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Time-resolved X-ray crystallography (TR-X) at synchrotrons and free electron lasers
is a promising technique for recording dynamics of molecules at atomic resolution.
While experimental methods for TR-X have proliferated and matured, data anal-
ysis is often difficult. Extracting small, time-dependent changes in signal is fre-
quently a bottleneck for practitioners. Recent work demonstrated this challenge can
be addressed when merging redundant observations by a statistical technique known
as variational inference (VI). However, the variational approach to time-resolved
data analysis requires identification of successful hyperparameters in order to opti-
mally extract signal. In this case study, we present a successful application of VI to
time-resolved changes in an enzyme, DJ-1, upon mixing with a substrate molecule,
methylglyoxal. We present a strategy to extract high signal-to-noise changes in elec-
tron density from these data. Furthermore, we conduct an ablation study, in which
we systematically remove one hyperparameter at a time to demonstrate the impact of
each hyperparameter choice on the success of our model. We expect this case study
will serve as a practical example for how others may deploy VI in order to analyze
their time-resolved diffraction data.

I. INTRODUCTION

Time-resolved X-ray crystallography enables the observation of macromolecular dynamics at
atomic resolution, capturing essential information to understand reaction mechanisms. The appli-
cations of this technique are extremely broad, and within this paradigm, many experimental ap-
proaches have been developed at both synchrotrons and X-ray free electron lasers (XFELs). These
include pump-probe1–3, mix-and-inject serial crystallography (MISC)4–7, temperature jump8, elec-
tric field stimulation9, and others, which allow researchers to observe conformational changes of di-
verse biological targets10,11. In this manuscript, we focus on the data analysis of a successful MISC
Laue diffraction experiment carried out at the Advanced Photon Source Sector 14 (BioCARS12,13).
This experiment investigated the reaction of a human enzyme implicated in early-onset Parkin-
son’s disease, DJ-1, with one of its putative substrates, methylglyoxal. While this is a fascinating
biochemical system of considerable medical relevance, here we will focus on the challenges inher-
ent in extracting time-resolved signal from X-ray diffraction experiments rather than the biological
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conclusions of our study. Based on our experience, we offer practical advice to those conducting
time-resolved and comparative crystallography experiments.

The analysis of time-resolved diffraction data is still frequently challenging. The experiments
themselves introduce many sources of variability. The goal of any time-resolved experiment is to
initiate dynamics as uniformly as possible for all of the protein molecules inside a crystal. Then,
assuming sufficient initiation and reaction progress (which can be a challenge for optical pump-
probe experiments due to low quantum efficiencies or sample absorbance), small structural changes
occur and are captured at predetermined delay times with X-ray pulses. During data collection, the
average structure in time across the crystal is recorded. Many time-resolved measurements are cou-
pled to serial crystallography experiments, where datasets comprise up to hundreds of thousands
of crystals, introducing additional challenges, such as heterogeneity across microcrystals and the
need for accurate scaling and merging of reflections across the dataset. Time-resolved differences
are most commonly analyzed with difference electron density (TR-DED) maps. The Fourier co-
efficients of such a map consist of the difference in structure factor amplitudes between two time
points. The phases are usually approximated by those of a high-resolution reference structure of
the crystal in the ground state. While DED maps are exquisitely sensitive to changes in the com-
position of crystals14, they are equally sensitive to measurement errors15. The success of a time-
resolved crystallography experiment may therefore hinge upon the accuracy with which differences
in structure factor amplitudes can be measured, which is a noteworthy challenge. The changes in
structure factor amplitudes between time points are, in most cases, small relative to the structure
factors themselves14. This means that data must be measured with unusually high precision in order
to accurately infer differences in structure and observe intermediate states. Contamination of the
structure factor differences by outliers can mask signal in otherwise well-measured data15.

Serial Femtosecond Crystallography (SFX) experiments were pioneered at X-ray Free Electron
Lasers16, and Serial Synchrotron Crystallography (SSX) experiments are becoming increasingly
popular, with both monochromatic17–20 and polychromatic X-rays21,22. Data collection from quasi-
monochromatic sources, however, record only partial Bragg reflections. The most common strategy
to handle this partiality, and thus achieve more precise estimates of structure factors, is serial crys-
tallography at extreme statistical redundancy23. Our experimental design is different, and exploits
a polychromatic synchrotron beamline (BioCARS 14-ID, Advanced Photon Source), which has al-
ready been used for previously successful SSX experiments21,24,25. The increased reciprocal space
information available in polychromatic diffraction patterns, as well as recording of full rather than
partial intensities (without crystal rotation), as compared to monochromatic images enabled us to
successfully measure time-resolved changes in structure from fewer microcrystals than are typi-
cally required in an SFX experiment. Other synchrotron beamlines are starting to broaden their
X-ray bandwidth to 1̃% due to these benefits26–28. Nonetheless, many of our conclusions will be ap-
plicable to time-resolved crystallography experiments, regardless of the X-ray bandwidth or source.
The central insight we wish to convey in this manuscript is that recent advances in data analysis
can address the measurement errors inherent in crystallography experiments and generate high-
quality DED maps. More specifically, we will demonstrate that the statistical method of variational
inference29,30 is well suited to this challenge.

X-ray diffraction data typically contain many redundant observations of reflections. Merging is
the process of averaging the intensities of redundant measurements to estimate a consensus set of
intensities which can be used in structure determination or, indeed, Fourier difference map analy-
ses. This task is complicated by the nature of the diffraction experiment, as discussed above. The
observed intensity is always modulated by a number of effects which are unavoidable and lead to
systematic errors in the measurements. These errors cannot be accounted for strictly by analytical
correction factors31. Prior to merging, observed intensities are corrected using numerical optimiza-
tion, a procedure known as scaling32. Conventionally, scaling algorithms work by fitting a model of
systematic errors in order to minimize the discrepancy between repeated observations of the same
reflection. This has been a very successful strategy for conventional, rotation-method data. Every
major crystallography software package implements a scaling algorithm. An alternative to sequen-
tial scaling and merging was recently proposed which jointly estimates merged structure factors
alongside the systematic error model using variational inference33. This algorithm is implemented
in the Python package, careless, which is freely available and open source (https://github.com/rs-
station/careless). We explore the benefits of this approach, specifically in the context of optimizing
time-resolved difference peaks, in this work.
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The main advantage of variational inference is flexibility. Consequently, software like careless
should not be thought of as a push-button scaling solution. Rather, it is a modeling toolkit which
can be used to extract the most signal possible from a time series. Doing so requires the user
to identify the proper set of model hyperparameters to maximize the desired signal. Extensive
hyperparameter searches can be computationally prohibitive. Therefore, we offer some lessons
from our own experience to help decrease the burden of finding the optimal hyperparameters.

II. METHODS

A. Experimental Design

All diffraction data were collected from DJ-1 microcrystals (∼25 µm in size, grown as previously
described5,34) at APS BioCARS 14-ID-B12,13 with a custom sample cell coupled to a microfluidic
mixer35. Briefly, the DJ-1 microcrystals first pass through a microfluidic mixer where the substrate,
methylglyoxal, is rapidly diffused into the crystals for reaction initiation. The freshly mixed crystals
continue to flow into the sample cell observation region for data collection. The flow speeds were
adjusted to match the 3.6 µs exposure time at a 10 Hz repetition rate so that fresh crystals intersect
the X-ray interaction region for every frame. Flow rates and the position of the X-ray beam were
adjusted to get different timepoints within the same mixer. Diffraction images were collected at 3,
5, 10, 15, 20, and 30 seconds post mixing, plus an initial state (0-second, without mixing), yielding
7 datasets total. As previously reported34, DJ-1 crystallizes in space group P3121 which has an
indexing ambiguity.

B. Data Reduction

Data were initially processed using BioCARS’ Python script13 for hit finding as well as indexing
and integration of images in parallel with Precognition software (Renz Research, Inc.). Next, index-
ing ambiguities were resolved for each dataset using a custom program (HEX-AMBI, M. Schmidt,
personal communication). All details about processing with careless can be found on Zenodo
(10.5281/zenodo.10481982). Briefly, the *.ii files output from Precognition were converted to .mtz
format using to_mtz.sh. Then, a custom program, Scramble, was used to correct the consistency
of the indexing convention across all datasets (the source code for Scramble is available on GitHub,
https://github.com/Hekstra-Lab/scramble/). In this work, we used commit
746597266febb2e8dcf1a0728abe77a47e804bc8 for Scramble and commit
389b3e8084cb5a443a90a3481d80d4197b5b02b3 for careless. In addition to being freely avail-
able from GitHub, the source code for both of these programs is archived in our Zenodo deposition.
Careless33 was used to merge and scale the data.

C. Ablation Study

In order to assess the impact of our careless hyperparameter choices on performance, we per-
formed an ablation study whereby we disabled one hyperparameter at a time. The ablations were
achieved by making the changes detailed in Figure 1. Dataset quality was assessed with the active
site difference peak height, R-factors, CChal f , CCwork/CC f ree, and CCpred . These results are pre-
sented in Table I. The active site peak heights were calculated from difference maps between each
timepoint post mixing with the initial, 0-second dataset. The average difference peak height and
standard deviation across all timepoints for each merge condition is shown in Table I. The R-factors
and CCwork/CC f ree are reported for the 0-second timepoint. CChal f and CCpred are reported over all
timepoints.
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1 # ! / b i n / bash
2
3 R=0.99 # M u l t i w i l s o n R− v a l u e
4 BASE_ARGS=(
5 −−mc− samples =20
6 −− t e s t − f r a c t i o n =0 .05
7 −−merge − h a l f − d a t a s e t s
8 −− h a l f − d a t a s e t − r e p e a t s =10
9 −−dmin =1 .77

10 −− i t e r a t i o n s =30 _000
11 −− s e p a r a t e − f i l e s
12 −−double − wi l son − p a r e n t s =None , 0 , 0 , 0 , 0 , 0 , 0
13 −−double − wi l son − r =0 ,$R , $R , $R , $R , $R , $R
14 −−image − l a y e r s =2
15 −− s t u d e n t t − l i k e l i h o o d − dof =32
16 −− p o s i t i o n a l − encoding − keys ="X,Y"
17 −− p o s i t i o n a l − encoding − f r e q u e n c i e s =4
18 −−mlp− wid th =6
19 −− wave leng th −key = ’ Wavelength ’
20 "X, Y, Wavelength , dHKL"
21 )
22
23 # Run c a r e l e s s
24 c a r e l e s s po ly \
25 ${BASE_ARGS[@] } \
26 t i m e p o i n t _ { 0 0 , 0 3 , 0 5 , 1 0 , 1 5 , 2 0 , 3 0 } s . mtz \
27 d j 1 # o u t p u t f i l e n a m e b ase

(a) Baseline merging script

− c a r e l e s s po l y \
+ c a r e l e s s mono \

(b) Disabling harmonic deconvolution

− −−double − wi l son − p a r e n t s =None , 0 , 0 , 0 , 0 , 0 , 0
− −−double − wi l son − r =0 ,$R , $R , $R , $R , $R , $R

(c) Disabling the multivariate Wilson prior

− −− s t u d e n t t − l i k e l i h o o d − dof =32

(d) Disabling the robust error model

− −−image − l a y e r s =2

(e) Disabling image layers

− −− p o s i t i o n a l − encoding − keys ="X,Y"
− −− p o s i t i o n a l − encoding − f r e q u e n c i e s =4

(f) Disabling positional encoding

− "X, Y, Wavelength , dHKL"
+ "X, Y, dHKL"

(g) Disabling wavelength normalization

FIG. 1. careless commands used in this work.

D. Calculation and Quantification of Time-Resolved Difference Maps

We estimated phases for difference map peaks by refinement of a ground state model against the
0-second timepoint data. We restricted refinement to rigid body and individual, isotropic atomic
displacement parameters in the PHENIX36 software package. We used the rs.diffmap function
available in the rs-booster package for the reciprocalspaceship37 Python library. These difference
maps use the model phases from PHENIX, and the merging output from careless. We quantified
difference map peaks using rs.find_peaks which relies on GEMMI38. Uncertainties in the peak
heights were estimated as the standard deviation from repeated refinement in PHENIX with different
random seeds.

III. CARELESS ABLATION STUDIES

Modern machine-learning algorithms are complex and contain many settings which control their
performance. These “hyperparameters” are fixed during model training, and so must be selected or
“tuned” by iteratively re-fitting a model with different settings to achieve the best results. With many
settings to choose, it is generally impossible to explore the entirety of hyperparameter space for a
specific problem. The reality is that determining a successful protocol for training a deep-learning
model often relies on a mixture of intuition and one-dimensional hyperparameter searches.

Here we present a protocol for merging time-resolved DJ-1 data based on one-dimensional hyper-
parameter searches and our developed intuition. In order to rationalize the impact of each decision
involved in selecting our protocol, we conducted an ablation study wherein we disable one model
feature at a time relative to the optimized protocol which we will refer to as “baseline”. This method
is frequently employed in the deep-learning literature. A famous example of this principle is sum-
marized in Figure 4a of Jumper et al. 39 . The parameters used in our baseline protocol are listed in
Figure 1a which uses the same syntax as the careless command line interface.

The ‘best’ parameters for merging with careless remains an active field of research and may
be dataset-specific. Both the ablation study and hyperparameter sweep allowed us to assess the
impact of each hyperparameter on the success of merging. We hope these results help future users
build an intuition for the most critical parameters, demonstrate a sensible way to approach screening
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TABLE I. Ablation Studies Results. The average difference peak height and standard deviation across all
timepoints for each merge condition is shown. The R-factors and CCwork/CC f ree are reported for the 0-second
timepoint. CChal f and CCpred are reported over all timepoints.

Dataset
Active Site Diff
Peak Mean ±

Std. Dev.
Rwork/R f ree

CCwork/CC f ree
(highest shell)

CChal f
(highest shell)

CCPearson
test/train

(overall)

CCSpearman
test/train

(overall)
Baseline 19.0 ± 2.6 21.94/23.58 0.510/0.449 0.347 0.723/0.685 0.548/0.554
No Deconvolution 20.1 ± 2.2 21.67/23.56 0.535/0.491 0.315 0.744/0.706 0.553/0.559
No Multivariate Prior 11.6 ± 2.0 22.83/24.98 0.335/0.357 0.094 0.486/0.834 0.545/0.563
No Robust Error Model 13.7 ± 1.8 23.23/26.00 0.469/0.447 0.305 0.766/0.977 0.523/0.533
No Image Layers 14.4 ± 2.1 21.29/22.97 0.526/0.435 0.312 0.882/0.889 0.537/0.542
No Positional Encoding 17.9 ± 1.7 25.30/28.27 0.473/0.480 0.341 0.724/0.686 0.536/0.545
No Wavelength Norm. 9.2 ± 1.8 22.04/24.18 0.493/0.446 0.340 0.703/0.750 0.518/0.531

parameters, and share practical advice on how to evaluate the results.
We used the following metrics to judge merged dataset quality: mean and standard deviation of

active site difference peak across all time points, Rwork/R f ree, CCwork/CC f ree, CChal f , and CCpred .
Most of these parameters are standard crystallographic figures of merit. CCpred is used to assess
overfitting by evaluating the correlation between predicted and observed reflections33, which is an
important aspect of hyperparameter selection in any machine-learning model. More specifically for
CCpred , we report two approaches, Pearson’s correlation with inverse variance weights (CCPearson)
and Spearman’s rank correlation (CCSpearman). We report these coefficients based on the training
data and a set of test reflections which were used to train the the scaling model. Poor performance on
the test data is suggestive of overfitting which is an indicator of suboptimal hyperparameter values40

(chapter 7). All of our results are summarized in Table I, for details on calculating each metric, see
the Methods section. The outcome of each ablation study and, when applicable, one-dimensional
parameter sweeps, are presented below in more detail.

A. Harmonic Deconvolution

One crucial consideration with polychromatic diffraction is that reflection observations need not
correspond to exactly one Miller index. In fact, the Laue geometry maps all the reflections from a
particular central ray onto the same point on the detector. A central ray is defined as the set of re-
flections which lie on a ray extending outward from the origin of reciprocal space. For instance, the
three reflections indicated in Figure 2 all share the central ray passing through reflection h= 0,k = 1.
These three reflections are called harmonics.41,42 In the experiment, they will be stimulated by dif-
ferent wavelengths of X-rays. This can be seen by noting the difference in the magnitude of their
scattered beam wavevectors, that is by the length of the arrows in Figure 2. The corresponding
wavelengths are tabulated in the table to the right of the figure. Despite the difference in the magni-
tudes of the scattered wavevectors, the direction is shared. That is, the colored lines in Figure 2 are
parallel. In reality, there is only one crystal to serve as the origin for these vectors. Therefore, the
reflections end up precisely superposed on the detector. This phenomenon of harmonic overlap is
distinct from the spatial overlaps which occur frequently in Laue crystallography42,43. Spatial over-
laps can be resolved during integration by profile-fitting algorithms. However, harmonic overlaps
must be deconvolved during scaling44. Careless33 implements one such algorithm for harmonic
deconvolution. In order to assess the impact of harmonic deconvolution on the analysis of our time-
resolved data, we ran careless in monochromatic mode using the careless mono subprogram
in place of the careless poly subprogram typically applied to Laue data (Figure 1b). We found
that disabling harmonic deconvolution did not markedly affect our results. Specifically, we saw no
significant difference in the active site difference peak height or refinement R-values (Table I). Har-
monic deconvolution did lead to a slight improvement in CChal f in the highest resolution bin. We
attribute the lack of a dramatic difference to the high redundancy of these data as well as the exper-
imental design. Specifically, the current beam parameters at BioCARS (12) mean that only a very
small fraction (1% or less) of observations are typically harmonics. In general, we still recommend
using harmonic deconvolution for Laue diffraction. Nevertheless, it will most likely only provide a
substantial improvement for low-redundancy data or higher spectral-bandwidth sources.
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FIG. 2. The origin of harmonic overlap in Laue crystallography depicted by the reciprocal lattice for a 2-
dimensional crystal. The diffracting condition, shaded grey, is bounded by the three limiting spheres deter-
mined by the minimum and maximum wavelength of the spectra and the resolution limit of the sample. Three
reflections from the same central ray are on the diffracting condition. Their scattered beam wavevectors, de-
picted as arrows, have different magnitudes, inverse wavelengths, but are all parallel. The wavelengths and
resolutions of these reflections are recorded in the table to the right. Because the scattered beams are parallel,
they will arrive at the same location on the detector.

B. Multivariate Prior

The Bayesian model implemented in careless allows the user to express various expectations
about the relation between crystallographic data sets through a multivariate prior distribution. To
do so, users may specify a conditional dependence structure wherein each data set is dependent
on at most one "parent" dataset. Conditional dependence is an appropriate assumption in situations
whenever a structure is solved simultaneously with a derivative structure. For each parent-child pair,
users specify a value between zero and one for the multivariate prior r parameter, which indicates
the expected degree of correlation between the two data sets (this distribution is referred to as
the “double-wilson” distribution, as it extends the conventional Wilson distribution to the bi- and
multivariate case). On the command line, this is done by defining the parent-child relationship with
--double-wilson-parents=None,0,0,0,0,0,0, where each entry in the list indicates the index
of the parent dataset (datasets are indexed in the order in which they are provided to careless,
starting at 0). In this case, each dataset is a child of the 0th dataset, which corresponds to the 0-
second dataset before substrate addition. None indicates that the 0th dataset lacks a parent. Next,
the r parameter is set by --double-wilson-r=0,0.99,0.99, 0.99,0.99,0.99,0.99, where
for each child node the expected correlation with its parent dataset node is set (here 0.990 for all
nodes except the 0th (Figure 1c)). Higher numbers indicate a greater expectation of correlation. The
multivariate prior r is related but not identical to the expected Pearson correlation. As with other
hyperparameters discussed here, r should be selected on the basis of crossvalidation by assessing
the model fit to the training data and a held-out set of test data using the CCpred measure. The
multivariate prior distribution will be described in greater detail in a separate manuscript45.

Removing the multivariate prior had a drastic impact on the quality of our analysis. The active
site difference peak mean had a 7.4σ reduction. Notably, the multivariate prior was the only hyper-
parameter to have a considerable effect on CChal f , thus also impacting the overall resolution of the
final dataset as CChal f was used as the main criterion to determine the resolution cutoff.

In addition to the ablation study, we also performed a one-dimensional parameter sweep of the
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prior correlation value (Figure 3). We used the height of the active site difference peak as our main
criterion for selecting the optimal value. We found a maximum in difference peak height with a
prior correlation value of 0.990 (Figure 3a). At this value, the mean value across all timepoints was
19σ whereas the maximum value was 23σ (15 s timepoint). Additionally, we far surpass the noise
standard of 3σ at our optimized value (0.990) and meet or exceed for all of our tested values. The
active site difference peak heights, however, were strongly influenced by the prior correlation value
(Table I and Figure 3a). We encourage users to carefully screen the prior correlation value for their
own datasets to try to find a maximum.

CCPearson and CCSpearman were both computed for crossvalidation. Ideally, these CCpred indica-
tors should have the highest possible value while having the smallest gap between the test and train
set, as this would indicate that the predicted and observed reflections correlate well with each other.
In order to estimate the uncertainty of our correlations, we used bootstrapping46 to estimate a dis-
tribution for both CCPearson and CCSpearman. For CCPearson, we see the smallest gaps between the
test and train set median values (Figure 3b) at r = 0.990, which corresponds well with our differ-
ence peak maximum. Interestingly, r-values below 0.990 demonstrate strongly bimodal CCPearson
distributions which resolve at higher values. At 0.999, the test and train values increase, but the gap
between test and train also increases. We interpret this as a less favorable setting. However, we note
that the discrepancy in difference peak heights between r =0.990 and 0.999 is marginal.

C. Robust Error Model

A key consideration in fitting models to data is specifying an error model, more specifically
how the measurement errors are expected to be distributed. The default choice in careless is that
errors follow a normal distribution with a standard deviation determined by the empirical uncertainty
estimates from integration. The major drawback of a normally distributed error model is that it is
very sensitive to outliers (see Chapter 2.4 of Murphy 47 ). Fortunately, the Bayesian framework
used by careless is quite flexible and affords some control over the error model. Specifically,
careless33 provides a robust alternative to the normally distributed error model in the form of a
Student’s t-distribution. The Student’s t-distribution has heavier tails than a normal and is therefore
more tolerant of outliers48,49. The degree of tolerance can be controlled by specifying a parameter
of the t-distribution, the degrees of freedom, ν . For larger values of degrees of freedom, the model
is more sensitive to outliers. As ν approaches infinity, the error model becomes equivalent to the
normal distribution. In nearly all examples we have encountered, ν = 32 has outperformed the
normally distributed error model. Therefore, we recommend this setting, which can be implemented
on the command line using --studentt-likelihood-dof=32 (Figure 1d). In our ablation study,
we found that the robust, Student’s t-distributed error model was among the strongest determinants
of model performance as judged by time-resolved difference peak height (Table I). Specifically, the
use of the normal distribution in place of the robust error model resulted in a 5.3σ decrease in the
mean difference peak height.

We performed a one-dimensional parameter sweep of ν to determine if 32 was the optimal value
for our data (Figure 4). This was implemented by simply changing --studentt-likelihood-dof=
to either 4, 8, 16, or 64. We used the active site difference peak heights and both CCPearson and
CCSpearman as the main metrics to assess the results (Figure 4). We again used bootstrapping46 to
estimate a distribution for both CCPearson and CCSpearman. By all these criteria it is immediately
clear that the Student’s t distribution outperforms the normal distribution, just as demonstrated in
Dalton et al., 202233. Upon closer inspection, it is evident that 32 is the best value for the degrees
of freedom of this dataset. Although the active site difference peak heights are not strongly af-
fected by ν , there is a moderate maximum at 32 (Figure 4a). For CCPearson, 32 has the smallest
difference between the mean test and train and has the train set with the least variability (Figure
4b). For CCSpearman, there is a slight maximum in the test and train mean values and the smallest
gap between the test and train sets at 32 (Figure 4c). Overall, this demonstrates that utilizing a few
figures of merit is a good practice for selecting values from one-dimensional parameter sweeps.
We particularly recommend this combination of using the active site difference peak heights as the
main criteria and then both CCPearson and CCSpearman as secondary criteria.
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FIG. 3. Results of a one-dimensional sweep of the multivariate prior correlation parameter. A. The active site
difference peak heights for various multivariate prior correlation values. There is a clear maximum at 0.990.
B and C. CCPred was calculated to assess overfitting using either the maximum-likelihood weighted Pearson
or Spearman correlation coefficients. Careless produces a posterior distribution for each intensity observation.
The mean and standard deviation of this distribution are recorded in the ‘*_predictions_#.mtz files saved
after model training. The means of these distributions is typically used to compute CCPred or the correlation
between observed and predicted intensities. Here, we quantify the uncertainty in CCPred using the bootstrap
method whereby we resample the predicted intensities recorded in the careless output with replacement 1000
times yielding 1000 estimates of CCPred per hyperparameter setting. These bootstrapped estimates are visual-
ized as violin plots. The optimal hyperparameter setting has the highest value while having the smallest gap be-
tween test and train. We observe this clearly at 0.990 for CCPred(Pearson) and at 0.999 for CCPred(Spearman)
indicating that the exact optimum likely lies between the two.

D. Image Layers

By default, careless uses a scaling model with purely global parameters. This can be inappro-
priate for serial crystallography applications wherein each diffraction image typically corresponds
to a separate crystal. Variation in the size and quality of samples require different scaling correc-
tions. In such situations, it is important to allocate some of the parameter budget to local parameters
which are able to make corrections to each sample independently. In careless, this can be done

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.605871doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605871
http://creativecommons.org/licenses/by-nc/4.0/


Scaling and Merging Time-Resolved Laue Data with Variational Inference 9

FIG. 4. The results of the one-dimensional sweep of the Student’s t degrees of freedom, ν , on active site
difference peak heights and CCPred . A. The active site difference peak heights have a slight maximum at 32.
B. CCPearson has the the smallest gap between test and train at 32, which are the optimal results. C. CCSpearman
is an alternative metric to assess overfitting. It has the best results at 32 with the highest overall value, albeit
by a small margin, and the smallest gap between test and train. The distributions visualized in the violin plots
were generated by the bootstrap method described in the caption of Figure 3.

by using image layers. Image layers are neural network layers which have separate parameters for
each image in the dataset (see Figure 5a of ref.33). The appropriate number of image layers for
a dataset can be determined by crossvalidation. In this study we used 2 image layers which we
have found to be sufficient in most serial-crystallography cases. This was implemented by using the
--image-layers=2 command line argument (Figure 1e). Crucially, we have never seen 2 image
layers lead to overfitting for a serial dataset. In the single-crystal scenario, we have observed cases
where image layers can be detrimental to difference map inference. Regarding the DJ-1, serial data,
removing the image layers led to a 4.6σ decrease in the signal-to-noise of the time-resolved dif-
ference peak supporting our assertion that local parameters are beneficial for serial-crystallography
data analysis (Table I).
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E. Positional Encoding

Owing to a variety of effects, the observed intensity of a reflection can vary spatially across the
detector31. In the case of features such as panel gaps, background scatter, and shadows from the
beamstop or other equipment, intensity variations can be abrupt. These sorts of high-frequency
variations in can be difficult for neural networks to model50. One well-validated solution to this
problem is to use a positional encoding strategy51–53 whereby coordinates are mapped to a higher-
dimensional representation which the scale model can more easily interpret. In careless, this is
accomplished using the --positional-encoding-keys= command line argument. This param-
eter takes a set of comma separated metadata keys and instructs careless to encode them into a
higher-dimensional representation (Figure 1f). The dimensionality of the encoding is controlled by
the --positional-encoding-frequencies= argument (Figure 1f). In our most successful pro-
tocol, we used positional encoding of the detector coordinates of each reflection observation. We
found this gave a modest, approximately 2σ , increase in difference peak height (Table I). Interest-
ingly, removing positional encoding negatively affected both Rwork/R f ree and CCwork/CC f ree, so its
main benefit seems to contribute to absolute scaling accuracy rather than the accuracy of structure
factor differences.

F. Wavelength Normalization

At synchrotron light sources, it is often necessary to use a polychromatic X-ray beam in order
to record time-resolved diffraction at sufficient temporal resolution for biological processes. Bio-
CARS 14-ID beamline at the Advanced Photon Source provides a polychromatic beam with sub-
microsecond time-resolution (best time resolution at this beamline is determined by a duration of
the single X-ray pulse)12,13. Owing to the nature of synchrotron radiation, the BioCARS beam ex-
hibits a characteristically skewed undulator spectrum (Figure 5a). The relatively large bandwidth of
the beam provides significantly increased photon flux compared to monochromatic beamlines and
consequently much shorter exposure times. It also increases the number of Bragg peaks observed
in each image (Figure 5b). However, the spectrum bandwidth introduces an additional challenge
in data analysis. In particular, the basal flux differs by wavelength. Therefore, the empirical inten-
sity of each reflection depends on the wavelength at which it is observed on a particular image. In
order to model this, a straightforward approach can be used in careless. Namely, the empirical
wavelength of each reflection observation is computed from the experimental geometry used at in-
tegration. Then this wavelength is provided to the careless scale model during merging. On the
command line, this is done by including ’Wavelength’ as a metadetum and specifying the key
--wavelength-key=’Wavelength’ (Figure 1g). Our experiments indicate that careless is able
to approximate the spectral nature of the beam. This can be best visualized as a histogram of the
scale values estimated by careless as a function of wavelength (Figure 5c). As can be seen, the in-
ferred scales recapitulate the characteristic peak and long tail of the pink-beam spectrum. Removing
the wavelength metadatum from the careless scaling model leads to a featureless dependence of
scale on wavelength (Figure 5d) indicating that careless is not able to latently infer the wavelength
from the remaining metadata. Furthermore, removing the wavelength leads to the worst performing
model in our ablation study with time-resolved difference peaks diminished by roughly 10σ relative
to our baseline.

IV. DISCUSSION

We demonstrated the importance of various careless hyperparameters for getting high-quality
merged datasets and especially for capturing time-resolved differences. In particular, we found
that wavelength normalization had the largest impact on difference peak heights. This is due to
our use of a wide bandwidth (5̃%) X-ray beam. The next most important parameter, as judged
from difference peak heights, is the use of a multivariate prior. For our dataset, we found a prior
correlation of r =0.990 to be the optimal value, but in general we found the specific value to be
quite influential. It is possible that the ideal value may vary for different datasets and types of
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FIG. 5. Careless infers the spectrum from wavelength metadata. (a) The spectrum of the X-ray beam at
BioCARS measured by a channel-cut monochromator. (b) An example diffraction pattern from our DJ-1 data
set with the indicated spots circled and colored by the predicted peak wavelength. (c) A two-dimensional
histogram of the scale value (systematic error) predicted by careless and the peak wavelength predicted by
Precognition (Renz Research). The skewed distribution is similar to the BioCARS spectrum indicating that
careless can infer spectral information. (d) The equivalent two-dimensional histogram produced from the
wavelength-normalization ablation study wherein careless did not have access to the peak wavelength of
each reflection observation.

time-resolved experiment modalities. It is strongly recommended to do a one-dimensional sweep
of the multivariate prior to determine which value is best for your specific use case. CCpred-based
crossvalidation measures can be unreliable for the multivariate prior. In the limit r → 1, the structure
factor differences between time points are forced to zero. This equates to learning a single set of
structure factors to represent the average across all the time points. Therefore, higher r-values can
be thought of as reducing the effective parameter count of the model which leads to less apparent
overfitting and superior CCpred values. This indicates a shortcoming of CCpred in determining the
optimal r-value. We caution users that for this scenario, CCpred should not be trusted uncritically.
If real-space measures of performance are available, such as the difference peak heights, this is one
place where it would be appropriate to rely on those rather than assessments of model fit.

Using a robust error model (the Student’s t likelihood with ν = 32) and implementing image lay-
ers (with a value of 2) are additional settings which may improve difference map peak heights. These
specific values have been consistent for the serial crystallography datasets to which careless has
been applied thus far33 so they are a good starting point. Given the consistency in the performance
of these values, one-dimensional sweeps are not necessarily vital for these hyperparameters, espe-
cially when using the default parameters for the neural network depth and width (--mlp-width=10
and --mlp-layers=20). Our mlp-width was kept at 6 due to limits on our accelerator card and
the large number of reflections across the seven datasets. We recommend you increase mlp-width

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.605871doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605871
http://creativecommons.org/licenses/by-nc/4.0/


Scaling and Merging Time-Resolved Laue Data with Variational Inference 12

to the maximum value supported by your accelerator card.
Positional encoding had only a modest impact on the difference peak heights, but it had a larger

impact on standard crystallographic figures of merit, like Rwork/R f ree and CCwork/CC f ree. Thus, it is
still an important parameter to utilize. Harmonic deconvolution had minimal effects on the analysis
quality. This is expected on the basis of the experimental design in this case, in which only a small
fraction (<1%) of reflections have contributions from multiple harmonics.

The resolution limit, dmin, of the data also needs to be set for every iteration of careless. We
found that the maximum resolution attainable, based on a CChal f threshold of 0.3, was dependent on
the hyperparameter values we used. Our baseline dataset has 1.77 Å resolution across all timepoints.
We also processed our data with CrystFEL54,55. Resolution cutoff for structure refinement for each
timepoint in this cases was determined based on >0.2 value of CChal f and had a slightly different
value for each time point, but the average resolution was 1.98 Å. We attribute this 0.21 Å gain in
resolution to the structure imposed by the multivariate prior. This is clearly demonstrated by the
degradation of highest-shell CChal f exhibited in the multivariate prior ablation (Table I). Since it is
ideal to have as high resolution data as possible to interpret time-resolved differences, we see this
as a strong argument in favor of using careless for time-resolved crystallography data.

Based on our experience, we recommend the following protocol. Starting from an appropriate
baseline configuration, such as the one presented in Figure 1a,

1. Determine the resolution cutoff using CChal f

2. Sweep the multivariate prior correlation (r) and determine the optimal value based on real-
space performance measures

3. Determine the optimal value of ν , the Student’s t likelihood degrees of freedom, based on
CCpred

4. Re-determine the resolution cutoff using CChal f

For the first resolution cutoff test (1), we suggest starting with the resolution determined from
a standard program, such as CrystFEL54, Precognition (Renz Research, Inc.), DIALS56, or the
Daresbury Laue Suite57, and then increase this in small increments determined by your desired
precision until you approach a CChal f value of 0.3 in the highest resolution shell. For the one-
dimensional sweep of the multivariate prior correlation parameter (2), we recommend the following
values: 0.500, 0.800, 0.900, 0.950, 0.990, and 0.999. The optimal value should ideally be selected
based on a real-space measure, such as the difference peak height.

Once a suitable multivariate Wilson parameter has been established, the Student’s t distribution
ν sweep can be performed (3). It is most reasonable to test logarithmically-spaced values of ν .
For instance, ν = 4,8,16,32,64. Lastly, once these hyperparameters have been optimized for your
dataset, it may be possible to gain additional resolution. It may be worthwhile to attempt to extend
the resolution (4) in small increments (0.01-0.05 Å) until CChal f in the highest resolution shell drops
below 0.3.

While performing the aforementioned hyperparameter sweeps we suggest calculating all the fig-
ures of merit in Table I to assess your results. Sometimes the various figures of merit can give con-
flicting results for the overall best dataset. For example, sometimes the R-factors would decrease
(improved result), but the difference peak heights would also decrease (worse result). Whenever
they are available, we suggest using difference peak heights as the criterion for selecting the best
strategy. We view CChal f and CCpred as the next two most important metrics. CChal f acts as a stan-
dard crystallographic metric to help evaluate the overall consistency and resolution of the dataset.

CCpred is useful to assess overfitting and can be estimated using either Pearson’s or Spearman’s
rank correlation coefficient. Which estimator is more accurate is likely to depend on the particular
data being analyzed. Pearson’s method admits weights derived from the empirical uncertainties of
reflection intensities estimated during integration. Spearman’s rank correlation coefficient is gener-
ally more robust to outliers. Therefore the quality of the uncertainty estimates and the frequency of
outliers in a dataset will impact the relative accuracy of each metric. More study is needed to assess
alternative measures of model to data agreement. However, for the time being, we recommend users
consider both CCPearson and CCSpearman for hyperparameter optimization. Ultimately, a decision can
frequently be made as to which is superior on the basis of difference peak heights.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.30.605871doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.30.605871
http://creativecommons.org/licenses/by-nc/4.0/


Scaling and Merging Time-Resolved Laue Data with Variational Inference 13

Overall, we have presented insights on the key parameters when utilizing careless to merge
time-resolved serial crystallography data. We have also provided practical advice on how to screen
such parameters and how to interpret the results. Although our datasets were collected via Laue
crystallography at a synchrotron, we expect the described approach to be broadly applicable across
serial crystallography modalities.
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