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Alzheimer’s disease (AD), particularly its sporadic or late-onset form (SAD/LOAD), is 
the most prevalent (96–98% of cases) neurodegenerative dementia in aged people. 
AD’s neuropathology hallmarks are intrabrain accumulation of amyloid-β peptides 
(Aβs) and of hyperphosphorylated Tau (p-Tau) proteins, diffuse neuroinflammation, 
and progressive death of neurons and oligodendrocytes. Mounting evidences suggest 
that family C G-protein-coupled receptors (GPCRs), which include γ-aminobutyric 
acid B receptors (GABABRs), metabotropic glutamate receptors (mGluR1-8), and the 
calcium-sensing receptor (CaSR), are involved in many neurotransmitter systems that 
dysfunction in AD. This review updates the available knowledge about the roles of 
GPCRs, particularly but not exclusively those expressed by brain astrocytes, in SAD/
LOAD onset and progression, taking stock of their respective mechanisms of action 
and of their potential as anti-AD therapeutic targets. In particular, GABABRs prevent 
Aβs synthesis and neuronal hyperexcitability and group I mGluRs play important 
pathogenetic roles in transgenic AD-model animals. Moreover, the specific binding of 
Aβs to the CaSRs of human cortical astrocytes and neurons cultured in vitro engenders 
a pathological signaling that crucially promotes the surplus synthesis and release of 
Aβs and hyperphosphorylated Tau proteins, and also of nitric oxide, vascular endothelial 
growth factor-A, and proinflammatory agents. Concurrently, Aβs•CaSR signaling hinders 
the release of soluble (s)APP-α peptide, a neurotrophic agent and GABABR1a agonist. 
Altogether these effects progressively kill human cortical neurons in vitro and likely 
also in vivo. Several CaSR’s negative allosteric modulators suppress all the noxious 
effects elicited by Aβs•CaSR signaling in human cortical astrocytes and neurons thus 
safeguarding neurons’ viability in vitro and raising hopes about their potential therapeutic 
benefits in AD patients. Further basic and clinical investigations on these hot topics are 
needed taking always heed that activation of the several brain family C GPCRs may elicit 
divergent upshots according to the models studied.

Keywords: Alzheimer’s disease, G-protein-coupled receptors, amyloid-beta, calcium-sensing receptor, 
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INTRODUCTION

Alzheimer’s disease (AD), particularly its sporadic or late-onset 
form (SAD/LOAD), is by far the most prevalent cause of senile 
dementia in humans (Alzheimer’s Association, 2018). Typically, 
multiple neurotoxic factors accumulate in the AD brain, such as 
soluble amyloid-β oligomers (sAβ-os) and insoluble Aβ fibrils 
(fAβs), the latter aggregating into senile plaques (Gouras et al., 
2015); hyperphosphorylated soluble Tau oligomers (p-Tau-os) 
that collect into insoluble neurofibrillary tangles (NFTs) (Bloom, 
2014); overproduced reactive oxygen species (ROS) (Butterfield 
and Boyd-Kimball, 2018); nitric oxide (NO); vascular endothelial 
growth factor-A (VEGF-A), and proinflammatory agents (Dal Prà 
et al., 2014a; Chiarini et al., 2016). Altogether, these neurotoxins 
cause a spreading neuroinflammation, progressive synaptic 
losses, and cortical human neurons and oligodendrocytes deaths 
with the consequent breaking up of neural circuits. The clinical 
counterparts of AD neuropathology are steadily worsening 
losses of memories and cognitive abilities, which inexorably lead 
to patients’ demise (Dal Prà et al., 2015a; Dal Prà et al., 2015b; 
Calsolaro and Edison, 2016).

Amyloid precursor protein (APP), a multifunctional protein 
widely expressed in the central nervous system (CNS), represents 
the source of the neurotoxic sAβ-os and fAβs that progressively 
accumulate in AD brains. Transmembrane APP holoprotein can 
undergo alternative enzymatic handling: (i) nonamyloidogenic 
processing (NAP) by α-secretases that leads to the production of 
the soluble (s)APP-α while obstructing Aβs synthesis (Chiarini 
et al., 2017b; Rice et al., 2019) (Figure 1); and (ii) amyloidogenic 
processing (AP) by β-secretase (BACE1) and γ-secretase liberating 
Aβs (Figure 2). Notably, sAPP-α’s physiological roles are 
multifaceted, and to-date only partly understood. The available 
evidence reveals that sAPP-α promotes the neural differentiation 
of human embryo stem cells (Freude et al., 2011) and protects 
hippocampal neurons from the harm due to ischemia (Smith-
Swintosky et al., 1994), glucose deficiency (Furukawa et al., 1996), 
brain trauma, and excitotoxicity (Mattson et al., 1993; Goodman 
and Mattson, 1994). In addition, sAPP-α complexes with and 
inhibits the activity of BACE1/β-secretase protein thus hindering 
any excess production of toxic Aβ42/Aβ42-os (Stein and Johnson, 
2003; Obregon et al., 2012; Peters-Libeu et al., 2015). Moreover, 
sAPP-α stimulates axonal outgrowth (Ohsawa et al., 1997), 
synaptogenesis, and synaptic plasticity (Hick et al., 2015; Habib 
et al., 2016). Remarkably, sAPP-α also curbs the activity of glycogen 
synthase kinase (GSK)-3β and the hyperphosphorylation and 
overrelease of neurotoxic p-Tau/p-Tau-os, the main components 
of NFTs (Deng et al., 2015). And an increased activity of GSK-3β 
has been linked to hyperphosphorylation of Tau in the brains of 
AD patients. Typically, in AD Tau is phosphorylated at over 30 
serine/threonine residues by various protein kinases, including 
GSK-3β (Pei et al., 1999). The D1 and D6a domains of sAPP-α are 
the locations of its neuroprotective and neurotrophic activities 
since they stimulate axons outgrowth when added as separate 
fragments to in vitro hippocampal neurons (Jin et al., 1994; Qiu 
et al., 1995; Ohsawa et al., 1997). In keeping with such findings, 
sAPP-α upholds cognition and memory integrity in animal 
models of physiological aging and of AD (Roch et al., 1994; 

Meziane et al., 1998; Bour et al., 2004; Ring et al., 2007; Corrigan 
et al., 2012; Xiong et al., 2016) (Figure 1).

SAD/LOAD, which comprises ~98–96% of the cases, starts 
from neuronal nests in the layer II of the lateral entorhinal cortex 
(LEC) in the temporal lobe (Khan et al., 2014) where small 
ischemic areas may occur in aged subjects (Ishimaru et al., 1996). 
Thence, in the course of 20–40 years (asymptomatic stage) SAD/
LOAD silently spreads to wider and wider upper cerebral cortex 
areas, particularly to those involved in storage and retrieval of 
memories and in handling complex cognitive activities (Khan 
et al., 2014). When the unremitting attrition depletes the 
cortical human neurons’ functional reserve, SAD/LOAD’s first 
clinical symptoms start manifesting as amnesias. This marks 
the onset of the amnestic minor cognitive impairment or aMCI 
stage that lasts 3–5 years while its symptoms progressively 
worsen. Eventually, the full symptomatic stage takes over, whose 
exacerbating symptoms include permanent losses of short-term 
(first) and long-term (later) memories, changes in personality 
and behavior, loss of the several language-related abilities, failure 
to cope with daily tasks and needs, motor problems, cognitive 
shortfalls, dementia, and eventually death. However, it is still 
hard to diagnose the earliest asymptomatic stage of AD because 
specific biomarkers are few and the highly neurotoxic, synapse-
destroying sAβ42-os are hardly detectable when senile plaques 
and NFTs are still absent (Selkoe, 2008a; Selkoe, 2008b; Ferreira 
and Klein, 2011; Klein, 2013; Dal Prà et al., 2015a). Even so, the 
ghostly sAβ42-os eventually cause a noticeable accumulation 
of Aβ42 as fibrils and senile plaques, and of p-Tau-os as NFTs 
(Medeiros et al., 2013). Presently, the diagnosis of SAD/LOAD 
is based upon detecting brain deposits of insoluble Aβs (senile 
plaques) via PET imaging and specific changes in Aβ42/Aβ40 
and Tau/p-Tau ratios values in the cerebrospinal fluid (CSF), 
which are deemed to be pathognomonic (McKhann 2011). PET 
imaging can also detect the brain accumulation of NFTs (Hall 
et al., 2017). The quest of blood biomarkers of AD is still ongoing 
with some preliminary promising results (Nabers et al., 2018; 
Nakamura et al., 2018; Palmqvist et al., 2019).

Presently, no drug therapy modifies or mitigates AD’s 
relentless course (Jessen et al., 2014). This unsatisfactory 
situation still lingers because of various reasons. First, SAD/
LOAD pathogenesis remains unclear and, hence, an open to 
speculation topic. Second, animal models closely mirroring 
human SAD/LOAD are as yet not available (Ameen-Ali et al., 
2017). Transgenic (tg) animal (mostly rodent) AD-models only 
partially and imperfectly emulate the early-onset familial (EOF)
AD variety, which comprises at most 2–4% of AD cases. It is well 
established that EOFAD results from mutations in the amyloid 
precursor protein (APP) or presenilin1 (PSEN1) or presenilin2 
(PSEN2) genes. These mutations drive a constitutive, diffuse 
intrabrain overproduction and overload of sAβ-os, insoluble Aβ 
fibrils, and hence Aβ-heaped senile plaques and concurrently of 
p-Tau-os and NFTs. Conversely, no genetic mutations underlie 
SAD/LOAD pathogenesis, although APOE (Huang and Mahley, 
2014) and TREM2 (Gao et al., 2017) gene variants could increase 
AD proclivity. While Aβ-os appear as the first main AD drivers, 
in such tg AD-model animals p-Tau accumulates as NFTs 
later and only when a mutated MAPT transgene is inserted 
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too (Oddo  et al., 2003; Cohen et al., 2013). Third, AD-model 
rodent brains substantially differ under several cytological, 
structural, and functional standpoints from the human brain. 
Some differences are obvious, such as brain size and weight, the 
cerebral cortex limited extent, the largely prevailing primitive 
olfactory cortex, and so on. Other differences are more subtle, 

but still exceedingly important, as they critically regard a genetic 
homology of only 80% and structural and functional features 
of cortical neurons and neuroglial cells--e.g. the total absence 
of some human cortical astroglial subtypes from rodent brain 
cortices--and the dissimilar extension of the astrocytes’ domains, 
and the unlike reactions (e.g. Ca2+ fluxes) of each neural cell 

FIGURe 1 | The nonamyloidogenic processing (NAP) of amyloid precursor protein (APP) holoprotein. By itself, APP holoprotein is not neurotoxic and is cleaved 
at three different locations by α- or β- and/or γ-secretase. Proteolytic cleavage by α-secretase represents the NAP of membrane-inserted APP holoprotein. NAP 
occurs just within the amino acid sequence of Aβ42, whose synthesis it consequently obstructs. Thus, α-secretase activity (mostly due to ADAM10) sheds from APP 
holoprotein the soluble (s)APP-α peptide, whose multiple neurotrophic and neuroprotective effects are summarized in this figure. Recent evidence indicates that as 
a GABAB1aR agonist sAPP-α also constitutively moderates neuronal excitability thus preventing neurons’ harm. In summary, APP holoprotein’s NAP hinders the 
development of AD and preserves neuronal viability, trophism, and function.

Frontiers in Pharmacology | www.frontiersin.org October 2019 | Volume 10 | Article 1282

https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Brain GPCRs and Alzheimer’s DiseaseDal Prà et al.

4

type once exposed to AD-driving neurotoxins. As a revealing 
example, in tg AD-model animals, the cortical astrocytes die 
sooner than neurons, whereas cortical neurons die earlier than 
astrocytes in human AD brains. Altogether, such a complex set of 
divergences has suggested that tg rodent AD-model animals may 
not be the ultimate means to identify therapeutic approaches 
benefiting human AD patients (Ransohoff, 2018). Hitherto, all 
drugs that resulted advantageous when given to tg AD-model 
animals have failed to act as beneficial therapeutics in human 
AD patients (Cummings, 2017). It should be noted that this is 

a currently recognized general problem affecting the quest for 
and successful trial of novel drugs preclinically tested in animal 
models of other human diseases besides AD (Gabrielczyk, 
2019). Unquestionably, novel rodent and non-human primate 
(NHP) AD models are under development (Podlisny et al., 1991; 
Sasaguri et al., 2017) but their potential worth for human AD 
therapeutic research remains to be assessed.

So, are there acceptable alternatives to AD-model animals? 
Given the just mentioned species-related differences, one 
should take stock of untransformed human neural cells making 

FIGURe 2 | The amyloidogenic processing (AP) of amyloid precursor protein (APP) holoprotein. In this pathway β-secretase/BACE1 and γ-secretase sequentially 
cleave APP holoprotein yielding several Aβ peptide isoforms. The two most prevalent Aβ isoforms are the 40- and 42-amino acid-long residues, the length of which 
is determined by the cleavage site of the γ-secretase. Under physiological conditions the synthesis of monomeric neurotrophic Aβ peptides is very limited. However, 
when over produced Aβ peptide monomers end up aggregating first into soluble oligomers (Aβ-os), the first Alzheimer’s disease (AD) drivers, next into insoluble 
fibrils, and eventually into senile plaques. The latter can both take up and release the neurotoxic Aβ-os. The Aβ42 isoform is the main component of senile plaques 
as is it highly prone to oligomeric and polymeric (fibrillar) aggregation. The Aβ-os interact with several nerve cell membrane receptors, including the calcium-sensing 
receptor (CaSR). Notably, CaSR-bound Aβ-os trigger a complex set of intracellular signals that promote the development and progression of AD neuropathology 
(see Figure 3 for further details).
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up “preclinical AD models in Petri dishes”. An example of this 
kind may be neural cells differentiated from human induced 
pluripotent stem cells (iPSCs) isolated from normal subjects 
and/or from EOFAD and SAD/LOAD patients and set into 2D or 
3D cultures (Kim et al., 2015). Human iPSC models are easier to 
handle than NHP models and may also be integrated into mouse 
AD models (Espuny-Camacho et al., 2017).

Still another suitable preclinical human AD model in vitro 
consists of untransformed cortical adult human astrocytes and/
or neurons. Human astrocytes from the temporal lobe cerebral 
cortex exhibit a stable (“locked-in”) differentiated phenotype 
and give reproducible responses when exposed to fAβs and/
or sAβs. The experimental exploitation of the latter cells has 
revealed that exogenous Aβs specifically bind the calcium-
sensing receptor (CaSR) (Dal Prà et al., 2014a; Dal Prà et al., 
2014b; Dal Prà et al., 2015b), a member of family C G-protein 
coupled receptors (GPCR), and activate a pathological signaling 
that could drive human LOAD/SAD onset and progression and 
also worsen EOFAD’s course. These findings have clearly pointed 
out to a class of therapeutic agents, the CaSR negative allosteric 
modulators (NAMs), which effectively block all such AD’s 
pathogenetic mechanisms in untransformed cortical human 
neurons and astrocytes in vitro and could stop the progression of 
AD neuropathology in the patients (Armato et al., 2013; Chiarini 
et al., 2017a; Chiarini et al., 2017b).

Family C GPCRs also include the metabotropic glutamate 
(mGlu) and GABAA/B receptors (Bräuner-Osborne et al., 2007; 
Urwyler, 2011). Results of studies in animal model suggest 
that mGlu-Rs and GABA-Rs might also be involved in AD 
pathophysiology because AD concurs with alterations of 
glutamatergic transmission (Caraci et al., 2018). Therefore, we 
discuss here the roles of family C GPCRs in AD progression and 
hence their potential relevance to human AD therapy.

FAMILY C G-PROTeIN-COUPLeD 
ReCePTORS

In general, GPCRs are among the most numerous groups of 
transmembrane proteins of the mammalian genome. To date, 
about 800 of these proteins have been identified in humans 
(Fredriksson et al., 2003). The relevance of their manifold 
functions has made them therapeutically attractive as shown 
by the fact that they are the targets of ~34% of United States 
Food and Drug Administration-approved drugs (Hauser et al, 
2017). Currently, GPCRs are distinguished into six classes 
(families A–F) (Table 1) based upon amino acid sequence 
homologies, elected signal transduction pathways, and 
pharmacological outlines.

Details concerning the structure of family C GPCRs are 
known for the mGluRs (Kunishima et al., 2000; Tsuchiya et al., 
2002; Muto et al., 2007; Doré et al., 2014; Wu et al., 2014), 
GABABR (Geng et al., 2013), and CaSR (Gama et al., 2001; Geng 
et al., 2016) extracellular domains (ECDs), and for the mGluRs 
and CaSR transmembrane domains (Doré et al., 2014). Family 
C GPCRs share a common general structure characterized 
by a huge bilobed N-terminal extracellular domain (ECD) or 

“Venus Flytrap” (VFT) (Fredriksson et al., 2003; Lagerström 
and Schlöth, 2008; Rosenbaum et al., 2009). A cysteine-rich 
region (CR) links the ECD/VFT to the 7TM domain including 
seven transmembrane helical hydrophobic regions (TM1–TM7) 
connected extracellularly by three loops (ECL1–ECL3) and 
intracellularly by three loops (ICL1–ICL3). The CR domain is 
extant in all family C GPCRs save for GABABRs. Finally, the 7TM 
domain is linked to the intracellular C-terminal domain (ICD), 
whose tail interacts with G proteins to activate downstream 
signaling pathways.

Family C GPCRs function as mandatory dimers (El 
Moustaine et al., 2012) joined by a disulfide bond topping the 
two VFTs. GPCRs can be formed into homodimers or into 
heterodimers with other members of the same group or family 
(Goudet et al., 2005; Doumazane et al., 2011; Kammermeier, 
2012; Sevastyanova and Kammermeier, 2014) or with extraneous 
GPCRs (Ciruela et al., 2001; Gama et al., 2001; Cabello et al., 
2009; Kniazeff et al., 2011). The orthosteric ligands bind the 
pockets placed in the slit between the two VFT’s lobes causing 
the active closure of both slits (closed-closed conformation) or of 
only one slit (open-closed conformation) (Parnot and Kobilka, 
2004). Conformational changes inside the VFT domains are 
conveyed through the cysteine-rich and 7TM regions to the ICD 
domain to regulate G-proteins binding and activate intracellular 
signals (Rondard et al., 2006).

The family C GPCRs subtype specificity of orthosteric agonists 
and antagonists varies because the amino acid sequence of the 
VFT binding pocket may or may not be extensively conserved. 
Group III mGluRs are an example of the former case, as their 
orthosteric agonists and antagonists are possessed of a mostly 
unchanging broad-spectrum activity (MacInnes et al., 2004; 
Austin et al., 2010). To overcome this obstacle to therapeutic 
applications, an active quest has been and still is going on for 
drugs that bind on particular amino acid sequences defined as 
allosteric sites or pockets (e.g. on the ECL1–ECL3 of the 7TM 
domain) and placed well outside the VFT-inside orthosteric site. 
A number of allosteric sites located within the 7TM domain were 
identified by investigations using site-directed mutagenesis and 
allosteric modulator cocrystal methods (Gregory et al., 2012; Doré 
et al., 2014; Wu et al., 2014; Christopher et al., 2015). These novel 
drugs selectively modify the receptor signaling triggered by an 
orthosteric ligand acting as either positive allosteric modulators 
or PAMs or negative allosteric modulators or NAMs (Engers and 

TABLe 1 | G-Protein-coupled receptors (GPCRs) Families.

Family A rhodopsin-like receptors
Family B secretin receptors
Family C γ-aminobutyric acid B (GABAB) receptors; metabotropic 

glutamate receptors (mGluR1-8); calcium-sensing receptor 
CaSR; taste receptors 1-3; *V2 pheromone receptors; *GPRC6A 
receptor;**various orphan receptors.**

Family D fungal mating pheromone receptors
Family E cyclic AMP receptors
Family F frizzled/smoothened receptors

*These receptors abound in rodents but are absent from humans
(Niswender and Conn 2010; Alexander et al., 2017).
**Not considered in this review.
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Lindsley, 2013). PAMs favor whereas NAMs hinder the binding 
affinity/activity (the so-called cooperativity) of orthosteric 
ligands. Finally, neutral allosteric ligands (NALs) bind their 
sequence on a receptor but do not change the cooperativity of its 
orthosteric ligand (Wootten et al., 2013; Christopoulos, 2014). 
The otherwise steady structural conformation of orthosteric 
ligand-bound GPCRs undergoes transient changes, which 
impact on the interactions with G proteins or other transducers, 
when the receptors also bind allosteric modulators (Canals et al., 
2011). Lipophilic PAMs and NAMs cross the blood–brain barrier 
(BBB) (Ritzén et al., 2005). However, extremely lipophilic PAMs 
and NAMs may exhibit a lesser ability to reach the neural cells 
while their unwanted side effects may become stronger (Goudet 
et al., 2012). Present-day methods used to evaluate allosteric 
interactions, i.e. functional and radio-ligand binding assays, need 
proper probes to reveal the receptor’s response and fully disclose 
the allosteric ligand’s properties (Price et al., 2005; Hellyer et al., 
2018). The affinity and effectiveness of allosteric modulators 
can be quantified via the allosterism’s operational model that 
associates the allosteric ternary complex model (ATCM) with 
Black–Leff ’s operational model of pharmacological agonism 
(Black and Leff, 1983; Ehlert, 1988; Leach et al., 2007; May et al., 
2007). The latter allows to quantify the modulator’s effectiveness 
and its impact on orthosteric agonist affinity vs. efficacy (Black 
and Leff, 1983; Leach et al., 2007; Keov et al., 2011; Gregory et  al., 
2012). Classically, NAMs and PAMs are effective only when the 
natural orthosteric ligands (or probes) are present (Conn et al., 
2009). At times, surrogate orthosteric probes are required for 
functional assays. Probes of different chemical nature may affect 
the cooperativity in opposite directions or leave it unchanged 
(Koole et al., 2010; Valant et al., 2012; Sengmany et al., 2017). 
Remarkably, allosteric modulators evoke saturable effects, i.e. 
no further activity obtains when they reach saturating doses 
(May et al., 2007; Klein, 2013). Specific PAMs and NAMs may 
or sometimes may not elicit the internalization of their receptors, 
and hence may or may not desensitize the cells to corresponding 
orthosteric ligands (Conn et al., 2009). Some PAMs and NAMs 
are of a mixed type acting as both orthosteric agonists and PAMs, 
while others act as both agonists for one receptor subtype and 
as antagonists for another receptor subtype. Preferred PAMs 
or NAMs should not permanently activate or inactivate the 
involved receptors because this could elicit harmful effects 
(Célanire and Campo, 2012). Clearly, receptor subtype-specific 
PAMs and NAMs are indispensable tools for basic and preclinical 
pharmacological research and, when beneficial, might be 
transformed into drugs apt for clinical trials. For example, one 
chemokine receptor-5 NAM, i.e. Maraviroc, successfully reached 
the clinical use to treat late-stage HIV disease (Dorr et al., 2005).

Here, a cautionary note is in order about the interspecies 
translatability of experimental results related to family C 
GPCRs. In fact, brain locations of the same family C GPCRs can 
significant vary between animal species (e.g. mouse vs. rat) and 
between animals and humans. Such species-related divergences 
could explain the inconsistent observations one may make when 
experimenting with more than one animal species. This is a further 
drawback to translating the beneficial effects evoked by orthosteric 
agonists/antagonists or allosteric PAMs/NAMs in animal models 

of diseases into beneficial therapeutic upshots in disease-matching 
human patients. Moreover, one should not overlook another 
caveat concerning the extrapolation to postnatal life of results 
gained by administering PAMs or NAMs to animal embryo-fetal 
cellular models. In fact, during development mGluRs expression 
undergoes divergent changes in distinct types of cells. Finally, on a 
positive note, the combined administration of orthosteric agonists 
or antagonists with NAMs or PAMs can provide additive or 
synergistic neuroprotection, which might have future therapeutic 
applications (Vernon et al., 2005; Bennouar et al., 2013).

GABABRs, APP, Aβs, AND AD

There are two classes of GABARs, i.e. GABAARs and GABABRs. 
While GABAARs are fast-acting ionotropic receptors functioning 
as ligand-gated ion channels, GABABRs are metabotropic family 
C GPCRs, whose structure comprises the subunits R1a, R1b, 
and R2 (Chang and Shoback, 2004). Receptor dimerization 
or oligomerization is obligatory for GABARs as it impacts on 
function. Only GABAB R1a/R2 or R1b/R2 heterodimers do 
reach the cell surface, bind GABA to R1 subunit, and activate 
G-protein-mediated intracellular signals via R2 subunit (White 
et al., 1998; Marshall et al., 1999; Margeta-Mitrovic et al., 2001). 
Of note, GABABR1 and R2 subunits form heterodimers also with 
the CaSR (this topic will be further discussed below). Two “sushi 
domains (SDs)” abut from the N-terminus of GABABR1a VFT, 
which are required for the receptor’s trafficking to the cell surface 
and for its presynaptic inhibitory activity (Gassmann and Bettler, 
2012; Hannan et al., 2012). Adaptor proteins link the GABABR1a 
SD1 domains to axoplasmic kinesin-1 motors. Recently, 
proteomic methods permitted to identify three adaptor proteins 
playing this role, i.e. APP, adherence-junction associated protein 
1 (AJAP-1), and PILRα-associated neural protein (PIANP). 
Thus, axonal trafficking cargo vesicles carry at least three distinct 
types of GABABR1a/adaptor protein/kinesin-1 complexes. It is 
noteworthy that the formation of any of such GABABR1a/APP/
kinesin-1 complexes obstructs the amyloidogenic processing 
(AP) of the involved APP molecules into Aβ42/Aβ42-os, the AD 
main drivers. This could be a novel AD-preventing mechanism 
involving GABABR1a axonal trafficking (Dinamarca et al., 2019).

Neurons express GABABRs on both presynaptic and 
postsynaptic membranes. Neuronal activity controls GABABRs 
presynaptic expression (Guetg et al., 2010; Terunuma et al., 2010; 
Orts-Del’Immagine and Pugh, 2018). Conversely, model animals 
of AD (Chu et al., 1987; Iwakiri et al., 2005) and of various other 
diseases, like chronic epilepsy (Thompson et al., 2006–2007), 
fragile X syndrome (Kang et al., 2017), and Parkinson disease 
(Borgkvist et al., 2015), downgrade GABABRs expression 
and inhibitory function causing neuronal hyperexcitability. 
Human astrocytes express both GABAARs and GABABRs and 
constitutively synthesize and release GABA, therefore being 
GABAergic cells. GABA release from human astrocytes is dose-
dependently increased by glutamate or by NMDAR coagonists 
like D-serine and glycine. Conversely, inhibitors of kainic acid 
receptors and of NMDARs decrease GABA release from human 
astrocytes. Interestingly, the administration of exogenous 
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GABA suppresses the proinflammatory responses of activated 
astrocytes and microglia to noxious stimuli (Lee et al., 2011a; 
Lee et al., 2011b).

The GABABRs classical ligand is γ-aminobutyric acid 
(GABA), which is the chief inhibitory neurotransmitter of the 
mature central nervous system (CNS) of vertebrates. GABA-
releasing (GABAergic) neurons are ubiquitous in the CNS. 
Nearly half of all CNS synapses express some GABABRs and 
thus respond to GABA (Li et al., 2016). The signaling activated 
by the GABA•GABABR complexes inhibits the release of 
neurotransmitters from the targeted postsynaptic neurons 
(Benes and Berretta, 2001; Bettler et al., 2004). But the signaling 
activated by the presynaptic GABA•GABABR complexes of the 
GABAergic neurons blocks their further GABA release thus 
acting as a physiological self-controlling mechanism exerting an 
indirect excitatory effect on postsynaptic neurons. An astrocyte 
→ neurons metabolic cycle upkeeps the neuronal stores of GABA 
(Losi et al., 2014; Mederos et al., 2018). The released GABA 
moieties are taken up by both pre- and postsynaptic neurons 
and by the astrocytes enveloping tripartite synapses. In their 
mitochondria, the astrocytes convert the uptaken GABA into 
glutamine and forward the glutamine to adjoining neurons. 
In presynaptic neurons, two sequentially acting enzymes 
synthesize GABA from glutamine: first, glutaminase, which 
converts glutamine into glutamate; and second, glutamic acid 
decarboxylase (GAD), which transforms glutamate into GABA. 
Next, the vesicular transporter of GABA (VGAT) transfers 
it into cargo/synaptic vesicles, which release GABA into the 
synaptic cleft after the neuron’s membrane depolarization. GABA 
signaling regulates several physiological aspects of CNS activity, 
like neurogenesis, neuronal development, sexual maturation, 
circadian rhythms, motor functions, learning, and memory 
(Petroff, 2002). GABAergic interneurons are the chief inhibitory 
neurons in the CNS. Abundant reports in the literature stress 
how dysfunctions of the activity of GABAergic interneurons 
disrupt the glutamatergic excitatory/GABAergic inhibitory (E/I) 
balance in neural circuits of the cerebral cortex, hippocampus, 
and subcortical structures (e.g. amygdala) causing declining 
cognitive capabilities and worsening memory losses. Therefore, 
it is generally held that E/I imbalance significantly impacts on 
the pathogenesis of AD (Govindpani et al., 2017; Villette and 
Dutar, 2017) and of various other CNS disorders, such as major 
depression (Fee et al., 2017), schizophrenia, autism’s spectrum, 
bipolar disorder (Benes and Berretta, 2001; Lehmann et al., 2012; 
Gao and Penzes, 2015; Xu and Wong, 2018), and anxiety (Babaev 
et al., 2018).

Unfortunately, the results of postmortem studies on AD 
patients did not throw much light onto GABABRs role(s) in 
AD and this for good reasons--one being the wide-ranging 
variability of the patients’ terminal lifetime. Different alterations 
of biological parameters--such as expression of RNA, proteins, 
and enzymes--can be induced by co-morbidities, medications, 
aging, and leading death causes and are all directly linked to 
the duration and severity of the full-blown or symptomatic AD 
phase (Govindpani et al., 2017). Therefore, it is not surprising 
that divergent findings abound concerning GABABRs’ possible 
role(s) in AD. Thus, recent postmortem studies of human brains 

and of tg AD-model animals reported that GABAergic neurons 
and GABABRs were unaffected by AD neuropathology (Li et al., 
2016). Conversely, earlier studies had conveyed the opinion 
that GABABRs signaling undergoes profound changes in AD 
(Takahashi et al., 2010). Significantly lowered GABA levels 
were detected in the temporal cortex of AD patients (Gueli 
and Taibi, 2013) and in cerebrospinal fluid (CSF) samples from 
both AD patients and the cognitively normal elderly (Grouselle 
et al., 1998). Conversely, raised GABA levels turned up in the 
hippocampus and CSF samples of AD patients and were ascribed 
to the impairment of synaptic plasticity (Jo et al., 2014). These 
studies also noted that the reactive astrocytes surrounding 
Aβs senile plaques overproduced GABA via monoamine 
oxidase-B (MAO-B) activity and abnormally released it through 
the bestrophin-1 channels. Under physiological conditions, 
bestrophin-1 channels are mostly localized at the microdomains 
of hippocampal astrocytes nearby glutamatergic synapses and 
mediate glutamate release. A switch from the glutamate-releasing 
normal astrocyte to the reactive astrocyte releasing GABA via 
bestrophin-1 channels is a common phenomenon occurring in 
various pathological conditions coupled with astrogliosis, such as 
traumatic brain injury, neuroinflammation, neurodegeneration, 
and hypoxic and ischemic insults. In AD, bestrophin-1 channels 
are redistributed to the soma and the processes of hippocampal 
reactive GABA-containing astrocytes. Bestrophin-1 channels-
mediated GABA release from reactive astrocytes hinders 
synaptic plasticity and transmission and spatial memory 
by reducing dentate granule cell excitability (Oh and Lee, 
2017). It was claimed that suppressing GABA overproduction 
by monoamine oxidase-B (MAO-B) or GABA overrelease 
through bestrophin 1 channels from the dentate gyrus reactive 
astrocytes fully restored learning and memory in AD-model 
mice (Jo et al., 2014). However, the long-term administration of 
selegiline, an irreversible MAO-B inhibitor, did not improve AD 
neuropathology in a clinical trial (Park et al., 2019). To explain 
this unforeseen upshot, the authors suggested that multiple 
factors, like age, sex, and differences in brain regions could 
impact on the GABA release from astrocytes and neurons and 
should not be ignored when planning therapeutic drug attempts. 
Indeed, different brain regions of Tg2576 (human APP695 plus 
the Swedish double mutation K670N, M671L) AD-model mice 
released dissimilar amounts of GABA in relation to their actual 
age and sex. Cortical GABA levels were higher in older than 6 
months female than male mice; however, at a more advanced age, 
this difference vanished in the parietal cortex but became more 
pronounced in the prefrontal cortex. Moreover, at 12–18 months 
of age, hippocampal levels of GABA were lower in female than in 
male mice. Altogether, these data revealed that with advancing 
age the functional disruption of GABA signaling turns out to 
be more intense in AD-model female mice (Hsiao et al., 1996). 
Conversely, under or up to 9 months of age, hippocampal GABA 
levels were higher in female than in male mice, likely because the 
former enjoyed the protective activity of estrogens (Roy et al., 
2018). By extrapolating these data from animals to humans one 
can infer that a single therapeutic strategy addressing GABABRs 
modulation might not be so easily feasible in AD. In fact, any 
drug inhibiting the GABABRs residing in one brain region might 
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exacerbate the dysregulation of GABAergic signaling in other 
brain areas.

Hence, the role(s) of GABA/GABABRs signaling in the 
pathogenesis of AD has(ve) hitherto remained unclear if not 
confusing (Govindpani et al., 2017). However, the recent studies 
we mention just below performed on wild-type and AD-model 
animals have thrown some more light on the contribution of 
GABAergic remodeling to the pathogenesis of both early and late 
stages of AD.

First, we recall here that the ε4 allele of apolipoprotein E 
(APOE) is the main known genetic risk factor for LOAD/SAD. 
Notably, in the brains of aged APOEε4 mice, an attenuation of 
GABAergic inhibitory inputs on associated excitatory neurons 
drives a specific neuronal hyperactivity phenotype. Hence, an 
APOEε4-driven hippocampal neuronal excitatory hyperactivity 
might be among the causative factors underlying the increased 
risk of AD among APOEε4 carriers (Nuriel et al., 2017). In 
addition, several AD-mouse models exhibit an early and marked 
neuronal hyperactivity in the hippocampus (Busche et al., 2012; 
Busche et al., 2015). Moreover, functional magnetic resonance 
imaging (fMRI) studies have revealed that humans with mild 
cognitive impairment (MCI), as well as presymptomatic carriers 
of EOFAD mutations show enhanced neuronal activity in 
the same brain region, the hippocampus (Quiroz et al., 2010; 
Haberman et al., 2017). Therefore, when the increase in brain 
activity takes place early in the pathogenetic process it may be 
rightly considered a driving factor in AD development.

Second, according to a recent report, Aβs, AD’s main drivers, 
are intensely degraded by endothelin-converting enzyme-2 
(ECE-2) and neprilysin (NEP) in the somatostatinergic and 
parvalbuminergic synapses of GABAergic interneurons residing 
in the neocortex and hippocampus. These observations support 
the view that under physiological conditions Aβs may partake 
in the regulation of interneurons’ inhibitory signaling in 
AD-relevant brain areas (Pacheco-Quinto et al., 2016). However, 
it must be stressed here that a reduction of Aβs catabolism at 
the synapses of these two distinct populations of GABAergic 
neurons is not the unique GPCRs-mediated mechanism favoring 
Aβs accumulation in AD brains.

Third, the exciting results of very recent studies have revealed 
that GABABR1a receptors bind three novel orthosteric agonists 
besides GABA, i.e. soluble (s)APP-α, sAPP-β, and sAPP-η 
proteins. The α-, β-, and η-secretases, respectively, shed them 
from the extracellular domain of APP into the brain environment. 
Next, each of these peptides can bind GABABR1a receptors 
and block the release of neurotransmitters from hippocampal 
presynaptic excitatory axonal terminals thus silencing synaptic 
transmission. Most interesting, a 17-mer peptide of the ExD 
flexible portion of sAPP-α, which binds the extracellular Sushi1 
domain of the GABABR1a could replicate the squelching effect 
on neurotransmission brought about by the whole sAPP-α 
molecule. These results explain, at least in part, the synaptic 
dysfunction affecting some APP-overexpressing AD-model 
animals. Moreover, they suggest that this 17-mer peptide 
could therapeutically counteract the excitatory hyperactivity of 
neuronal synaptic function brought about by Aβs (Rice et al., 
2019; Tang, 2019).

mGLURs AND AD

The seven-transmembrane-spanning mGluRs physiologically 
control synaptic transmission and neuronal excitability in the 
CNS and influence behavioral output processes. These receptors 
are assigned to three groups according to their G-protein coupling 
and signal transduction pathways. Group I encompasses mGluR1 
and mGluR5; group II includes mGluR2 and mGluR3; and group 
III embraces mGluR4, mGluR6, mGluR7, and mGluR8. In 
general, group I receptors are coupled to the phospholipase (PL)
C/InsP3/Ca2+ release cascade, whereas groups II and III receptors 
are linked up to the adenylyl cyclase/cyclic AMP/PKA release 
cascade (Niswender and Conn, 2010). Initial studies performed 
with agonists (or antagonists), which bind the intragroup-shared 
extracellular orthosteric sites, indicated that activation of group 
II or group III mGluRs brought about neuroprotection, whereas 
activation of group I mGluRs elicited either neuroprotection or 
neurotoxicity according to experimental models and conditions 
employed (Nicoletti et al., 1999; Bruno et al., 2001). More recent 
studies using PAMs or NAMs, which are receptor subtype-
specific, brought to light a somewhat different picture (see for 
references: Gregory and Conn, 2015). Indeed, the allosteric 
modulation of mGluRs is a major area of interest for Basic and 
Clinical Pharmacology (Stansley and Conn, 2019). In the CNS, 
mGluRs are involved in the regulation of glutamate uptake, 
cell proliferation, neurotrophic support, and proinflammatory 
responses. Accordingly, the potential therapeutic spectrum of 
mGluRs allosteric modulators embraces AD, and also covers PD, 
stress, anxiety, autism, depression, and schizophrenia (Stansley 
and Conn, 2019).

Group I mGluRs (-1 and -5)
Group I mGluR1 and mGluR5 are expressed at postsynaptic 
membranes, couple to Gαq, and positively modulate neuronal 
excitability through the interaction with scaffolding proteins such 
as Homer or Shank. The consequent activation of phospholipase 
C leads to an increase in [Ca2+]i. Activation of group I mGluRs 
may set off a multiplicity of neurons’ and astrocytes’ signaling 
pathways variously modulating synaptic plasticity and, likely, 
synaptic protein synthesis (D’Antoni et al., 2014). These 
transduction mechanisms form a highly complex network 
including polyphosphoinositide hydrolysis, mitogen-activated 
protein kinase/extracellular signal-regulated kinase (MAPK/
ERK), phospholipase D, phospholipase A2, phosphoinositide 
3-kinase (PI3K), mammalian target of rapamycin (mTOR), and the 
endocannabinoid 2-arachidonoylglicerol synthesis. Activation of 
ERK and mTOR by group I mGluRs is especially linked to de 
novo protein synthesis in neurons, a process that underlies long-
term changes in activity-dependent synaptic plasticity. Group I 
mGluRs also enhance postsynaptic excitability thus exacerbating 
neuronal damage (Nicoletti et al., 1996). It is also noteworthy to 
recall here that in preclinical studies antagonists of mGluR1 and 
mGluR5 exhibited anxiolytic-like properties just as did agonists 
of group II/III mGluRs (Stachowicz et al., 2007).

By interacting with NMDARs, mGluR1 and mGluR5 regulate 
neuronal developmental plasticity. The interaction between group 
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I mGluRs and NMDARs is reciprocal (Alagarsamy et al., 1999). 
Moreover, the expression of these receptors is developmentally 
regulated (Nicoletti et al., 1986; Schoepp and Johnson, 1989; 
Minakami et al., 1995; Romano et al., 1996; Casabona et al., 
1997). Group I mGluRs are cross-linked with NMDARs through 
a chain of anchoring proteins (Tu et al., 1999), and their activation 
amplifies NMDA currents (Aniksztejn et al., 1995; Awad et al., 
2000; Pisani et al., 2001; Skeberdis et al., 2001; Heidinger et al., 
2002; Kotecha and MacDonald, 2003). In addition, activation of 
mGluR1 accelerates NMDARs trafficking (Lan et al., 2001). The 
NMDA component of long-term potentiation (LTP) is abolished 
in mice lacking mGluR5 (Jia et al., 1998). In cultured neurons and 
developing brains the interaction between mGluR5 and NMDAR 
is amplified by EphrinB2 (Calò et al., 2005), a ligand for EphB 
receptor tyrosine kinases playing a role in activity-dependent 
synaptic plasticity in the CNS (Slack et al., 2008).

In the developing brain, mGluR5 contributes to the functional 
maturation of astrocytes since mGluR5 ablation leads to 
serious deficits in arborization of astroglial processes and in 
the expression of glutamate transporters (Morel et al., 2014; 
Verkhratsky and Nedergaard, 2018).

To date, the roles of group I mGluRs in the pathogenesis of 
AD are poorly understood and the object of controversy.

In vitro cultured fetal (E15) Sprague–Dawley rat neurons 
expressed mGluR1 whereas neonatal astrocytes did not. 
These findings limited to neurons the investigation of an 
alleged neuroprotective effect of the mGluR1/R5 agonist, 
3,5-dihydroxyphenylglycine (DHPG), against Aβ neurotoxicity, 
which was instead suppressed by the mGluR1 antagonist JNJ 
16259685 (3,4-dihydro-2H-pyrano(2,3-b)quinolin-7-yl)-(cis-
4-methoxy-cyclohexyl)-methanone). Interestingly, estrogen-α 
receptors (E-αRs) could activate the same neuroprotection 
against Aβ toxicity and cell survival pathways as mGluR1 did. 
Indeed, E-αRs and mGluR1 were colocalized in cultured cortical 
neurons and were interdependent in activating the PI3K/Akt 
pathway that favors cell survival in pure neuronal cultures 
(Spampinato et al., 2012).

As regards mGluR5s, they are expressed by both astrocytes 
and neurons in all the CNS areas, signal through Gq protein 
(Vanzulli and Butt, 2015), and partake in synaptic plasticity, 
assembly of neuronal circuitry, and neuronal viability (Ballester-
Rosado et al., 2010; Purgert et al., 2014).

Data gained from both in vitro and animal models suggest 
that the synaptic dysfunction of mGluR5s might favor the 
development of AD (Kumar et al., 2015). mGluR5s are 
overexpressed by astrocytes as a reactive response induced by 
stimulation with growth factors (i.e. FGF, EGF, and TGF-β1) 
or by exposure to soluble Aβ oligomers (Aβ-os) in vitro (Casley 
et al., 2009; Grolla et al., 2013; Lim et al., 2013). Aβ-os exposure 
also raises the expression of type I InsP3Rs, which are placed 
downstream from mGluR5, and strengthens Ca2+ responses 
mediated through the mGluR5/InsP3R cascade in hippocampal 
astrocytes (Grolla et al., 2013). Notably, astrocytes surrounding 
Aβ senile plaques overexpressed mGluR5, which was associated 
with Ca2+ signaling dysregulation and abnormal ATP release in 
APPswe/PS1 transgenic AD-model mice (Shrivastava et al., 2013). 
Reportedly, Aβ-os exposure caused an excessive clustering 

and widely reduced diffusion of Aβ-os/mGluR5 complexes on 
the plasma membrane of in vitro rat embryo astrocytes. These 
effects were coupled with an augmented Ca2+ influx altogether 
damaging synapses (Renner et al., 2010; Shrivastava et al., 2013). 
Activation of mGluR5s by the allosteric agonist DHPG increased 
ATP release from Aβ-os-exposed astrocytes, which delayed 
mGluR5 diffusion in cultures of astrocytes plus/minus neurons 
in vitro (Renner et al., 2010)—an effect mGluR5’s selective 
antagonist MPEP counteracted thus preventing Aβ-os/mGluR5-
driven synaptotoxicity (Shrivastava et al., 2013).

Interestingly, proinflammatory cytokines like interleukin-1β 
(IL-1β) and tumor necrosis factor-α (TNF-α) downregulated 
the expression of mGluR5 while upregulating that of mGluR3 
in cortical astrocytes isolated from the hSOD1(G93A) rat model 
of amyotrophic lateral sclerosis (entailing like AD an intense 
neuroinflammation) and cultured in vitro. These findings 
suggested the existence of a protective antiexcitotoxic adaptive 
mechanism (Berger et al., 2012). In fact, the mGluR5 selective 
antagonist MPEP hampered the astrocytes’ secretion of two 
proinflammatory cytokines, IL-6 and IL-8 (Shah et al., 2012). 
Therefore, the activation of astrocytes’ mGluR5 advances the 
release of proinflammatory cytokines, which then downregulate 
mGluR5 expression. This indicates that under physiological 
conditions a reciprocal feed-back mechanism controls the 
expression levels of mGluR5 in astrocytes and in microglia too 
(Berger et al., 2012). This mechanism might be offset by the 
Aβ-os-forced overexpression of mGluR5 in AD, thus potentiating 
the release of toxic amounts of proinflammatory cytokines and 
glutamate. Next, the latter increases the production/release 
of p-Tau-os and of NO and the activity of apoptotic caspase-3 
(Talantova et al., 2013; Lee et al., 2014).

Another noteworthy study showed that the activation of 
mGluR5 stimulated the α-secretase-mediated extracellular 
shedding of neurotrophic and neuroprotective sAPP-α (Sokol 
et al., 2011), also an agonist of GABABR1a receptors (Rice et al., 
2019). But mGluR5 forms complexes with the Homer proteins that 
interact with and activate NMDARs (Tu et al., 1999; Awad et al., 
2000; Attucci et al., 2001; Moutin et al, 2012). Aβ1-42-os can bind 
mGluR5s and enhance their clustering together, causing mGluR5 
signaling overactivation, intracellular Ca2+ accumulation, 
impaired calcium homeostasis, and synaptic disruptions (Renner 
et al., 2010; Zhang et al., 2015b). In greater detail, mGluR5s act as 
coreceptors for Aβ-os bound to prion protein (PrPc). Next PrPc 
activates the mGluR5, which elicits the loss of synapses through 
Fyn tyrosine kinase activation and eukaryotic elongation factor 
2 (eEF2) phosphorylation (Um et al., 2013). Fyn phosphorylates 
NR2A and NR2B subunits of NMDA receptors thus altering the 
receptors’ intracellular trafficking that is essential for synaptic 
plasticity. Moreover, interactions between Fyn tyrosine kinase 
and Tau proteins play a role in regulating the synapse function 
and the postsynaptic toxic signaling pathways driven by Aβ-type 
excitotoxicity, causing the loss of dendritic spines. Notably, 
Aβ-os exposure also induces the eEF2 phosphorylation by eEF2 
kinase that is known to associate with mGluR5. Aβ-os-induced 
impairment of LTP is dependent on eEF2 phosphorylation that is 
increased in brains from both tg AD-model mice and AD patient 
autopsies (Nygaard, 2018).

Frontiers in Pharmacology | www.frontiersin.org October 2019 | Volume 10 | Article 1282

https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Brain GPCRs and Alzheimer’s DiseaseDal Prà et al.

10

Altogether these data support the view that mGluR5 
activation by specific PAMs facilitates excitotoxic mechanisms 
causing the death of neurons (Parmentier-Batteur et al., 
2014), whereas mGluR5-specific NAMs act neuroprotectively 
in AD-model animals (Bruno et al., 2017). Administering 
MPEP, a mGluR5 selective antagonist, prevents this synaptic 
loss in tg AD-model mice (Rammes et al., 2011; Hu et al., 
2014; Kumar et al., 2015). In addition, deletion of mGluR5 
prevents memory loss in AD-model mice (Hamilton et al., 
2014). But to gain these benefits there is a price to pay, which 
is the negative impact of mGluR5 selective antagonists on 
activity-dependent synaptic plasticity mechanisms in brain 
regions that are not affected by AD (Bruno et al., 2017). Of 
course, the translatability of these interesting results to human 
AD patients remains a topic worth exploring.

Group II mGluRs (-2 and -3)
Group II mGluR2 and mGluR3 are mostly localized 
presynaptically. Depending on the nature of the ligand, 
mGluR2s signal via Gi/o or Gq11 proteins (González-Maeso 
et al., 2008; Fribourg et al., 2011) and negatively modulate 
neuronal excitability (Conn and Pin, 1997). Thus, activation 
of group II mGluRs is endowed with potential neuroprotective 
properties as it may curtail glutamatergic signaling and mitigate 
neuronal hyperexcitability (Nicoletti et al., 1996). Stimulation 
of group II mGluRs inhibits adenylyl cyclase (AC), activates 
K+ channels, and blocks presynaptic voltage-gated calcium 
channels, thus hindering intracellular Ca²+ fluxes and synaptic 
neurotransmitters release (Benarroch, 2008; Niswender and 
Conn, 2010). Groups II mGluRs also team with the MAPK and 
PI3K pathways to confer neuroprotection (D’Onofrio et al., 
2001). As mentioned also below, neuroprotection is mediated 
by transforming growth factor-β1 (TGF-β1) released through 
astrocytes’ mGluR3 signaling. TGF-β1 binds and activates its 
membrane receptors coupled with serine/threonine kinase 
activity thereby inducing the Smad signaling cascade. It also 
synergistically operates with other neurotrophins such as 
nerve growth factor (NGF), brain-derived neurotrophic factor 
(BDNF), and glial-derived neurotrophic factor (GDNF) (Caraci 
et al., 2011b). In the rodents’ thalamus, the selective activation 
of mGluR2 modulates the inhibition at synapse level of sensory 
neurons functionally linked to information processing, attention, 
and cognition (Copeland et al., 2017). Conversely, the selective 
activation of mGluR2 increases the incidence of neuronal deaths 
in vitro (Corti et al., 2007; Caraci et al., 2011b). Accordingly, 
a mGluR2-specific NAM hindered the death of ischemia-
sensitive neurons in the hippocampal CA1 area, whereas a 
mGluR2-specific PAM promoted the death both of ischemia-
sensitive CA1 neurons and of ischemia-resistant CA3 neurons 
(Motolese et al., 2015). Recent investigations have revealed the 
formation of intragroup and intergroup heterodimers between 
different mGluRs (Doumazane et al., 2011; Rondard et al., 2011; 
Kammermeier, 2012). New allosteric modulators capable of 
differentiating homodimers from heterodimers have disclosed 
the assembly of mGluR2/mGluR4 heterodimers in corticostriatal 
fibers (Yin et al., 2014).

The mGluR3, whose activation inhibits AC activity and hence 
cyclic AMP production, is the most abundant astroglial receptor 
along all the lifetime (Sun et al., 2013). Mounting evidence 
indicates that mGluR3 upkeeps synaptic homeostasis, including 
synaptic plasticity and synaptogenesis (see for references: 
Durand et al., 2013). In addition, activated mGluR3 plays 
major neuroprotective roles in AD and other neuropathologic 
conditions. Once added to pure cultures of newborn rat 
astrocytes, the orthosteric agonists LY379268 or LY354740 
specifically activated mGluR3 (rodent astrocytes do not express 
mGluR2), promoting the production and release of TGF-β and 
of GDNF (see also above and Caraci et al., 2011a). The same 
agonists increased the expression of α-secretase, whose activity is 
essential for APP’s physiological NAP. The upshot is an amplified 
extracellular shedding of the neurotrophic and neuroprotective 
and GABABR1a agonist sAPP-α (Figure 1) (Bruno et al., 1997; 
Bruno et al., 1998; Corti et al., 2007; Battaglia et al., 2009; 
Di Liberto et al., 2010; Battaglia et al., 2015; Rice et al., 2019). 
Moreover, an indirect role for mGluR3 in AD is denoted by 
the progressive decrease with aging in mGluR2 and mGluR3 
expression and, consequently, in their antiamyloidogenic action 
in hippocampal astrocytes from PDAPP-J20 AD-model mice 
(Durand et al., 2014). In subsequent studies, the same authors 
showed that the LY379268-elicited activation of astrocytes’ 
and neurons’ mGluR3 suppressed or mitigated the Aβ-driven 
neurotoxicity and death of both neurons and astrocytes. In both 
cell types, agonist-activated mGluR3 increased the shedding 
of neuroprotective sAPP-α and the expression of BDNF. In 
addition, LY379268-activated mGluR3s induced astroglia- and 
microglia-mediated phagocytosis and removal of Aβs from the 
extracellular environment. Finally, mGluR3 orthosteric agonists 
LY379268 or LY404039 suppressed the nitric oxide (NO)-
induced death of cultured rat astrocytes via the inhibition of AC, 
which reduced intracellular cAMP levels, the activation of Akt, 
and the formation of antiapoptotic p65 and c-Rel complexes of 
the NF-κB family (Durand et al., 2011; Durand et al., 2017).

Conversely, Caraci et al. (2011a) showed that mGluR2 and 
mGluR3 enhanced neurotoxicity in pure cultures of rat brain 
neurons challenged with Aβ1–42 or with its neurotoxic fragment 
Aβ25–35. However, if the neurons were cocultured with the 
astrocytes, the activation of mGluR2 and mGluR3 brought 
about neuroprotective effects through the release of TGF-β1 
from the astrocytes. TGF-β1 is a well-known agent endowed 
with neuroprotective and anti-inflammatory activities (see 
also above) in experimental AD-models (Chen et al., 2015) as 
it also stimulates microglia to scavenge Aβs (Tichauer and von 
Bernhardi, 2012).

Group III mGluRs (-4, -6, -7, and -8)
Group III mGluRs (-4, -6, -7, and -8) are mainly localized 
presynaptically, couple to Gαi/o, and negatively modulate 
neuronal excitability (Conn and Pin, 1997). They are likely to 
act as autoreceptors on glutamatergic synaptic terminals and as 
heteroceptors on GABAergic and other neurotransmitter terminals 
(Cartmell and Schoepp, 2000; Ferraguti and Shigemoto, 2006). 
Group III mGluRs stimulation results in AC inhibition, K+ channels 
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activation, and block of presynaptic voltage-gated calcium channels, 
thus decreasing Ca²+ flow into cells and neurotransmitters release 
from synapses (Benarroch, 2008; Niswender et al., 2008). Therefore, 
their activation elicits potential neuroprotective effects that dampen 
glutamatergic signaling and inhibit neurotransmitters release 
thereby mitigating neuronal excitability (Nicoletti et al., 1996). As a 
particularity, activated mGluR7 stimulates protein kinase C (PKC) 
or phospholipase C resulting in the inhibition of neuronal calcium 
channels (Perroy et al., 2000; Pelkey et al., 2007). Brain expression of 
mGluR4, -7, and -8 is proper of cortical and hippocampal neurons 
and of synapses located in the basal nuclei (striatum, pallidum), 
subthalamic nucleus, and substantia nigra (both pars compacta 
and pars reticularis) (Bruno et al., 1996; Faden et al., 1997; Hovelsø 
et al., 2012). Instead, mGluR6 expression is exclusive of the retina 
(Nakajima et al., 1993). The main subcellular location of mGluR7 is 
at the central area of presynaptic terminals just where the membrane 
coalesces with synaptic vesicles: this suggests its involvement in 
the modulation of neurotransmitter release. Conversely, mGluR4 
and mGluR8 are placed at the periphery of presynaptic terminals 
(Shigemoto et al., 1997; Schoepp, 2001; Palucha and Pilc, 2007). 
Group III mGluRs also cooperate with MAPK and PI3K signaling 
pathways to impart neuroprotection (Iacovelli et al., 2002). Recently, 
these receptors have become the focus of therapeutic attempts 
because they (i) can modulate defective neurotransmission 
yielding symptomatic improvements through the neuroprotective 
hindering of multiple neurodegenerative mechanisms and (ii) 
have more favorable safety and tolerability profiles (Hovelsø et al., 
2012). Activation of group III mGluRs by glutamate and/or other 
agonists is neuroprotective as it inhibits glutamate release from 
neurons’ presynaptic terminals and from microglia, thus mitigating 
excitotoxicity; concurrently, astrocytes intensify the uptake of 
glutamate and microglia increase neurotrophic factors synthesis 
(see Williams and Dexter, 2014 for an in-depth review on this topic).

Rather few studies exist about the effects on a 
neurodegenerative disease like AD exerted by group III 
mGluRs activation via broad spectrum agonists and PAMs 
or inactivation via NAMs. Copani et al. (1995) reported 
that broad-spectrum group III mGluRs agonists L-serine-O-
phosphate (L-SOP) and l-2-amino-4-phosphono-butanoate 
(L-AP4) could lessen the apoptotic death rate of neurons 
exposed to Aβs. The authors suggested that such agonists 
would exert neuroprotective effects in AD. Similarly, group 
III agonist RS-PPG, which activates preferentially mGluR8 
and likely also mGluR4, exerted neuroprotective actions 
on neurons exposed to harmful hypoxic or hypoglycemic 
conditions (Bruno et al., 2000; Sabelhaus et al., 2000). 
Notably, acute hypoxia can induce neurons to overproduce 
lethal amounts of Aβs via a mechanism. involving another 
family C GPCR, the CaSR (Kim et al., 2014; Bai et al., 2015). 
Besides, PHCCC, a specific mGluR4 PAM, and also a partial 
antagonist of group I mGluRs, protected cultured cortical 
mouse neurons against the Aβs-elicited cytotoxicity and 
NMDAR excitotoxicity (Maj et al., 2003).

But what about the astrocytes? Under basal conditions, 
rodent (rat and mouse) astrocytes in primary cultures express 
mGluR4, but neither mGluR7 nor mGluR8 (Phillips et al., 1998; 
Janssens and Lesage, 2001). However, mGluR8 is expressed 

by reactive astrocytes adjacent to chronic inflammatory 
lesions (Geurts et al., 2005). Besong et al. (2002) provided 
evidence that broad spectrum orthosteric agonists activating 
group III mGluRs, like L-AP4, 4-phosphonophenylglycine 
(4-PPG), or L-SOP hindered the expression and secretion 
of the proinflammatory chemokine RANTES in astrocyte 
cultures. These beneficial effects of the mGluR4 broad 
spectrum agonists were counteracted by pretreating the 
astrocytes cultures with the selective group III mGluRs NAM 
(R,S)-α-methyl-serine-O-phosphate or with pertussis toxin. 
Altogether, these findings suggest that such agonists might 
mitigate neuroinflammation in conditions like AD, multiple 
sclerosis, and experimental allergic encephalomyelitis.

Extracellular glutamate homeostasis, which is essential 
for physiological glutamatergic neurotransmission and 
excitotoxicity prevention, depends on the activity of astrocytes’ 
transporters like GLT-1 and GLAST (Anderson and Swanson, 
2000). Neuroinflammatory conditions associated with a 
neurodegenerative disease like AD or experimental treatments 
(e.g. with LPS, MPTP, etc.) reduce astrocytes’ GLT-1- and 
GLAST-mediated glutamate uptake due to a fall in endogenous 
antioxidant glutathione (GSH) activity. Broad spectrum group 
III mGluRs agonists rescue GSH normal levels and restore 
astrocytes’ GLT-1- and GLAST-mediated glutamate uptake 
alleviating neuronal excitotoxicity (Yao et al., 2005; Zhou et al., 
2006; Foran and Trotti, 2009). Thus, activation of astrocytes’ 
group III mGluR3 and mGluR5 and also of group II mGluRs by 
broad spectrum agonists increases GLT-1- and GLAST protein 
expression and glutamate uptake activity as the signaling of 
both groups likely involves Gi/o, MAPKs, and PI3K pathways 
(Aronica et al., 2003; Beller et al., 2011; Williams and Dexter, 
2014). The activation of group III mGluRs by wide spectrum 
agonists also curtails the release of proinflammatory cytokines 
from activated microglia (Combs et al., 2000). Wide spectrum 
group III mGluRs agonists also hinder proinflammatory 
cytokines release, RANTES included, from the astrocytes 
exposed to neurotoxic agents (Mennicken et al., 1999; Besong 
et al., 2002), thereby helping mitigate neuroinflammation and 
reduce neuronal demise. Therefore, one might surmise that 
the effects of these agonists on astrocytes and microglia would 
likely impact on the course of AD and perhaps also of other 
neurodegenerative diseases.

CALCIUM SeNSING ReCePTOR

The CaSR is a (poly)cationic receptor, as its evolutionary history 
shows (Riccardi and Kemp, 2012). This is why CaSR’s preferred 
yet not unique orthosteric agonist is Ca2+. A CR region, necessary 
for receptor activation (Huang et al., 2011; Hendy et al., 2013) 
connects CaSR’s huge (~612 amino acids) ECD, the bilobed (LB1 
and LB2) VFT to the 7TM domain whose seven transmembrane 
α-helices (TM1–TM7) are joined by three extracellular and three 
intracellular loops. Two domains of the CASR’s intracellular 
C-terminal tail are necessary for CaSR expression at the cell 
surface and its composite signaling functions via G-proteins 
(see below). The VFT contains the binding pockets for the 
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orthosteric (type I) agonists (Hendy et al., 2013), which besides 
extracellular Ca2+ (Hofer and Brown, 2003), include various 
divalent and trivalent cations, polyamines, aminoglycoside 
antibiotics, and cationic polypeptides (Silve et al., 2005; Saidak 
et al., 2009; Magno et al., 2011; Zhang et al., 2015a). The CaSRs of 
human cortical astrocytes also specifically bind Aβs, likely at the 
VFTs (Dal Prà et al., 2014a; Dal Prà et al., 2014b, Dal Prà et al., 
2015b). Moreover, X-ray crystallography studies (Geng et  al., 
2016) have revealed that in the resting state the 3D structure of 
CaSR’s ECD exhibits an open conformation kept up by PO4

3− 
anions. Independently of the presence or absence of Ca2+ ions, 
CaSR activation occurs when an L-α-amino acid closes the VFT 
groove, triggering the formation of a new homodimer interface 
between the membrane-proximal LB2 and the CR domains. Ca2+ 
ions stabilize the active state to fully activate the receptor. Indeed, 
CaSR’s ECD is endowed with four Ca2+-binding sites, of which 
the Ca2+ ion at site #4 stabilizes, upon orthosteric agonist binding, 
the CaSR homodimer’s active conformation (Geng et al., 2016). 
Importantly, orthosteric agonists also induce the dissociation 
of inhibitory PO4

3− anions from the arginine residues acting as 
their relatively weak binding sites. Thus, the CaSR-inactivating 
action of bound PO4

3− anions is overturned (Quinn et al., 1997; 
Cheng et al., 2004; Geng et al., 2016). As the other GPCRs do, 
CaSR swings between conformation-varying active and inactive 
states (Rosenbaum et al., 2011). The changes in conformation 
due to activation include a rearrangement of the 7TM and ICD 
domains. The CaSR’s 7TM helical domains can modulate signal 
transduction. The 7TM’s intracellular loops 2 and 3 are crucially 
involved in the activation of downstream effectors (Goolam 
et  al., 2014). Besides, various CaSR’s 7TM sites bind allosteric 
(type II) ligands. The latter include both the aromatic L-α-amino 
acids and the highly selective allosteric agonists or PAMs, short-
termed calcimimetics, and allosteric antagonists or NAMs, short-
termed calcilytics (Nemeth, 2002). As will be discussed later, 
these pharmacological agents offer exciting perspectives in the 
field of clinical therapeutics. In response to orthosteric ligand 
binding, the CaSR’s ICD tails interact with Gs or Gq/11 or G12/13, 
or Gi/o, proteins (Chang et al., 2001; Hofer and Brown, 2003; 
Conigrave and Ward, 2013), and with β-arrestin 1/2 (Thomsen 
et al., 2012). Such interactions turn on several signaling pathways 
(Saidak et al., 2009; Magno et al., 2011), which underlie the 
receptor’s complex actions and comprise: (i) second messenger-
producing enzymes (e.g., AC); (ii) phospholipases A2, C, and 
D; (iii) protein kinases (e.g. PKCs, MAPKs, AKT); (iv) Ca2+ 
influx via TRPC6-encoded receptor-operated channels; and 
(v) transcription factors (reviewed in Zhang et al., 2015a). 
Moreover, the intracellular adaptor-related protein complex 
(AP2) binds the CaSR’s ICD promoting the receptor’s clathrin-
mediated endocytosis (Nesbit et al., 2013). Finally, CaSR’s ICD 
ubiquitylation and phosphorylation modulate the receptor’s 
recycling, degradation, and desensitization (Zhuang et al., 2012; 
Breitwieser 2013).

In general, the CaSR preserves systemic Ca2+ homeostasis 
by promptly sensing any changes in the extracellular calcium 
concentration [Ca2+]e and, accordingly, by modulating the 
amounts of parathyroid hormone (PTH) released from 
parathyroid glands as well as the reabsorption of Ca2+ from 

kidneys and its deposition in bones (Hofer and Brown, 
2003). Dysfunctions of the CaSR severely alter systemic Ca2+ 
homeostasis (Brown, 2007; Hendy et al., 2009). Gain-of-function 
CaSR mutations result in autosomal dominant hypocalcemia, 
whereas loss-of-function CaSR mutations cause severe neonatal 
primary hyperparathyroidism (Hendy et al., 2009; Ward et al., 
2012; Hannan et al., 2018).

But, what about the CaSR in the brain? All types of brain 
neural and cerebrovascular cells express the CaSR, with 
particular intensely in the hippocampus, an AD-relevant area 
(Chattopadhyay, 2000; Yano et al., 2004; Noh et al., 2015). Dal 
Prà et al. (2005) showed that untransformed astrocytes isolated 
from the adult human temporal cortex and cultured in vitro 
express functional CaSRs, less intensely when proliferating but 
more strongly when mitotically quiescent. Notably, changes in 
the growth medium [Ca2+]e did not impact on CaSR expression 
levels by adult human astrocytes. But preservation of systemic 
Ca2+ homeostasis is not the CaSR’s main task in the brain. 
In fact, fluctuations in [Ca2+]e physiologically modulate, via 
corresponding adaptations of CaSR signaling, a variety of neural 
cells activities like CaSR’s L-amino acid sensing (Conigrave 
and Hampson, 2006), K+ fluxes (Chattopadhyay et al., 1999), 
proliferation, differentiation, migration of both neurons and 
oligodendrocytes during growth, and synaptic plasticity and 
neurotransmission during postnatal life (Bandyopadhyay et al., 
2010; Riccardi et al., 2013; Ruat and Traiffort, 2013; Kim et al., 
2014; Noh et al., 2015; Tharmalingam et al., 2016).

Remarkably, CNS diseases, such as AD and ischemia/
hypoxia/stroke, change the CaSR’s expression levels and hence 
alter the cellular processes CaSR signaling regulates (Armato 
et al., 2013; Dal Prà et al., 2014a; Dal Prà et al., 2014b; Bai et al., 
2015; Dal Prà et al., 2015b). The first hint that the CaSR might 
play a role in AD pathogenesis stemmed from the observation 
that Aβs-elicited peaks of cytosolic [Ca2+]i had a killing effect 
on hippocampal neurons (Brorson et al., 1995). A second clue 
was the opening of Ca2+-permeable nonselective cation channels 
(NSCCs) by fibrillar Aβ1–40 or Aβ25–35 in hippocampal neurons 
of wild type (WT) CaSR+/+ rats; notably, this effect could not be 
replicated in CaSR−/− rats. The authors speculated that Aβs might 
bind the CaSR because they have, just like polyamines, orderly 
spaced arrays of positive charges (Ye et al., 1997).

In this regard, the specific formation of plasma membrane 
Aβs•CaSR complexes and their subsequent endocytosis in 
cultured cortical untransformed adult human astrocytes could 
be proven by using the in situ proximity ligation assay (isPLA), 
which reveals the specific formation of stable complexes 
between two molecules placed within a 30 nm range (Dal Prà 
et al., 2014a; Dal Prà et al., 2014b; Dal Prà et al., 2015b). The 
latter results implied that since all types of human neural and 
cerebrovascular cells express the CaSR, they are vulnerable to 
the neurotoxic effects driven by pathological Aβ•CaSR signaling 
(Chiarini et al., 2016). However, it remains to be ascertained 
whether at the level of CaSR•GABABR1 heterodimers of human 
cortical astrocytes and neurons Aβs•GABABR1 complexes 
also form and what their functional roles would be under 
both physiological and pathological conditions: topics worth 
investigating further.
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Moreover, a genetic analysis study on cohorts of 435 
healthy controls and 692 SAD patients showed that an intron 
4 polymorphic dinucleotide repeat marker of the CASR gene 
associated with an AD susceptibility, while three nonsynonymous 
SNPs of exon 7 were linked with an AD propensity only in non-
APOEε4 allele carriers. Hence, variations in the CASR gene 
sequence may impact on SAD susceptibility especially in subjects 
having no APOEε4 allele (Conley et al., 2009).

The CASR gene P1 and P2 promoters regulate its transcription 
by binding several transcription factors, including SP1, SP3, 
STAT1, STAT3, CREB, and NFκB, which concurrently control 
the expression of other AD-related genes (see for details and 
references: Chiarini et al., 2016). Therefore, the transcription 
factors regulation of CaSR expression is tightly linked to the 
pathophysiology of AD.

It is well known that Aβ42-os simultaneously bind to several 
other CNS cells surface receptors besides the CaSR (see for 
details and references: Chiarini et al., 2016). Therefore, Aβ42-
os•CaSR signaling triggers a throng of cellular responses sosme 
authors include in the so called “calcium dyshomeostasis”, such as 
toxic ROS overrelease from mitochondria, and intracellular Ca2+ 
surges via NMDARs’ activation driving further mitochondrial 
ROS releases (Kam et al., 2014; Jarosz-Griffiths et al., 2016).

However, it must be stressed here that the pathological 
Aβ42-os•CaSR signaling performs much more AD-specific 
upstream feats than those just mentioned. In fact, it drives 
the overproduction and overrelease of Aβ42-os and p-Tau-os, 
the two main AD culprits, from human cortical neurons 
and astrocytes. Moreover, it also induces the production and 
release of surpluses of other neurotoxic agents, such as NO and 
VEGF-A, and likely others more, from the adult human cortical 
astrocytes. Additionally, the pathological Aβ42-os•CaSR signaling 
profoundly suppresses sAPP-α extracellular shedding from 
human astrocytes and neurons (Chiarini et al., 2016; Chiarini 
et al., 2017a; Chiarini et al., 2017b). These Aβ-os-elicited noxious 
effects associate with concurrent upsurges in the expression of 
APP, BACE1, and CaSR proteins. Remarkably, the crucial upshot 
of all the mentioned effects of Aβ42-os•CaSR signaling is the death 
of human cortical neurons both in vitro (Armato et al., 2013) and 
in the in vivo brain. In the latter, the progressive disconnections 
of neural circuits—a cause of advancing cognitive decline—and 
a chronic diffuse reactive neuroinflammation eventually lead to 
full blown or symptomatic AD (Crimins et al., 2013; Kayed and 
Lasagna-Reeves, 2013; Medeiros et al., 2013).

Moreover, a study using 3xTg AD-model mice showed that the 
amount of brain CaSR immunoreactivity progressively increased 
with age, particularly in areas where Aβ42 fibrils accumulate 
most, such as the hippocampi. Thus, local fibrillar Aβ42 buildup 
and CaSR expression raise in parallel in both Aβ-exposed 
human cortical neurons and astrocytes cultured in vitro and 
in the hippocampi of 3xTg AD-model mice (Armato et  al., 
2013; Chiarini et al., 2016; Gardenal et al., 2017). This soaring 
expression of neural cells’ CaSRs associates with a declining 
expression of inhibitory GABABR1as (Chang et al., 2007; Kim 
et al., 2014).

Whereas GABAB and taste receptors obligatorily function as 
heterodimers (Jones et al., 1998; Nelson et al. 2002), mGluRs 

and CaSR function both as disulfide-linked homodimers (Zhang 
et al., 2001; Pidasheva et al., 2006) and as CaSR/GABABRs, 
CaSR/mGlu1αR and CaSR/mGlu5R heterodimers (Gama et al., 
2001). Ectopic overexpression and coimmunoprecipitation 
studies revealed that CaSR/GABABR1a heterodimers do affect 
CaSR protein expression in opposing ways. The total and cell 
surface expression and signaling of the CaSRs were suppressed 
by coexpressing GABABR1as, being instead increased (i) by 
co-expressing GABAB2Rs; (ii) by knocking out GABABR1a 
in mouse brains; and (iii) by deleting GABABR1a in cultured 
hippocampal neurons. The GABABRs and CaSRs form 
heterodimers as soon as they are synthesized, since these protein 
complexes are already detectable around the cells’ nuclei and in 
the endoplasmic reticulum. In such early complexes GABABRs 
bind an immature form of the CaSR. Clearly, GABABR1a and 
GABABR2 subunits compete for the CASRs. The CaSR/GABABR 
heterodimers appear to have altered pharmacological properties 
with respect to the prevailing CaSR homodimers. Results gained 
using (i) the GABABRs agonists baclofen and GABA, (ii) the 
GABABR1a antagonist CGP-3548, and (iii) GABABR1a expression 
knockdown in cultured mouse growth plate chondrocytes 
indicated that GABABR1a can elicit both CaSR-independent and 
CaSR-mediated actions. However, divergent results gained from 
different experimental models suggested that an endogenous 
expression or a targeted overexpression of one or more of these 
receptors, coexisting differences in ligands and in their relative 
quantities and in downstream intracellular signaling pathways 
could elicit unlike upshots under various physiological and/or 
pathological conditions (Gama et al., 2001; Chang et al., 2007). 
During the initial phases of disease progression in AD-model 
animals, the decline of GABABR1s’ availability, which concurs 
with CaSR’s overexpression, induced a neuronal hyperactivity 
in hippocampal and cerebrocortical circuits, whose upshot 
was functional impairment (Busche and Konnerth 2015). The 
mechanism(s) underlying this loss of neuronal working capability 
remain(s) unclear: an overconsumption of O2 on the part of the 
hyperactive neurons might be a contributory factor. Nothing is 
so far known about the existence and pathophysiological roles of 
CaSR heterodimers in cortical human untransformed astrocytes 
and neurons. Therefore, to-date the impacts (if any) the CaSR/
GABABRs and CaSR/mGluRs heterodimers might exert on 
human AD’s course and on anti-AD therapeutic approaches 
remain to be assessed.

Notably, in cortical adult human astrocytes the pathological 
Aβ•CaSR signaling heavily affects the APP holoprotein 
metabolism significantly deflecting it from its physiological NAP 
(Figure 3). APP’s NAP typically obstructs the de novo production 
of Aβ42s/Aβ42-os since the α-secretases (mainly ADAM 10) cut the 
APP molecule just within the Aβ42 amino acid sequence (Kuhn 
et al., 2010) (Figures 1 and 3). Notably, APP’s NAP prevails over 
APP’s AP in untreated (control) cortical adult human astrocytes, 
which directly shed all the sAPP-α they produce into the 
environment while secreting only tiny amounts of monomeric 
Aβ42 (Chiarini et al., 2017b). Hence, it has been posited that by 
constitutively releasing substantial amounts of sAPP-α, which is 
an agonist of GABABR1as (Rice et al., 2019), human astrocytes 
could continually abate any noxious neuronal hyperexcitability. 
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Under the same basal conditions, CaSR signaling is only 
modulated by extracellular cations levels, particularly by the 
[Ca2+]e. On the other hand, a dramatic change in this mechanism 
occurs when increased quantities of exogenous Aβs bind the 
human astrocytes’ (and neurons’) CaSRs and activate their 
pathological signaling that strongly promotes APP’s AP over 
APP’s NAP (Figure 3). This leads to an excess production, 
accumulation, and secretion of neurotoxic Aβ42/Aβ42-os from the 
cortical astrocytes and from the neurons in which an alike APP’s 
AP mechanism operates (Armato et al., 2013). Concurrently, the 
astrocytes’ and neurons’ intense extracellular shedding of sAPP-α 
is curtailed by ~70%, while sAPP-α abnormally accumulates 
within the cells (Chiarini et al., 2017a). On the basis of such results 
the authors posited that an ongoing Aβ•CaSR signaling that 
would spread in vicious cycles from teams to teams of “master” 
astrocytes’ and “client” neurons could cause a substantial loss of 
the neurotrophic and neuroprotective effects otherwise brought 
about by extracellularly shed sAPP-α, including its agonistic 
action on GABABR1as, thereby favoring a harmful neuronal 
hyperexcitability. In addition, the Aβ42/Aβ42-os-exposed human 
astrocytes and neurons could simultaneously release increasing 
amounts of neurotoxic Aβ42-os (Armato et al., 2013), p-Tau-os 

(within exosomes) (Chiarini et al., 2017a), NO, VEGF-A (Dal 
Prà et al., 2005; Chiarini et al., 2010; Dal Prà et al., 2014a; Dal 
Prà et al., 2014b; Chiarini et al., 2016). and likely other noxious 
agents. Therefore, it would not be surprising that under such dire 
circumstances cortical human neurons keep losing synapses and 
consequently die. Interestingly, in line with the just mentioned 
findings, CSF levels of sAPP-α significantly decrease in LOAD/
SAD patients (Lewczuk et al., 2010, which indirectly confirms 
the substantial fall of its extracellular shedding from human 
astrocytes (Chiarini et al., 2017b).

CaSR NAMs as Potential Anti-AD 
Therapeutics
As mentioned above, several PAMs and NAMs of the CaSR are 
available. L-α-amino acids with an aromatic ring and positively 
charged amino groups (NH3+) are naturally occurring CaSR 
PAMs (Lee et al., 2007). Synthetic phenylalkylamine CaSR 
PAMs (“calcimimetics”; e.g. AMG 416, Cinacalcet, and NPS 
R-568) having two-to-four aromatic rings and NH3+ groups 
have been synthesized. PAMs augment the CaSR’s sensitivity 
to activation by [Ca2+]e and hence lower the EC50 for [Ca2+]e.  

FIGURe 3 | The pathological effects of Aβ•CaSR signaling on the metabolic processing of amyloid precursor protein (APP) and Tau proteins in untransformed 
cortical human astrocytes and neurons and their complete suppression by highly selective calcium-sensing receptor (CaSR) negative allosteric modulators (NAMs) 
(or calcilytics). Under physiological conditions, the NAP of APP largely prevails in cortical human astrocytes and neurons. Conversely, the pathological Aβ•CaSR 
signaling hugely enhances the APP holoprotein’s AP at the expense of NAP in both human cell types. This leads to a surplus synthesis, intracellular accumulation, 
and extracellular release of Aβ42-os. The latter spread extracellularly to bind and activate the signaling of the CaSRs of adjoining teams of astrocytes and neurons 
(Chiarini et al., 2017a). Such self-sustaining vicious cycles amplify and propagate the pathological Aβ•CaSR signaling and its neurotoxic effects to wider and wider 
cortical areas. The Aβ•CaSR signaling also increases the activity of the glycogen synthase kinase-3β (GSK-3β), which strongly phosphorylates Tau proteins at amino 
acid sites typical of Alzheimer’s disease (AD). The thus hyperphosphorylated Tau proteins also form oligomers (p-Tau-os) that are next released extracellularly within 
exosomes (not shown), thereby starting the tauopathy typical of AD. Other noxious effects of Aβ•CaSR signaling, such as increases in the synthesis and release 
of nitric oxide (NO) and vascular endothelial growth factor-A (VEGF-A), and other proinflammatory agents are not shown here for the sake of clarity. The crucial 
upshot of the harming effects of pathological Aβ•CaSR signaling is the progressive death of the cortical human neurons crucially involved in memories and cognition 
processing. In a most striking fashion, highly selective CaSR NAMs (calcilytics) suppress all the just mentioned neurotoxic effects brought about by pathological 
Aβ•CaSR signaling thus restoring the APP’s NAP, Tau, NO, and VEGF-A to their physiological settings and consequently preserving the viability and function of 
human neurons notwithstanding the presence of Aβ peptides. Hence, NAMs could stop AD progression, safeguard the survival of the cortical human neurons, and 
preserve the memories, cognitive and coping capabilities of the patients. — blocking effects; +++, stimulating effects.

Frontiers in Pharmacology | www.frontiersin.org October 2019 | Volume 10 | Article 1282

https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Brain GPCRs and Alzheimer’s DiseaseDal Prà et al.

15

Notably, three CaSR PAMs, i.e. Evocalcet, Etelcalcitide, and 
Cinacalcet, have successfully reached the clinical use to mitigate 
primary and secondary hyperparathyroidism and tumor-elicited 
hypercalcemias (Nemeth and Goodman, 2016).

CaSR NAMs are small amino-alcohol molecules like NPS 
2143 (Nemeth et al., 2001), Calhex 231 (Kessler et al., 2006), 
NPSP795 (Gafni et al., 2015), or quinazolinones like ATF936 
and AXT914 (Wildler et al., 2010). CaSR NAMs right-shift the 
[Ca2+]e response curve decreasing the CaSR sensitivity to [Ca2+]
e and thus increasing the EC50 for [Ca2+]e (Ferry et al., 1997; 
Huang and Breitwieser, 2007). As previously anticipated, both 
PAMs and NAMs bind the 7TM domain of the CaSR. The CaSR 
binding pockets of NAMs and PAMs partially overlap but are not 
identical. NAMs bind between the TM3 and TM5 loops, whereas 
both PAMs and NAMs attach between the TM6 and TM7 loops 
(Petrel et al., 2003; Petrel et al., 2004; Miedlich et al., 2004). It 
has been shown that point mutated residues of the 7TM helices 
(i.e. Phe668, Phe684, Trp818, Phe821, Glu837, and Ile841) lessen the 
antagonism of CaSR NAM NPS 2143 (Petrel et al., 2003; Petrel 
et al., 2004; Miedlich et al., 2004). CaSR’s allosteric agonism 
and antagonism are modulated via the involvement of distinct 
amino acids and mechanisms (see for further details Leach et al., 
2016; Keller et al., 2018). The identification of synthetic allosteric 
modulators of the CaSR has prompted searches for their 
therapeutic applications in diseases in which the CaSR signaling 
is dysfunctional (Hannan et al., 2018). However, hitherto the 
therapeutic potentials of both PAMs and NAMs of the CaSR 
have been only modestly exploited (Nemeth, 2013; Saidak et al., 
2009; Widler, 2011; Ward et al., 2012). Like other GPCRs, CaSRs 
exhibit the “ligand-biased signaling” feature, i.e. in a certain type 
of cell a signaling pathway may be steadily picked up over the 
others according to the specific ligand involved (Leach et al., 
2015). Interestingly, NAMs and PAMs too can induce this biased 
signaling, which in future might allow to therapeutically target a 
specific cell type over others (see for details: Davey et al., 2012; 
Leach et al., 2015; Hannan et al., 2018).

Let’s zero in on an important NAMs’ feature: they enhance 
parathyroid hormone (PTH) secretion from the parathyroid 
glands and increase blood calcium levels (calcemia) (Nemeth, 
2004; Nemeth, 2013). Several phase II clinical trials were 
undertaken to assess CaSR NAMs potential therapeutic efficacy 
in women with postmenopausal osteoporosis based on the 
assumption that the released PTH would stimulate osteogenic 
processes. However, these trials failed because NAMs induced a 
several hour-lasting oversecretion of PTH that stimulated both 
osteogenic and osteolytic processes in the osteoporotic bones. 
These failures prompted to search for new CaSR NAMs inducing 
a lesser and shorter-lasting PTH release (Nemeth, 2013; Riccardi 
and Kemp, 2012; Davey et al., 2012; Ward et al., 2012). The same 
failures also demoted CaSR NAMs from the drugs potentially 
beneficial in humans even because of the modest hypercalcemia 
(hyperparathyroidism) they induced. However, attempts 
were performed to treat hypoparathyroidism and autosomal 
dominant hypocalcemia (ADH) driven by gain-of-function 
CaSR mutations with CaSR NAMs (Nemeth, 2013; White et al., 
2009; Letz et al., 2010; Park et al., 2013; Nemeth and Goodman, 
2016). The use of CaSR NAMs was also considered in cases of 

breast and prostate carcinomas to prevent bone metastases, 
which are established through a CaSR-mediated signaling (Liao 
et al., 2006; Mihai et al., 2006). Other potential therapeutic uses 
of CaSR NAMs have included asthma attacks (Yarova et al., 
2015); pulmonary artery idiopathic hypertension (Yamamura 
et al., 2012; Yamamura et al., 2015); stroke (Kim et al., 2014); and, 
last but not least, LOAD/SAD and EOFAD (Armato et al., 2013; 
Chiarini et al., 2016; Chiarini et al., 2017a; Chiarini et al., 2017b; 
Chiarini et al., 2017c).

The use of CaSR NAMs as therapeutics in SAD/LOAD and 
EOFAD is supported by the results gained from preclinical AD 
models “in Petri dishes” made up by untransformed human cortical 
astrocytes and/or neurons. In fact, a 30-min administration of a 
CaSR NAM, be it NPS 2143 or NPS 89696, completely suppressed 
all the above-mentioned neurotoxic responses evoked by the 
pathological Aβ•CaSR signaling (Chiarini et al., 2010; Armato 
et  al., 2013; Dal Prà et al., 2014b; Dal Prà et al., 2015a; Chiarini 
et al., 2016; Chiarini et al., 2017c). Therefore, the authors posited 
that in vivo administered CaSR NAMs would (A) preserve the 
shedding of neurotrophic and neuroprotective and GABABR1a 
agonist sAPP-α from the plasma membranes of astrocytes and 
likely neurons, thereby (i) obstructing the amyloidogenesis from 
APP and hence the cerebral accumulation of neurotoxic soluble 
Aβ42-os and fibrillar Aβ42 polymers, and (ii) abating the noxious 
neuronal hyperexcitability via sAPP-α•GABABR1a signaling; 
(B) suppress the surplus synthesis and exosomal intrabrain 
dissemination of neurotoxic p-Tau-os and the consequent 
hypertoxic effects elicited by combined actions of the Aβ42-
os/p-Tau-os duet (Ittner and Götz, 2011; Chiarini et al., 2017a); 
(C) reduce the increased synthesis and secretion of neurotoxic 
amounts of NO, VEGF-A, and likely other neurotoxic agents; (D) 
suppress any other harmful effects elicited by Aβ•CaSR signaling in 
oligodendrocytes, microglia, cerebrovascular cells of any kind; and 
(E) safeguard the blood–brain barrier (BBB) functional integrity. 
The above in vitro results also indicate that NAM efficacy persists 
notwithstanding a continued presence of soluble Aβ-os, fibrillar 
Aβs, and p-Tau-os (Chiarini et al., 2017a; Chiarini et al., 2017b; 
Chiarini et al., 2017c). Therefore, it is likely that CaSR NAMS could 
safeguard in vivo, as they do in vitro (Armato et al., 2013), the 
viability and functions of the cortical human neurons preserving 
the integrity of critical cognition-essential upper cerebral cortical 
regions (Choi et al., 2013; Lee et al., 2013; Barateiro et al., 2016). 
In brief, CaSR NAMs would uphold the patients’ ability to record 
and recover memories and to deal with their daily needs. Most 
important, the relatively cheap to synthesize CaSR NAMs appears 
to be the so far unique class of anti-AD therapeutics capable of 
concurrently targeting the multiple noxious effects triggered by 
pathological Aβs•CaSR signaling in human neurons, astrocytes, 
and the other brain cell types (Chiarini et al., 2010; Dal Prà et al., 
2011; Armato et al., 2013; Dal Prà et al., 2014b; Dal Prà et al., 
2015a; Chiarini et al., 2016).

Ischemic neuronal injury is known to locally generate Aβs 
surpluses (Ishimaru et al., 1996). More recent studies showed that 
the intraventricular administration of CaSR NAMs did decrease 
the death of neurons in the cortical penumbra zone of animal 
models of ischemia/hypoxia/stroke by effectively suppressing the 
concurrent acute increase in the local Aβ-os production (Kim et al., 
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2014; Bai et al., 2015). These results further strengthen the idea that 
pathological Aβ•CaSR signaling is crucially involved in both acute 
(ischemia/stroke) and chronic (AD) conditions causing neuronal 
death (Armato et al., 2013; Dal Prà et al., 2015a; Chiarini et al., 2016).

Fyn kinase inhibitor Saracatinib (AZD0530) and NMDAR 
inhibitors Memantine and Nitromemantine were endorsed as 
drugs to counteract the neurotoxicity driven by the extracellular 
accumulation of Aβ42-os (Kaufman et al., 2015). However, 
CaSR NAMs act on Aβ•CaSR signaling well upstream of Fyn 
and NMDARs. In addition, CaSR NAMs obstruct any cytotoxic 
effects and likely also any impediments to proliferation and  
differentiation of neural stem cells in the dentate gyrus subgranular 
zone (Unger et al., 2016).

Concerning their most salient pharmacological characteristics, 
because of their lipid-soluble chemical structures and limited 
numbers of electrical charges, CaSR NAMs traverse the BBB. They 
can be administered by any route: hitherto the oral route has been 
the preferred one for clinical trials. Rodents could endure NAM 
NPS 2143 administration with no serious off-target effects being 
reported (Nemeth, 2002; Kim et al., 2014). During the failed phase I 
and phase II clinical trials assessing NAMs antiosteoporosis activity, 
human subjects also satisfactorily tolerated the administration 
of novel NPS 2143 derivatives, which affected PTH release less 
intensely (no record was taken concerning any brain-related 
effects). In general, the safety data collected from the clinical trials 
of CaSR NAMs did not record any major side-effect. Obviously, the 
calcemia levels had to be checked periodically due to NAM-elicited 
increases in plasma PTH levels (Nemeth and Shoback, 2013).

CONCLUSIONS

This survey--necessarily short given the huge amount of literature 
concerning this verily fascinating topic--leads us to several closing 
considerations. First and foremost, a lot of data from AD-model 
animals had to be forcibly mentioned because analogous human 
data are not available. Therefore, there is still quite a lot to 
discover and learn about the physiological roles of family C GPRS 
particularly in relation to human CNS and other viscera. Second, 
it is undeniable that some of these GPCRs could play central roles 
on human AD. Our work has been mainly, but not exclusively, 
based upon the experimental exploitation of human cortical 
astrocyte cultures and has focused on the pivotal role pathological 
Aβ•CaSR signaling exerts on the onset and progression of AD 

and on the potentially beneficial therapeutic effects CaSR NAMs 
could exert in LOAD/SAD patients. The interactions of CaSR 
heterodimers with other family C GPCRs, e.g. GABABRs and group 
I mGluRs, still constitute a mostly unexplored field of endeavor 
and their impact on AD onset and progression (if any) needs to 
be clarified. Notably, even in the gene mutations-driven EOFAD, 
CaSR NAMs could bring to bear mitigating and life-lengthening 
upshots by suppressing the additional aggravating consequences 
brought about by the concurrent Aβ•CaSR signaling adding up 
to those stemming from the mutated genes. Third, any possible 
AD-promoting effects of CaSR PAMs (calcimimetics) in humans 
should be thoroughly investigated since in our preclinical in vitro 
AD model PAM NPS R-568 significantly increased Aβ42/Aβ42-os 
release from untransformed human adult cortical astrocytes 
(Armato et al., 2013). Fourth, we wish to add a last comment about 
CaSR NAMs as candidate therapeutics for human AD. For reasons 
pertaining to normal physiology, CaSR NAMs failed their initial 
task as antiosteoporosis therapeutics (Nemeth, 2004; Nemeth, 
2013; Nemeth and Shoback, 2013; Nemeth and Goodman, 2016). 
Moreover, the induction of a mild hypercalcemia by CaSR NAMs 
has been a bit too much stressed as “hyperparathyroidism” creating 
a prejudice against their use in humans. Nevertheless, one should 
remember that no drug is devoid of unwanted and/or off-target 
effects: the chemotherapeutics administered to oncological patients 
are a striking example of this. Therefore, CaSR NAMs’ rather slight 
off-target effects, chiefly the mild controllable hypercalcemia, 
should be objectively weighed against CaSR NAMs’ crucial 
capability of averting the worsening loss of memories and cognitive 
abilities, including recognition of the self, and the later unavoidable 
demise AD would inexorably deliver.
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