at baseline. Indeed, results in

both samples suggest that a broad clinical characterization at baseline, that goes beyond consider-

ing associations between homologous forms of psychopathology, can improve prediction of clinical

outcome at follow-up. Specifically, in the NEURAPRO sample, prediction accuracy of CAARMS items
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was improved when considering a combination of CAARMS and BPRS at baseline, whereas in the

22q11DS sample prediction, accuracy was strongly improved when adding a combination of BPRS

and CBCL at baseline. Interestingly, network dimensionality reduction offered an intuitive apprecia-

tion of reasons underlying the value of additional clinical instruments in improving prediction accu-

racy. Indeed, the synergism of CBCL and BPRS was related to the fact that two instruments

appeared to capture opposite facets of psychopathology, with CBCL assisting prediction of affective

and ADHD symptoms while most BPRS items clustered closer to negative and disorganized aspects

of the SIPS.

According to the model proposed by Van Os et al., these findings could imply that synergism

between CBCL and BPRS is related to the fact that two instruments aid in prediction of two indepen-

dent ‘affective’ and ‘negative/disorganized’ clinical pathways of vulnerability to psychosis (Myin-

Germeys and van Os, 2007).

Limitations and future directions
The present study should be considered as an exploratory attempt to address some of the signifi-

cant challenges that are hindering the translation of network techniques approaches to the clinical

setting. As such, results of this study should be considered in light of multiple significant limitations

which remain to be addressed in future work.

A first significant limitation of the current manuscript is that several methodological differences

across the two samples hinder the ability to directly compare results of network analysis across

22q11DS and non-syndromic clinical high-risk individuals. Indeed, different clinical instruments, dif-

ferent length of longitudinal follow, different therapeutic strategies, and different mean age across

the two samples could all contribute to the observed difference in network structure. In this perspec-

tive, the interest of using independent cohorts was mostly to evaluate the potentialities of our meth-

odological approach in a population that was less genetically and clinically homogenous than

22q11DS, more so than to directly compare candidate clinical pathways across samples.

From a methodological perspective, a significant limitation is that we did not explicitly test for

the causal nature of the longitudinal interactions between symptoms. Hence, while the structure of

such longitudinal correlations remains interesting from the clinical perspective of prognosis, conclu-

sions regarding the existence of causal disease pathways between symptoms remain speculative.

Multiple methodological techniques are currently being proposed to re-construct causal relation-

ships between symptoms and have mostly been applied to clinical data measured with high-tempo-

ral resolution, using the Experience Sampling Method (ESM) (Jordan et al., 2020). Such techniques

could potentially be fruitfully employed to test for causality between longitudinal clinical variables,

measured at much lower temporal resolution, such as those analyses in the present study.

A further significant limitation is that, for both populations, we reconstructed a single symptom

network in the entire sample. Therefore, the interpretations that can be drawn regarding the exis-

tence of different clinical pathways between individual symptoms are not personalized, but should

rather be considered as referred to the entire population. However, weaker correlations between

symptoms observed in the NEURAPRO sample compared to the 22q11DS sample, would suggest

that additional factors could influence heterogeneous network structure in subgroups of individuals.

The issue of how to allow network analysis techniques to capture sufficiently individualized informa-

tion to actually inform clinical practice remains a significant issue, that is by no means fully addressed

by the present study.

In our view, at least two current lines of research are particularly promising in terms of increasing

the personalization of network analysis techniques. The first direction entails using network analysis

to analyze clinical data collected with high temporal resolution using the ESM (Borsboom and

Cramer, 2013; Myin-Germeys et al., 2018). Applying an MLSN approach to ESM data seems par-

ticularly promising as it could allow to capture individualized information regarding dynamic relations

between symptoms as they occur in daily life (Myin-Germeys et al., 2018). However, the ESM

approach is inherently limited in terms of its ability to capture causal relationships that occur across

longer time-frames (i.e., months/years), that might be particularly clinically relevant in terms of guid-

ing clinical decisions. In this perspective, a complementary approach to increase personalization in

network analysis would consist in identifying subject-level moderators that influence the relationship

between other variables in a network (Haslbeck et al., 2021). It might be particularly interesting to

adapt such moderator analysis to a MultiLayer-Temporal-Symptom-Network, in order to attempt to
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identify factors that influence the predictive value of specific longitudinal clinical pathways. For

instance, it could be hypothesized that longitudinal clinical pathways might differ with age or across

sexes. Testing such hypotheses in a network framework should in our view be the object of future

work.

An additional significant limitation is that, while methods proposed in the present manuscript

might contribute to increasing interpretability of psychiatric network analyses, results presented in

the present manuscript could still prove excessively complex for clinical translation. In this perspec-

tive, we believe that network complexity is significantly and inherently related to the choice of num-

ber of nodes and edges that are represented, which remains however a largely arbitrary step in

network analyses techniques (Borsboom and Cramer, 2013). Such arbitrariness arguably constitutes

a significant limitation of current network analyses, compared to traditional consensus-based diag-

nostic approaches.

Finally, a significant limitation is that despite both cohorts being extensively phenotyped from the

neurocognitive and neurobiological perspective, analyses presented in the present study were

restricted to psycho-pathological variables. However, a wealth of literature indicates that clinical evo-

lution in the early stages of psychosis is tightly related to subtle deviations in neurocognitive and

neurodevelopmental trajectories (Insel, 2010), that are likely to influence pathways of interaction

between symptoms detected by our analyses. Integrating such different dimensions remains a signif-

icant goal that should be addressed by future research.

An interesting future perspective is that network approaches are potentially extremely flexible for

integrating data originating from different modalities, including for instance neuroimaging or genet-

ics. Embedding a candidate biomarker in the context of longitudinal symptom network could offer

an intuitive characterization of clinical variables that are affected. Moreover, the graph diffusion

approach could allow to explicitly test the additive value of candidate biomarkers in terms of predic-

tive clinical evolution. Indeed the benchmark against which any future biomarker should be tested is

that of improving prediction achieved from gold standard clinical characterization instead of testing

prediction performance independently from clinical scores (Paulus, 2015). Crucially, providing addi-

tive predictive values implies capturing processes that are not accessible to clinical evaluation more

so than describing cross-sectional biomarkers that are strongly correlated with clinical scores, which

has been the focus of most current genetic and neuroimaging research (Kapur et al., 2012). A prag-

matic approach could be to investigate whether underlying neurobiological mechanisms are associ-

ated with differences in the structure of longitudinal symptoms network and hence improve

the accuracy of graph diffusion-based prediction.
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Stefan Smesny
Ian B Hickie
Gregor Emanuel Berger
Eric YH Chen
Lieuwe de Haan
Dorien H Nieman
Merete Nordentoft
Anita Riecher-Rössler
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Lançon C, Aghababian V, Llorca PM, Auquier P. 1998. Factorial structure of the positive and negative syndrome
scale (PANSS): a forced five-dimensional factor analysis. Acta Psychiatrica Scandinavica 98:369–376.
DOI: https://doi.org/10.1111/j.1600-0447.1998.tb10101.x, PMID: 9845175

Lin A, Wood SJ, Nelson B, Beavan A, McGorry P, Yung AR. 2015. Outcomes of nontransitioned cases in a sample
at ultra-high risk for psychosis. American Journal of Psychiatry 172:249–258. DOI: https://doi.org/10.1176/appi.
ajp.2014.13030418, PMID: 25727537

Maj M. 2018. Why the clinical utility of diagnostic categories in psychiatry is intrinsically limited and how we can
use new approaches to complement them. World Psychiatry 17:121–122. DOI: https://doi.org/10.1002/wps.
20512, PMID: 29856539

McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JA, Zackai EH, Emanuel BS,
Vermeesch JR, Morrow BE, Scambler PJ, Bassett AS. 2015. 22q11.2 deletion syndrome. Nature Reviews
Disease Primers 1:15071. DOI: https://doi.org/10.1038/nrdp.2015.71, PMID: 27189754
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Schaer M, Debbané M, Bach Cuadra M, Ottet MC, Glaser B, Thiran JP, Eliez S. 2009. Deviant trajectories of
cortical maturation in 22q11.2 deletion syndrome (22q11DS): a cross-sectional and longitudinal study.
Schizophrenia Research 115:182–190. DOI: https://doi.org/10.1016/j.schres.2009.09.016, PMID: 19836927

Schultze-Lutter F, Klosterkötter J, Ruhrmann S. 2014. Improving the clinical prediction of psychosis by
combining ultra-high risk criteria and cognitive basic symptoms. Schizophrenia Research 154:100–106.
DOI: https://doi.org/10.1016/j.schres.2014.02.010, PMID: 24613572

Shuman DI, Pascal Frossard SKN, Ortega A, Vandergheynst P. 2013. The emerging field of signal processing on
graphs. IEEE Signal Processing Magazine. DOI: https://doi.org/10.1109/MSP.2012.2235192

Stefanovics EA, Elkis H, Zhening L, Zhang XY, Rosenheck RA. 2014. A cross-national factor analytic comparison
of three models of PANSS symptoms in schizophrenia. Psychiatry Research 219:283–289. DOI: https://doi.org/
10.1016/j.psychres.2014.04.041, PMID: 24930581

Taurines R, Schmitt J, Renner T, Conner AC, Warnke A, Romanos M. 2010. Developmental comorbidity in
attention-deficit/hyperactivity disorder. ADHD Attention Deficit and Hyperactivity Disorders 2:267–289.
DOI: https://doi.org/10.1007/s12402-010-0040-0, PMID: 21432612

Timilsina M, Yang H, Sahay R, Rebholz-Schuhmann D. 2019. Predicting links between tumor samples and genes
using 2-Layered graph based diffusion approach. BMC Bioinformatics 20:462. DOI: https://doi.org/10.1186/
s12859-019-3056-2, PMID: 31500564

Tm A. 1991. Manual for the Child Behavior Checklist/4-18 and 1991 Profile. Burlington: University of Vermont
Department of Psychiatry.

Torkamani A, Andersen KG, Steinhubl SR, Topol EJ. 2017. High-Definition medicine. Cell 170:828–843.
DOI: https://doi.org/10.1016/j.cell.2017.08.007, PMID: 28841416

Torous J, Baker JT. 2016. Why psychiatry needs data science and data science needs psychiatry: connecting with
technology. JAMA Psychiatry 73:3–4. DOI: https://doi.org/10.1001/jamapsychiatry.2015.2622, PMID: 26676879

Tyrer P. 2018. Dimensions fit the data, but can clinicians fit the dimensions? World Psychiatry 17:295–296.
DOI: https://doi.org/10.1002/wps.20559

van Os J, Kenis G, Rutten BP. 2010. The environment and schizophrenia. Nature 468:203–212. DOI: https://doi.
org/10.1038/nature09563, PMID: 21068828

van Os J. 2013. The dynamics of subthreshold psychopathology: implications for diagnosis and treatment.
American Journal of Psychiatry 170:695–698. DOI: https://doi.org/10.1176/appi.ajp.2013.13040474, PMID: 23
820827

van Os J, Guloksuz S. 2017. A critique of the "ultra-high risk" and "transition" paradigm. World Psychiatry 16:
200–206. DOI: https://doi.org/10.1002/wps.20423, PMID: 28498576

van Os J, Kapur S. 2009. Schizophrenia. The Lancet 374:635–645. DOI: https://doi.org/10.1016/S0140-6736(09)
60995-8

Wallwork RS, Fortgang R, Hashimoto R, Weinberger DR, Dickinson D. 2012. Searching for a consensus five-
factor model of the positive and negative syndrome scale for schizophrenia. Schizophrenia Research 137:246–
250. DOI: https://doi.org/10.1016/j.schres.2012.01.031, PMID: 22356801

Wasserman S, Faust K. 1994. Social Network Analysis: Methods and Applications. United Kingdom: Cambridge
University Press. DOI: https://doi.org/10.1017/CBO9780511815478

Yung AR, Yuen HP, McGorry PD, Phillips LJ, Kelly D, Dell’Olio M, Francey SM, Cosgrave EM, Killackey E, Stanford
C, Godfrey K, Buckby J. 2005. Mapping the onset of psychosis: the comprehensive assessment of At-Risk mental
states. Australian & New Zealand Journal of Psychiatry 39:964–971. DOI: https://doi.org/10.1080/j.1440-1614.
2005.01714.x, PMID: 16343296

Sandini et al. eLife 2021;10:e59811. DOI: https://doi.org/10.7554/eLife.59811 29 of 39

Research article Medicine

https://doi.org/10.1017/S0033291719003404
http://www.ncbi.nlm.nih.gov/pubmed/31875792
https://doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
https://doi.org/10.1016/j.jad.2016.05.053
http://www.ncbi.nlm.nih.gov/pubmed/27285723
https://doi.org/10.3389/fnins.2018.00327
http://www.ncbi.nlm.nih.gov/pubmed/29867336
https://doi.org/10.1016/j.psyneuen.2019.104540
http://www.ncbi.nlm.nih.gov/pubmed/31958652
http://www.ncbi.nlm.nih.gov/pubmed/31958652
https://doi.org/10.1016/j.schres.2009.09.016
http://www.ncbi.nlm.nih.gov/pubmed/19836927
https://doi.org/10.1016/j.schres.2014.02.010
http://www.ncbi.nlm.nih.gov/pubmed/24613572
https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1016/j.psychres.2014.04.041
https://doi.org/10.1016/j.psychres.2014.04.041
http://www.ncbi.nlm.nih.gov/pubmed/24930581
https://doi.org/10.1007/s12402-010-0040-0
http://www.ncbi.nlm.nih.gov/pubmed/21432612
https://doi.org/10.1186/s12859-019-3056-2
https://doi.org/10.1186/s12859-019-3056-2
http://www.ncbi.nlm.nih.gov/pubmed/31500564
https://doi.org/10.1016/j.cell.2017.08.007
http://www.ncbi.nlm.nih.gov/pubmed/28841416
https://doi.org/10.1001/jamapsychiatry.2015.2622
http://www.ncbi.nlm.nih.gov/pubmed/26676879
https://doi.org/10.1002/wps.20559
https://doi.org/10.1038/nature09563
https://doi.org/10.1038/nature09563
http://www.ncbi.nlm.nih.gov/pubmed/21068828
https://doi.org/10.1176/appi.ajp.2013.13040474
http://www.ncbi.nlm.nih.gov/pubmed/23820827
http://www.ncbi.nlm.nih.gov/pubmed/23820827
https://doi.org/10.1002/wps.20423
http://www.ncbi.nlm.nih.gov/pubmed/28498576
https://doi.org/10.1016/S0140-6736(09)60995-8
https://doi.org/10.1016/S0140-6736(09)60995-8
https://doi.org/10.1016/j.schres.2012.01.031
http://www.ncbi.nlm.nih.gov/pubmed/22356801
https://doi.org/10.1017/CBO9780511815478
https://doi.org/10.1080/j.1440-1614.2005.01714.x
https://doi.org/10.1080/j.1440-1614.2005.01714.x
http://www.ncbi.nlm.nih.gov/pubmed/16343296
https://doi.org/10.7554/eLife.59811


Appendix 1

Supplementary analysis 1
We conducted supplementary analyses to verify that subjects who were excluded from the original

NEURAPRO sample due to lack of data at either baseline or follow-up were clinically not significantly

different from the rest of the cohort. Specifically, we compared excluded subjects (N=103) to the

rest of the sample in terms of severity of available CAARMS items at both baseline and follow-up

assessments using two-sample t-tests. P-value of differences was corrected for multiple comparisons

using false discovery rate (FDR) correction at p<0.05 using Benjamini-Yekutieli procedure as imple-

mented in Matlab. Results are resumed in Supplementary file 1 for comparison of symptom severity

at baseline. Comparison of symptom severity and longitudinal follow-up between included and

excluded subjects are detailed in Supplementary file 2. In Supplementary files 1 and 2, we also

report how many data points were available for each CAARMS item at baseline and follow-up

assessment among subjects who were excluded. Results revealed that excluded subjects were not

significantly different from the rest of the sample in terms of severity of any item the available

CAARMS assessment at baseline or at longitudinal follow-up.

Supplementary analysis 2
Analysis of symptom predictability according to structure of
multilayer symptom network

We followed the procedure employed in the work of Eiko Fried et al. (Borsboom and Cramer,

2013), using the available R Code (Carpenter et al., 1985), to compute the predictability of symp-

toms in our multilayer symptom network. Predictability was estimated for both symptoms at baseline

and at follow-up considering both cross-sectional and longitudinal relationships between symptoms.

In order to be able to compare predictability estimates across samples, we restricted our analysis to

38 symptoms that were available in both cohorts (15 items that were shared across SIPS and

CAARMS and 23 BPRS items). To provide a visual representation of the differential predictability of

different clinical variables, plotted predictability values as color-coding of symptoms in the multilayer

network for both 22q11DS and NEURAPRO cohorts (see Appendix 1—figure 1A and B).

Results revealed that in both samples, negative symptoms had overall higher predictability both

at baseline and at follow-up compared to the rest of symptoms in the network, contributing to an

overall positive correlation between predictability values across samples (R-Pearson=0.22, p=0.054;

see Appendix 1—figure 1D).

This analysis also revealed some differences in predictability patterns across samples. In particu-

lar, while in the 22q11DS sample, symptoms of disorganization and thought disturbance had high

predictability both at baseline and at follow-up assessment in the NEURAPRO disorganization and

thought disturbance symptoms had weaker predictability at baseline and higher predictability at fol-

low-up assessment. Moreover, a comparison of predictability values across samples revealed an

overall stronger predictability in the 22q11DS network compared to the NEURAPRO network (mean

predictability in 22q11DS=0.64±0.26, mean predictability in NEURAPRO=0.44±0.20, p-value of

paired t-test<0.0001; see Appendix 1—figure 1C).

As we highlight in the Limitation section of the study, interpretation of differences observed

across samples is complicated by the presence of multiple potential confounding factors, such as dif-

ferent clinical instruments, different length of longitudinal follow, different therapeutic strategies,

and different mean age across the two samples. A potential interpretation is that lower symptom

predictability reflects higher clinical heterogeneity in the NEURAPRO sample compared to the

22q11DS participants, who share a common genetic predisposition to psychosis.
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Appendix 1—figure 1. Comparison of Symptom Predictaiblity in 22q11DS and NEURAPRO Sam-

ples. (A) Representation of symptom predictability according to the multilayer temporal symptom

network in the 22q11DS sample. Symptoms are spatially embedded according to the two main

network dimensions derived from network eigendecomposition as described in the main text. As

described in the main text, node size is scaled according to symptom connectivity strength. The

specificity of this analysis is that node color is shaded according to network predictability, both

symptoms at baseline and at follow-up. (B) Representation of symptom predictability according to

the multilayer temporal symptom network in the 22q11DS sample. (C) Comparison of symptom

predictability according to the structure of the multilayer symptom network across 22q11DS and

NEURAPRO samples. Each point represents a predictability estimate for one symptom. Dashed lines

connect predictability estimates for homologous symptoms across samples. (D) Comparison of

symptom predictability according to the structure of the multilayer symptom network across

22q11DS and NEURAPRO samples. Each point represents a predictability estimate for one

symptom. Symptoms at baseline are represented in green whereas symptoms at follow-up are

represented in yellow. The red line separates symptoms with higher predictability in the 22q11DS

sample from symptoms with higher predictability in the NEURAPRO sample.

Supplementary analysis 3
In order to verify the impact of the ordinal nature on the structure of the symptoms network, we con-

structed multilayer symptom networks using Spearman rank correlations, for both the 22q11DS and

NEURAPRO cohorts. First, we assessed whether the main dimensions derived from eigendecomposi-

tion of Spearmen correlations networks significantly differed from those of Pearson correlation net-

works. Specifically, we correlated loadings of symptoms according to the two main dimensions of

Spearman versus Pearson correlation networks, for both the NEURAPRO and 22q11DS cohorts. In

the NEURAPRO sample, we observed a very strong correlation between loadings of symptoms for

both the first (R=0.98, p<0.001) and second network dimensions (R=0.97, p<0.001), indicating that

the two main dimensions derived from Spearman versus Pearson correlation networks were almost

identical.

Results in the 22q11DS cohort also point to a strong similarity in the main dimensions Spearman

versus Pearson correlation networks as indicated by strong positive correlations between loadings of
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symptoms according to the first (R=0.78, p<0.001) and second (R=0.85, p<0.001) network

dimensions.

Next, we assessed whether longitudinal pathways of interaction between symptoms significantly

differed in Spearman versus Pearson correlation networks by correlating measures of longitudinal

betweenness centrality across the two types of networks for both samples. In the

NEURAPRO sample, we observed a strong positive correlation between values of longitudinal

betweenness centrality of symptoms in Spearman versus Pearson correlation networks

(R=0.81, p<0.001). Moreover, the same symptoms were identified as the strongest longitudinal

Hubs (Avolition, Bizarre Behavior, and Objective Cognitive Change) in both networks, indicating lon-

gitudinal clinical pathways in the two networks. We observed some differences across the two net-

works in symptoms that were identified as weaker longitudinal hubs. Specifically, BPRS symptoms of

Hostility at baseline and Emotional Withdrawal at follow-up were identified as hubs only in the Pear-

son network whereas centrality of BPRS Uncooperativeness was significant only in the Spearman net-

work, after FDR correction for multiple comparisons.

In the 22q11DS sample, we also observed a strong positive correlation between values of longitu-

dinal betweenness centrality of symptoms in Spearman versus Pearson correlation networks

(R=0.83, p<0.001), with most symptoms being identified as longitudinal hubs in both networks. Simi-

larly, to the NEURAPRO sample, we observed some discrepancies in terms of which of the weaker

longitudinal hubs was considered significant after correction for multiple comparisons. Specifically,

conceptual disorganization at follow-up was significant only in the Pearson correlation network.

Baseline symptoms of suspiciousness and impaired tolerance and follow-up symptoms of somatic

disturbance and mannerisms were significant only in Spearman networks.

Appendix 1—figure 2. Construction and comparison of multilayer symptom network constructed

using Spearman’s rank correlation compared to Pearson correlation in the NEURAPRO sample. (A)

Multilayer symptom network reconstructed from Spearman rank correlations in the NEURAPRO

sample, employing the same procedure as described in the main text. (B) Correlation of longitudinal

betweenness centrality measures computed in networks constructed using Spearman versus Pearson

correlations. The horizontal red dashed line separates symptoms that had higher longitudinal

centrality estimates than expected by chance, in the Spearman correlation networks. The vertical

dashed line separates symptoms that had higher longitudinal centrality estimates than expected by

chance, in the Pearson correlation network. (C) Correlation of loading of symptoms across the first

dimension of Spearman versus Pearson correlation networks in the NEURAPRO sample. (D)

Correlation of loading of symptoms across the second dimension of Spearman versus Pearson

correlation networks in the NEURAPRO sample.
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Appendix 1—figure 3. Construction and comparison of multilayer symptom network constructed

using Spearman’s rank correlation compared to Pearson correlation in the 22q11DS sample. (A)

Multilayer symptom network reconstructed from Spearman rank correlations in 22q11DS, employing

the same procedure as described in the main text. (B) Correlation of longitudinal betweenness

centrality measures computed in networks constructed using Spearman versus Pearson correlations.

The horizontal red dashed line separates symptoms that had higher longitudinal centrality estimates

than expected by chance, in the Spearman ccorrelation networks. The vertical dashed line separates

symptoms that had higher longitudinal centrality estimates than expected by chance, in the Pearson

correlation network. (C) Correlation of loading of symptoms across the first dimension of Spearman

versus Pearson correlation networks in the 22q11DS sample. (D) Correlation of loading of symptoms

across the second dimension of Spearman versus Pearson correlation networks in the 22q11DS

sample.

Supplementary analysis 4
Methods

We conducted complementary analyses to assess the stability of results, after pruning networks to

include only the most significant connections, over a range of connectivity strength thresholds.

To select the appropriate range of thresholds, we employed the following procedure. For the

most lenient threshold, we considered all correlations between symptoms that were significant at

p<0.05 after FDR correction of multiple comparisons. Subsequently, we progressively removed 2%

of all possible connections in the network, starting from the least statistically significant ones, until

we reached a threshold where the network was no longer fully connected. In the 22q11DS cohort,

this procedure yielded a range of six thresholds going from 41% to 31% of all possible connections

in the network, while in the NEURAPRO cohort, the procedure yielded a range of five thresholds

going from 32% to 24% of all possible connections.

We next repeated the procedure for multilayer temporal network analysis described in the manu-

script, including network dimensionality reduction and graph theory analysis, for each of these

thresholds. Resulting networks for each threshold are represented in Appendix 1—figures 4 and 5.

In order to assess the stability of network dimensionality reduction, we computed Pearson corre-

lations of symptom loading across the first and the second network dimension for each couple of

network thresholds (i.e., correlations of symptoms loadings for networks reconstructed considering

32% vs. 26% of network edges). For five possible thresholds, these 10 individual correlation values,

which quantified the stability of network dimensionality reduction across thresholds. To have an esti-

mate of the overall stability across multiple thresholds, we computed the mean and the standard

deviation of such Pearson correlation values.
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Moreover, for each network threshold, we computed longitudinal betweenness centrality values

for each symptom as described in the Materials and methods section of the study. Longitudinal

betweenness centrality values were then correlated across multiple network thresholds to quantify

their stability as described above.

Results

In the 22q11DS cohort, networks were constructed for six different thresholds (41%, 39%, 37%, 35%,

33%, and 31% of all possible connections). The mean Pearson correlation coefficient of symptom

loadings across five thresholds was 0.996±0.0016 for the first network dimension and 0.996±0.002

for the second network dimension. The mean Pearson correlation coefficient for longitudinal

betweenness centrality was 0.988±0.0061.

In the NEURAPRO cohort, networks were constructed for five different thresholds (32%, 30%,

28%, 26%, and 24% of all possible connections). The mean Pearson correlation coefficient of symp-

tom loadings across five thresholds was 0.994±0.0039 for the first network dimension and

0.996±0.002 for the second network dimension. The mean Pearson correlation coefficient for longi-

tudinal betweenness centrality was 0.991±0.0046.

Conclusion

These results indicated that in both cohorts, network dimensionality and graph theory analysis of lon-

gitudinal clinical pathways were highly stable across a range of network connection thresholds. We

report such results in the supplementary section of the study.

Appendix 1—figure 4. Stability of networks constructed considering multiple thresholds of connec-

tivity strength in the 22q11DS cohort. (A–F) Multilayer temporal symptom networks constructed

considering a range of connectivity strength thresholds. For the most lenient threshold, we

considered all correlations that were significant at p<0.05 after FDR correction for multiple

comparisons (Panel A, 41% of possible connections). We progressively pruned 2% of the least

significant connections until reaching the most stringent connectivity threshold that still yielded a

fully connected network (Panel F, 31% of possible connections).
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Appendix 1—figure 5. Stability of networks constructed considering multiple thresholds of connec-

tivity strength in the NEURAPRO cohort. (A–D) Multilayer temporal symptom networks constructed

considering a range of connectivity strength thresholds. For the most lenient threshold, we

considered all correlations that were significant at p<0.05 after FDR correction for multiple

comparisons(Panel A, 32% of possible connections). We progressively pruned 2% of the least

significant connections until reaching the most stringent connectivity threshold that still yielded a

fully connected network (Panel E, 24% of possible connections).

Appendix 1—figure 6. Representation of only significant negative correlations between symptoms

in the 22q11DS sample. Network visualization of significant negative correlations between

symptoms in the 22q11DS cohort. Spatial embedding of symptoms is performed according to

the eigendecomposition of networks composed of both significant positive and negative

correlations. Results in 22q11DS indicated a single negative correlation that was significant at

p<0.05 after FDR correction for multiple comparisons, connecting BPRS assessment of

uncooperativeness at baseline assessment with BRPS assessment of distractibility and longitudinal

follow-up.
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Appendix 1—figure 7. Representation of only significant negative correlations between symptoms

in the NEURAPRO sample. Network visualization of significant negative correlations between

symptoms in the NEURAPRO cohort. Spatial embedding of symptoms is performed according to

the eigendecomposition of networks composed of both significant positive and negative

correlations. Results in NEURAPRO indicated a total of eight negative correlations that were

significant at p<0.05 after FDR correction for multiple comparisons. Such negative correlations

mainly connected symptoms of blunted affect with symptoms of distractibility and motor

hyperactivity.

Procedure to select the appropriate number of dimensions after network
eigendecomposition

In order to choose the appropriate number of network dimensions, we examined the percentage of

variance explained by each component derived from network eigendecomposition. Percentage of

explained variance of each network component is displayed in Appendix 1—figure 8B for

the 22q11DS sample and Appendix 1—figure 9B for the NEURAPRO sample. In

the 22q11DS cohort, the first component explained 32.7% of the variance in the network, whereas

the second, third, and fourth components explained 30.3%, 7.1%, and 4.5% of the variance, respec-

tively. In the NEURAPRO cohort, the first four components explained 23.8%, 14.4%, 8.5%, and

6.26% of the network variance.

In order to have a principled criterion to choose the number of meaningful components, we

repeated dimensionality reduction after randomly reshuffling the position of network edges, for

1000 iterations. This procedure yielded a distribution of variance explained by the first dimension of

a network composed of the same connection, but with random structure. This analysis revealed that

the first component of a randomized network explained between 5.9% and 4.8% of network struc-

ture in the 22q11DS sample and between 6.5% and 4.5% of network structure in the NEURAPRO

sample. Minimum and maximum percentage of variance explained by the main dimension of a
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randomized network are displayed as dashed red lines, in Appendix 1—figure 8B for the 22q11DS

sample and Appendix 1—figure 9B for the NEURAPRO sample. We considered network compo-

nents derived from eigendecomposition of empirical networks to be significant only if they explained

more variance than the strongest component of a random network.

This analysis revealed that in both 22q11DS and NEURAPRO samples, only the first three network

dimensions explained a higher amount of variance of the first dimension of a randomized network.

However, while the first two dimensions explained more than twice the amount of variance com-

pared to what observed in a randomized network, the third dimension explained only marginally

higher variance compared to what would be expected in a random network.

In order to verify whether the third network dimension still captured potentially clinically signifi-

cant features of network structure, we embed symptoms considering the first and third network

dimensions in both populations. A representation of network embedding according to the first and

third dimensions can be found in Appendix 1—figure 8A for the 22q11DS sample and Appen-

dix 1—figure 9A for the NEURAPRO sample. Finally, we correlated empirically observed correlation

strength between symptoms with their distance according to the third network dimension, sepa-

rately for cross-sectional and longitudinal correlation, as described in the main text. Results of this

final analysis are displayed in Appendix 1—figure 8C for the 22q11DS sample and Appendix 1—

figure 9C for the NEURAPRO sample.

These analyses revealed that in the NEURAPRO sample, the third network dimension mainly sep-

arated baseline symptoms from follow-up symptoms across time. However, this third dimension did

not accurately capture variance in correlation strength among different longitudinal correlations as

indicated by a non-significant correlation of Euclidean distance and correlation strength (R=0.03,

p=0.1).

Similarly, in the 22q11DS sample, the third network dimension tended to separate baseline from

follow-up symptoms but did not capture variance between longitudinal correlations as indicated by

a non-significant correlation between Euclidean distance across this third dimension and correlation

strength (R=0.03, p=0.1).

This means that, for both samples, symptoms at baseline and follow-up that were closer to

one another across this third network dimension were not actually more strongly correlated. These

results imply that the third dimension did not offer a meaningful representation of network structure.

Taken together, these results justify the use of the first two network dimensions for topological

embedding of symptoms, as reported in the main text.

Appendix 1—figure 8. Representation of first and third network dimensions derived from network

eigendecomposition in the 22q11DS sample. (A) Network spatial embedding according to the first

network dimension along the horizontal axis and third network dimension along the vertical axis in

Appendix 1—figure 8 continued on next page
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Appendix 1—figure 8 continued

the 22q11DS sample. The third network dimension mainly separated symptoms at baseline

assessment, displayed in green and mostly found at the bottom of the graph, from symptoms at

follow-up assessment displayed in yellow and mostly found on the top of the graph. (B)

Representation of percentage of network variance explained by each network component from the

first components on the left to the last components on the right. Red dashed lines indicate the

minimum and maximum percentage of variance explained by eigendecomposition of a network

composed of 1000 networks composed of the same edges but with randomized structure. Network

components located below the dashed lines are considered to be non-meaningful as they explain

less percentage of network structure than what observed in a network with random structure. (C)

Correlation of Euclidean distance between symptoms according to the third network dimension and

empirically observed correlation strength between symptoms. The association of Euclidean distance

and correlation strength is computed separately for cross-sectional correlations between symptoms

at baseline assessment displayed in green and between symptoms at longitudinal follow-up

displayed in yellow, as well as for longitudinal correlations between symptoms across time displayed

in black.

Appendix 1—figure 9. Representation of first and third network dimensions derived from network

eigendecomposition in the NEURAPRO sample. (A) Network spatial embedding according to the

first network dimension along the horizontal axis and third network dimension along the vertical axis

in NEURAPRO sample. The third network dimension mainly separated symptoms at baseline

assessment, displayed in green and mostly found at the bottom of the graph, from symptoms at

follow-up assessment displayed in yellow and mostly found on the top of the graph. (B)

Representation of percentage of network variance explained by each network component from the

first components on the left to the last components on the right. Red dashed lines indicate the

minimum and maximum percentage of variance explained by eigendecomposition of a network

composed of 1000 networks composed of the same edges but with randomized structure. Network

components located below the dashed lines are considered to be non-meaningful as they explain

less percentage of network structure than what observed in a network with random structure. (C)

Correlation of Euclidean distance between symptoms according to the third network dimension and

empirically observed correlation strength between symptoms. The association of Euclidean distance

and correlation strength is computed separately for cross-sectional correlations between symptoms

at baseline displayed in green and at longitudinal follow-up displayed in yellow, as well as for

longitudinal correlations between symptoms across time displayed in black.
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Negative correlations

In order to verify that a wide data range was not significantly contributing to driving the correlation

between Euclidean distance and correlation strength, we repeated this analysis after restricting the

data range by excluding negative correlations. This analysis confirmed the presence of a significant

negative correlation between Euclidean distance and correlation strength. Indeed, significant corre-

lations were observed for both cross-sectional correlations between symptoms at baseline

(R=�0.354, p<0.001 in 22q11DS, R=�0.247, p<0.001 in NEURAPRO), for cross-sectional correla-

tions between symptoms at longitudinal follow-up (R=�0.473, p<0.001 in 22q11DS, R=0.279,

p<0.001 in NEURAPRO), and for longitudinal correlations connections symptoms across time

(R=�0.365, p<0.001 in 22q11DS, R=�0.154, p<0.001 in NEURAPRO).

Appendix 1—figure 10. Association of Euclidean distance and correlation strength not considering

negative correlations. (A) Association of Euclidean distance between symptoms according to the

first two network dimensions and empirically observed correlation strength, not considering

negative correlations, in the 22q11DS sample. (B) Association of Euclidean distance between

symptoms according to the first two network dimensions and empirically observed correlation

strength, not considering negative correlations, in the NEURAPRO sample. For both samples, the

association of Euclidean distance and correlation strength is computed separately for cross-sectional

correlations between symptoms at baseline displayed in green and at longitudinal follow-up

displayed in yellow, as well as for longitudinal correlations between symptoms across time displayed

in black.
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