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Highlights: Impact and implications:
� Deep learning can accurately diagnose HCC on CT.

� Multiple sensitivity analyses of different clinical scenarios
demonstrated that deep learning remained robustly accurate.

� Deep learning explainability provided topographical trans-
parency and quality control to the diagnostic process.

� Early diagnosis by deep learning could be used to reduce
the currently high mortality rate of HCC.
https://doi.org/10.1016/j.jhepr.2024.101219
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The clinical applicability of deep learning in HCC diagnosis is
potentially huge, especially considering the expected increase
in the incidence and mortality of HCC worldwide. Early diag-
nosis through deep learning can lead to earlier definitive man-
agement, particularly for at-risk patients. The model can be
broadly deployed for patients undergoing a triphasic contrast
CT scan of the liver to reduce the currently high mortality rate
of HCC.
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Background & Aims: Hepatocellular carcinoma (HCC) is characterized by a high mortality rate. The Liver Imaging Reporting and
Data System (LI-RADS) results in a considerable number of indeterminate observations, rendering an accurate diagnosis difficult.

Methods: We developed four deep learning models for diagnosing HCC on computed tomography (CT) via a training–validation–
testing approach. Thin-slice triphasic CT liver images and relevant clinical information were collected and processed for deep
learning. HCC was diagnosed and verified via a 12-month clinical composite reference standard. CT observations among at-risk
patients were annotated using LI-RADS. Diagnostic performance was assessed by internal validation and independent external
testing. We conducted sensitivity analyses of different subgroups, deep learning explainability evaluation, and misclassifica-
tion analysis.

Results: From 2,832 patients and 4,305 CT observations, the best-performing model was Spatio-Temporal 3D Convolution
Network (ST3DCN), achieving area under receiver-operating-characteristic curves (AUCs) of 0.919 (95% CI, 0.903–0.935) and
0.901 (95% CI, 0.879–0.924) at the observation (n = 1,077) and patient (n = 685) levels, respectively during internal validation,
compared with 0.839 (95% CI, 0.814–0.864) and 0.822 (95% CI, 0.790–0.853), respectively for standard of care radiological
interpretation. The negative predictive values of ST3DCN were 0.966 (95% CI, 0.954–0.979) and 0.951 (95% CI, 0.931–0.971),
respectively. The observation-level AUCs among at-risk patients, 2–5-cm observations, and singular portovenous phase analysis
of ST3DCN were 0.899 (95% CI, 0.874–0.924), 0.872 (95% CI, 0.838–0.909) and 0.912 (95% CI, 0.895–0.929), respectively. In
external testing (551/717 patients/observations), the AUC of ST3DCN was 0.901 (95% CI, 0.877–0.924), which was non-inferior to
radiological interpretation (AUC 0.900; 95% CI, 0.877–-923).

Conclusions: ST3DCN achieved strong, robust performance for accurate HCC diagnosis on CT. Thus, deep learning can
expedite and improve the process of diagnosing HCC.

© 2024 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Liver cancer is the seventh-most common cancer worldwide
and ranks second in terms of cancer deaths.1 Based on current
global estimations, there will be a 60% increase in liver cancer-
related deaths over the next two decades, reaching 1.33 million
deaths in 2040.2 The main disease burden is found in Eastern
Asia, where the age-standardized mortality is 24.5 and 8.0 per
100,000 in men and women, respectively.2 Chronic HBV
infection is the primary risk factor for hepatocellular carcinoma
(HCC) in Eastern Asia, with the lifetime risk of HCC among
infected patients ranging from 10% to 25%.3

Liver cancer has a case-fatality rate of 91.4%, which is
much higher than other common cancers.2 Yet, there is a
marked difference in 5-year survival rates for HCC based on
* Corresponding authors. Address: Department of Medicine, The University of Hong Kong
E-mail addresses: mfyuen@hkucc.hku.hk (M.-F. Yuen), wkseto@hku.hk (W.-K. Seto).
† Co-first authors with equal contribution.
‡ Contributed to supervision equally.
https://doi.org/10.1016/j.jhepr.2024.101219
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disease staging, ranging from 91.5% in solitary tumors <2 cm in
size to 11% in advanced disease with adjacent organ
involvement,4,5 highlighting the importance of an early and
accurate diagnosis. HCC is typically diagnosed radiologically
based on the highly distinctive characteristic of dynamic pat-
terns on contrast-enhanced computed tomography (CT) or
magnetic resonance (MR) imaging.6,7 To standardize radio-
logical lexicon and interpretation, the Liver Imaging Reporting
and Data System (LI-RADS) was established to categorize liver
observations based on their malignancy risk,8 with the highest
category of LR-5 being highly accurate for HCC.9,10 Nonethe-
less, 49% of observations in the at-risk population fall within
the indeterminate category of LR-2–LR-4;8,11 despite having
different risk profiles, with the lack of a definitive diagnosis,
-Shenzhen Hospital, Shenzhen, China. Tel.: +86 75586913388.
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Deep learning algorithm for HCC diagnosis
there is little difference in subsequent clinical evaluations,
which are mainly surveillance imaging and biopsy in selected
cases,12 potentially resulting in surveillance-related harm.13

Discrepant LI-RADS categories from serial imaging10 and the
inherent human error present in 3–5% of radiological report-
ing14 further complicate clinical interpretation.

Artificial intelligence (AI) is expected to bring about major
healthcare benefits worldwide. Medical imaging is best suited
for the application of AI, because complex pattern recognition
of imaging data via deep learning facilitates a quantitative,
rather than qualitative assessment of radiographic character-
istics.15 An AI algorithm applied in HCC diagnosis could
improve diagnostic accuracy, and reduce human misinterpre-
tation and the need for further scans and investigations, leading
to decreased costs and workload in healthcare systems. With
CT being the more easily accessible cross-sectional imaging in
the study region,16 we developed a deep learning algorithm for
HCC diagnosis based on a multi-center CT image and clinical
data set.

Materials and methods

Patient cohorts and data collection

Model training, internal validation and external testing of our
deep learning algorithm was conducted following the Checklist
for Artificial Intelligence in Medical Imaging (CLAIM) guideline,17

which is modelled after the Standards for Reporting of Diag-
nostic Accuracy Studies (STARD). We retrospectively collected
archived thin-sliced (<−1.25-mm slice thickness) multi-phasic
contrast CT liver images scanned between March 2013 and
August 2020 in Digital Imaging and Communications in Medi-
cine (DICOM) format and relevant clinical information from
seven medical centers in our locality, performed in Asian in-
dividuals aged >−18 years. These included 444, 124, 882, 735,
49, and 47 patients from The University of Hong Kong
2014–2018, Queen Mary Hospital 2014–2020, The University of
Hong Kong-Shenzhen Hospital 2013–2019, Pamela Youde
Nethersole Eastern Hospital 2018–2020, Queen Elizabeth
Hospital 2019–2020, and Kwong Wah Hospital 2020, respec-
tively. We further recruited an independent external testing
cohort, comprising 551 patients from Sun Yat-Sen University
Cancer Center 2013–2018.

To improve the robustness and generalizability of the model
to a real-world setting and its adaptability to heterogeneity in
imaging standards, we adopted a data-driven approach, aiming
to be as inclusive as possible during image and data collec-
tion.18,19 We included all scans in which at least one untreated
liver observation could be made.8 In addition to collecting
scans performed in at-risk patients,12 for model generalizability,
we also collected images from individuals without underlying
chronic liver disease or increased risk of HCC, performed in
individuals for the characterization of incidentally identified liver
lesions. We marked patients at risk of HCC development,
defined as male patients >−40 years in age with chronic HBV or
female patients >−50 years in age with chronic HBV, or patients
with any disease etiology and underlying liver cirrhosis,6 sug-
gested by a Fibrosis-4 (FIB-4) score of >1.45.20

All CT examinations typically extended from the lung base to
the iliac crest, and included four phases: non-contrast, late
hepatic arterial, portovenous, and delayed phases. Scans were
included from different commercially available CT scanners,
JHEP Reports, --- 2
using different image acquisition protocols (Table S1), and
observations >−5 mm in size were analyzed.21,22 Scans per-
formed after locoregional therapy, including thermal ablation,
transarterial chemoembolization, or radioembolization and
external beam radiation therapy, were excluded because these
are assessed differently via LI-RADS under the treatment
response algorithm.8 Incomplete scans, and thick-sliced-only
scans (>1.25-mm slice thickness) were also excluded to
ensure uniform image quality and resolution. Further image
preprocessing is described in Section S1A and Fig. S1.

The present study was approved by the Institutional Review
Board of the different participating institutions, in accordance
with the Declaration of Helsinki.
Ground truth definitions

We opted against a purely histology-based ground truth defini-
tion,23 given that >60% of HCCs in Asia lack histological diag-
nosis,24 while histology would not be available for most non-
HCCs. To ensure real-world representativeness and generaliz-
ability, a composite clinical reference standard was adopted to
establish the ground truth diagnosis.9 A diagnosis of HCC was
based on either histological or clinicoradiological criteria, with
histology based on surgical resection, explant or excisional bi-
opsy. Clinicoradiological criteria were reviewed by four clinical
investigators with 13, 12, 9, and 8 years of clinical experience,
respectively, who in addition to the baseline index scan,
reviewed the clinical and radiological progress of all observations
over the subsequent 12 months. The estimated doubling time of
HCC is 6 months;10 hence, a stringent 12-month time window
ensured the accuracy of our composite clinical reference stan-
dard. HCC was diagnosed if the requirement for radiological
diagnosis (arterial enhancement with portal-venous washout)6 or
the abovementioned histological criteria were fulfilled within the
12-month window. An observation was considered negative for
HCC if it demonstrated a negative histology, or the lack of
threshold growth, spontaneous reduction, or disappearance in
the absence of treatment.9 Lesions that underwent presumptive
HCC treatment without conclusive diagnosis (e.g. LR-4 or LR-M
observations) were categorized as high-risk observations but
not as definitive HCC.25,26 Each ground truth diagnosis was
reviewed and validated by two clinical investigators, with con-
flicting reviews handled by consensus review.
Data processing and deep learning model training

Our internal data set was randomly divided into a 7:3 train-
ing:validation set ratio. Deep learning was performed using
TensorFlow 2.11, facilitated by a computational platform
powered by NVIDIA Tesla V100 graphic processing units (Dell
Technologies, Singapore). Given that a conventional 2D deep
learning model might miss existing spatial information between
slices of CT scans,27 3D models (see Section S1B for initial
development) were trained to predict the binary outcome of
HCC vs. non-HCC. The range of Hounsfield units (HU) was
windowed to [–160, 240] to remove extraneous features and the
images were normalized to [0, 1]. Augmentation strategies
included horizontal and vertical flipping and 3D rotation. CT
images were cropped by observation masks and the cropped
volumes were resized to 70 × 70 × 70 for model training. Binary
cross entropy was used as loss function and class weight was
025. vol. 7 j 101219 2
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set in the training to handle the imbalance in positive and
negative samples.

The novel Spatio-Temporal 3D Convolution Network
(ST3DCN) (Fig. 1; Section S1C) was developed, which uniquely
considers the multiphasic nature of CT imaging, ensuring all
detailed visual imaging clues from all CT phases would be used
for HCC classification. For the remaining three models that
implemented according to published architectures, Convolu-
tional Three-Dimensional (C3D) processes spatiotemporal in-
formation and is used in network architectures on video
classification;28 Three-Dimensional Residual Network (3DRes-
Net) is the 3D version of a residual network,29 using skip con-
nections across layers as the residual learning to facilitate
identify mapping and image classification; and Three-
Dimensional Squeeze-and-Excitation (3DSE) uses squeeze-
and-excitation into a 3D convolutional network for CT phase
recognition, utilizing fully connected layers to capture cross-
channel interdependencies (Fig. S2, Section S1D–F).

Internal validation and external testing

The trained deep learning models were applied in the internal
validation cohort to assess their diagnostic performance. The
diagnostic performance of the models was further assessed in
the independent external-testing data set, with ground-truth
definitions defined similarly to the internal cohort and all
HCCs being histologically confirmed.

Radiological interpretation

All liver observations were annotated and interpreted radio-
logically during internal validation and external testing by one
and three board-certified radiologists, respectively, all with >10
years of experience in abdominal cross-sectional imaging, and
blinded to the ground truth of each observation, patient clinical
information, and deep learning results. Liver observations in at-
risk patients were further categorized using LI-RADS version
2018,8 with observations categorized as LR-1 to LR-5, or LR-M
(probably or definitely malignant, not HCC specific).8 For the
remaining patients, radiologists graded each observation on
the binary outcome of HCC vs. non-HCC. Any discrepancies
during external testing were resolved by consensus review.

Model explainability

To understand the model explainability, Gradient-weighted
Class Activation Mapping (Grad-CAM) was used to build
heatmaps of analyzed images to indicate which portion of CT
images contributed significantly to the classification of HCC
cases30 (further described in Section S1G). More specifically,
the integrated gradients method was used as a measure of
deep learning explainability to approximate Shapley values
calculated spatially for displaying the contribution of each voxel
to the prediction (Section S1H).31

Statistical analysis

Sample size calculation is described in Section S2A and
Table S2. Continuous values were expressed as means (±SD)
or medians (IQR) as appropriate. Statistical analysis was per-
formed using Python 3.10.2 (Python Software Foundation), with
two-sided p values <0.05 considered statistically significant.
JHEP Reports, --- 2
The Fleiss’ Kappa statistic determined interobserver agreement
during LI-RADS assessment.

To determine the performance characteristics pertaining to
the binary outcome of HCC vs. non-HCC, area under receiver-
operating-characteristic curves (AUCs) were constructed to
assess overall diagnostic accuracy of the different deep
learning models and LI-RADS, with Delong’s test applied for
the comparison of different AUC curves.32 In addition, 95% CIs
were obtained by using the Hanley and McNeil’s method.33

Given the ratio of non-HCC:HCC cases in the training data,
0.8 was selected as the threshold of the cutoff probability for
HCC. Comparison of other performance metrics, including
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were calculated similarly. When
non-inferiority between AUCs was to be demonstrated, the
non-inferiority test for paired Receiver Operating Characteristic
(ROC) curves was performed with a default margin at –0.05.34

To determine the robustness of the classification model,
different sensitivity analyses were performed during internal
validation: (1) patients at risk for HCC, in which surveillance is
recommended6; (2) assessing gold-standard HCC and
excluding real-world HCC; (3)looking at indeterminate nodules
as defined by LI-RADS (LR-2/LR-3/LR-4); (4) observation size,
including 2–5 cm and <2 cm; and (5) assess singularly the
arterial or portovenous phase. A misclassification analysis was
also conducted, analyzing any false positives and false nega-
tives that occurred.

Results
Patient selection is detailed in Fig. 2. Overall, 2,832 patients
and 4,305 CT observations were included in the study. For the
internal training and validation cohort, 2,630 patients were
screened from six centers, with 2,281 patients (86.7%) even-
tually included in the analysis. Baseline characteristics are
detailed in Table 1. The mean age was 58.4 (±14.3) years; 1,371
(60.1%) and 1,215 (53.3%) patients had underlying chronic liver
disease or were at risk for HCC, respectively. Altogether 3,588
observations (1.57 observations per scan) were analyzed
(contouring details in Table S3), with a median observation size
of 21.2513–41 mm. Following the 12-month composite clinical
reference standard, 514 (22.5%) patients and 607 (16.9%)
observations were categorized as HCC. The median size of
HCC and non-HCC observations was 59.2 (mm 30.8–115.0)
and 18.4. mm (12.0–31.5), respectively. In total, 188 (31.0%)
and 419 (69.0%) of HCCs were diagnosed via histological and
clinicoradiological criteria, respectively.

Diagnostic performance: overall and at risk

The overall diagnostic performance of different deep learning
models compared with radiological interpretation during inter-
nal validation, at both the observation and patient levels, is
depicted in Table 2A with the AUC curves shown in Fig. 3A. All
four deep learning models were statistically superior to radio-
logical interpretation. The best-performing model was
ST3DCN, achieving AUCs of 0.919 (95% CI, 0.903–0.935) and
0.901 (95% CI, 0.879–0.924) at the observation and patient
levels, respectively, compared with radiological interpretation,
with AUCs of 0.839 (95% CI, 0.814–0.864) (p <0.001) and 0.822
(95% CI, 0.790–0.853) (p = 0.002), respectively. ST3DCN also
achieved a higher NPV of 0.966 (95% CI, 0.954–0.979) and
025. vol. 7 j 101219 3
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0.951 (95% CI, 0.931–0.971) at the observation and pa-
tient levels, respectively, compared with 0.939 (95% CI,
0.923–0.955) and 0.911 (95% CI, 0.886–0.935), respectively for
radiological interpretation. 3DSE, 3DResNet, and C3D achieved
AUCs of 0.875–0.915, which were significantly better than
radiological interpretation (p <0.001–0.047), but numerically
inferior to that of ST3DCN.

Among at-risk individuals, the distribution of LI-RADS
categorization for internal training (1,231 observations) and
validation cohorts (549 observations) is depicted in Fig. S3.
There was no significant difference in the distribution of LR-1 to
LR-5 among the two cohorts (p = 0.356). ST3DCN maintained a
similarly high diagnostic performance, achieving AUCs of 0.899
(95% CI, 0.874–0.924) and 0.862 (95% CI, 0.826–0.898),
respectively at the observation and patient levels, significantly
superior to LI-RADS (AUC 0.817, 95% CI, 0.783–0.852, p
<0.001; and AUC 0.790, 95% CI, 0.746–0.835, p = 0.036,
respectively) (Table 2B and Fig. 3B).

Heatmap visualization generated by ST3DCN was used to
represent the predicted probabilities of HCC (high-risk HCC
highlighted in red; Fig. 4A) and non-HCC (Fig. 4B). Deep
learning interpretability was demonstrated by a visualization of
JHEP Reports, --- 2
Shapley values (Fig. S4), with each voxel corresponding to a
spatial imaging input feature. Voxels with higher Shapley values
signified a greater contribution to HCC diagnosis.

Sensitivity analysis: high-risk observations

The diagnostic performance of the four deep learning models in
different patient cohorts as part of a sensitivity analysis is
depicted in Table S4 and Fig. S5. When high-risk observations
(n = 88) were considered together with HCCs (Table S4A and
Fig. S5A), AUCs of ST3DCN at observational and patient levels
were 0.953 (95% CI, 0.942–0.965) and 0.952 (95% CI,
0.938–0.967), respectively, compared with radiological inter-
pretation at 0.855 (95% CI, 0.833–0.878) and 0.851 (95% CI,
0.823–0.879), respectively. The trends in diagnostic perfor-
mances of 3DSE, 3DResNet, and C3D were similar, with AUCs
ranging from 0.924 to 0.936 at the observation and patient
levels, respectively.

Sensitivity analysis: indeterminate nodules

The performance of the deep learning models was further
analyzed for indeterminate observations, in which follow-up
imaging or investigations are required. There were 276
025. vol. 7 j 101219 5



Table 1. Baseline characteristics of 2,281 patients and 3,588 observations undergoing model training and validation.

Characteristic All patients (N = 2,281) HCC* (n = 514) Non-HCC (n = 1,767)

Age (years) 58.4 (±14.3) 61.3 (±13.2) 57.6 (±14.5)
Male patients (%) 1,391 (61.0) 416 (80.9) 975 (55.2)
Chronic liver disease (%)
Present 1,371 (60.1) 492 (95.7) 879 (49.7)
HBV 1,016 (74.1) 392 (79.7) 624 (71.0)
HCV 84 (6.1) 30 (6.1) 52 (5.9)
MASLD 116 (8.5) 12 (2.4) 104 (11.8)
Alcoholic liver disease 48 (3.5) 12 (2.4) 40 (4.6)
>−2 liver diseases† 55 (4.0) 27 (5.5) 26 (3.0)
Others‡ 52 (3.8) 19 (3.9) 33 (3.8)

No known liver disease 910 (39.9) 22 (4.3) 888 (50.3)
HCC risk§ (%)
At risk 1,215 (53.3) 477 (92.8) 738 (41.8)
Not at risk 1,010 (44.3) 31 (6.08) 979 (55.4)
Indeterminate{ 56 (2.5) 6 (1.2) 50 (2.8)

Albumin, g/L 41 (37–44) 38 (34–43) 42 (39–45)
Bilirubin, mmol/L 13 (9–19) 15 (10–24) 12 (9–17)
ALT, U/L 27 (18–45) 37 (25–65) 25 (17–38)
AST, U/L 33 (23–60) 53 (33–103) 27 (20–44)
ALP, U/L 80 (64–112) 102 (75–168) 77 (62–99)
Platelet count, × 109/L 201 (146–257) 167 (113–237) 210 (162–263)
INR 1.1 (1.0–1.2) 1.1 (1.1–1.2) 1.1 (1.0–1.2)
AFP, ng/ml 4 (2–21) 40 (6–529) 3 (2–6)

*HCC ground truth was determined by a composite clinical reference standard, referencing histological, radiological, and clinical endpoints.
†Including HBV/HCV; HBV/alcoholic liver disease; and HCV/alcoholic liver disease.
‡Including cryptogenic cirrhosis, cardiac cirrhosis, autoimmune hepatitis, primary biliary cholangitis, and recurrent pyogenic cholangitis.
§At-risk individuals for HCC defined as patients with chronic HBV either male >−40 years or female >−50 years of age; or patients with any disease etiology with a FIB-4 score of >−1.45.{Platelet count and, hence, FIB-4 not available for 57 patients. AFP, alpha-fetoprotein; ALT, alanine aminotransferase; ALP, alkaline phosphatase; AST, aspartate aminotransferase;
FIB-4, Fibrosis-4; HCC, hepatocellular carcinoma; INR, international normalized ratio; MASLD, metabolic-associated steatotic liver disease.

Deep learning algorithm for HCC diagnosis
indeterminate observations in the validation cohort, in which 48
(17.4%) had a ground truth diagnosis of HCC. ST3DCN ach-
ieved AUCs of 0.816 (95% CI, 0.762–0.871) and 0.848 (95% CI,
0.794–0.902) at the observation and patient levels, respectively
(Table S4B and Fig. S5B). NPV was 0.929 at both levels. The
AUCs of the other three models were 0.801–0.842 at the
observation and patient levels.

Sensitivity analysis: observation size

Among 363 observations of 2–5 cm in the validation cohort,
ST3DCN achieved AUCs of 0.872 (95% CI, 0.836–0.909) and
0.877 (95% CI, 0.838–0.916) at the observation and patient
levels, respectively (Table S4C and Fig. S5C). NPVs remained
high at 0.942 and 0.931 respectively. The AUCs of radiological
interpretation were 0.748 (95% CI, 0.694–0.802) and 0.725
(95% CI, 0.663–0.787) at the observation and patient levels,
respectively. Among 501 observations of <2 cm, the AUC of
ST3DCN was 0.852 (95% CI, 0.783–0.920) and 0.851 (95% CI,
0.781–0.922) at the observation and patient levels, respectively,
and NPVs were 0.980 and 0.968 respectively (Table S4D and
Fig S5D).

Sensitivity analysis: singular CT phase

When validating the deep learning models for a singular CT
phase, ST3DCN at the observation and patient levels achieved
AUCs of 0.918 (95% CI, 0.901–0.934) and 0.896 (95% CI,
0.873–0.919), respectively for arterial phase (Table S4E and
Fig. S5E) and 0.912 (95% CI, 0.895–0.929) and 0.890 (95% CI,
0.867–0.914), respectively for the portovenous phase
(Table S4F and Fig. S5F).
JHEP Reports, --- 2
External testing

Baseline characteristics of 551 patients and 717 observations
from the independent external cohort are detailed in Table S5.
Overall, 353 (49.2%) observations had a ground truth diagnosis
of HCC, all confirmed by histology. Among the non-HCC ob-
servations, 42 (5.9%) and 58 (8.1%) were cholangiocarcinomas
and liver metastasis, respectively. The at-risk cohort comprised
365 patients (66.2%) and 469 observations (65.4%); LI-RADS
categorization for external testing in at-risk patients is shown
in Fig. S3.

The diagnostic performances of the four deep learning
models are detailed in Table 2C and Fig. 3C. ST3DCN achieved
AUCs of 0.901 (95% CI, 0.877–0.924) and 0.885 (95% CI,
0.853–0.917) at the observation and patient levels, respectively,
which was non-inferior to radiological interpretation (AUC 0.900,
95% CI, 0.877–0.923; AUC 0.888, 95% CI, 0.856–0.920,
respectively; non inferiority margin = –0.023 and
–0.034,respectively; both p <0.001). Similar to internal validation,
high NPVs of 0.945 and 0.902 respectively were achieved.
Diagnostic performance trends for 3DSE, 3DResNet, and C3D
were comparable, with AUCs of 0.863–0.885 achieved (non-
inferiority margin = –0.048 to –0.039, p = 0.010–0.036).

For at-risk patients (Table 2D and Fig. 3D), the AUCs of
ST3DCN were 0.892 (95% CI, 0.861–0.922) and 0.881 (95% CI,
0.839–0.923) for the observation and patient levels, respec-
tively, which were non-inferior to LI-RADS (AUC 0.900, 95% CI,
0.870–0.930; AUC 0.885, 95% CI, 0.844–0.926 respectively;
non-inferiority margin = –0.038 and –0.043 with p = 0.011 and
0.026, respectively). If patients with cholangiocarcinoma and
liver metastasis were excluded (Table 2E and Fig. 3E), the
AUCs of ST3DCN increased to 0.981 (95% CI, 0.969–0.993)
025. vol. 7 j 101219 6



Table 2. Diagnostic performance of the four deep learning models.

Level Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

(A) Internal validation vs. radiological interpretation* for all patients
Observation level Deep learning models ST3DCN 0.919 (0.903–0.935) 0.869 (0.823–0.916) 0.852 (0.828–0.875) 0.571 (0.515–0.627) 0.966 (0.954–0.979)

3DSE 0.900 (0.882–0.919) 0.678 (0.613–0.743) 0.911 (0.892–0.93) 0.634 (0.569–0.699) 0.926 (0.908–0.943)
3DResNet 0.915 (0.899–0.932) 0.673 (0.608–0.739) 0.923 (0.905–0.94) 0.663 (0.598–0.729) 0.926 (0.908–0.943)
C3D 0.913 (0.896–0.93) 0.714 (0.651–0.776) 0.905 (0.886–0.925) 0.631 (0.568–0.694) 0.933 (0.916–0.95)

Radiological interpretation 0.839 (0.814–0.864) 0.729 (0.667–0.79) 0.949 (0.934–0.963) 0.763 (0.703–0.824) 0.939 (0.923–0.955)
Patient level Deep learning models ST3DCN 0.901 (0.879–0.924) 0.868 (0.817–0.92) 0.828 (0.796–0.861) 0.62 (0.557–0.682) 0.951 (0.931–0.971)

3DSE 0.875 (0.849–0.9) 0.683 (0.612–0.753) 0.88 (0.852–0.908) 0.648 (0.577–0.718) 0.896 (0.869–0.922)
3DResNet 0.886 (0.862–0.91) 0.677 (0.606–0.748) 0.898 (0.872–0.924) 0.681 (0.61–0.752) 0.896 (0.87–0.922)
C3D 0.893 (0.869–0.916) 0.713 (0.644–0.781) 0.882 (0.854–0.91) 0.661 (0.592–0.73) 0.905 (0.879–0.931)

Radiological interpretation 0.822 (0.790–0.853) 0.719 (0.65–0.787) 0.925 (0.902–0.947) 0.755 (0.688–0.822) 0.911 (0.886–0.935)

(B) Internal validation vs. radiological interpretation for at-risk patients†

Observation level Deep learning models ST3DCN 0.899 (0.874–0.924) 0.862 (0.812–0.911) 0.837 (0.798–0.875) 0.733 (0.675–0.791) 0.921 (0.891–0.95)
3DSE 0.877 (0.849–0.905) 0.660 (0.592–0.727) 0.873 (0.838–0.907) 0.729 (0.663–0.796) 0.831 (0.793–0.869)
3DResNet 0.887 (0.86–0.914) 0.665 (0.597–0.732) 0.889 (0.857–0.922) 0.758 (0.692–0.823) 0.836 (0.799–0.873)
C3D 0.895 (0.869–0.921) 0.707 (0.642–0.772) 0.881 (0.847–0.914) 0.756 (0.692–0.819) 0.853 (0.817–0.889)

Radiological interpretation 0.817 (0.783–0.852) 0.729 (0.665–0.792) 0.906 (0.876–0.936) 0.801 (0.741–0.861) 0.865 (0.831–0.9)
Patient level Deep learning models ST3DCN 0.862 (0.826–0.898) 0.859 (0.804–0.914) 0.776 (0.721–0.831) 0.732 (0.668–0.796) 0.885 (0.84–0.93)

3DSE 0.829 (0.788–0.869) 0.66 (0.586–0.735) 0.817 (0.766–0.869) 0.72 (0.647–0.794) 0.772 (0.718–0.826)
3DResNet 0.843 (0.804–0.882) 0.667 (0.593–0.741) 0.845 (0.797–0.893) 0.754 (0.682–0.826) 0.781 (0.728–0.833)
C3D 0.858 (0.821–0.895) 0.705 (0.634–0.777) 0.84 (0.792–0.889) 0.759 (0.689–0.828) 0.8 (0.748–0.852)

Radiological interpretation 0.790 (0.746–0.835) 0.718 (0.647–0.789) 0.863 (0.817–0.909) 0.789 (0.722–0.856) 0.811 (0.761–0.861)

(C) External testing vs. radiological interpretation for all patients
Observation level Deep learning models ST3DCN 0.901 (0.877–0.924) 0.955 (0.933–0.976) 0.758 (0.714–0.802) 0.793 (0.754–0.831) 0.945 (0.919–0.971)

3DSE 0.885 (0.86–0.91) 0.793 (0.751–0.835) 0.841 (0.803–0.878) 0.828 (0.788–0.869) 0.807 (0.768–0.847)
3DResNet 0.880 (0.855–0.906) 0.807 (0.766–0.849) 0.799 (0.758–0.841) 0.796 (0.754–0.838) 0.811 (0.77–0.851)
C3D 0.878 (0.852–0.903) 0.861 (0.825–0.897) 0.794 (0.752–0.836) 0.802 (0.762–0.842) 0.855 (0.817–0.893)

Radiological interpretation 0.900 (0.877–0.923) 0.830 (0.791–0.869) 0.970 (0.952–0.987) 0.964 (0.943–0.985) 0.855 (0.821–0.889)
Patient level Deep learning models ST3DCN 0.885 (0.853–0.917) 0.954 (0.932–0.976) 0.725 (0.664–0.787) 0.855 (0.82–0.89) 0.902 (0.857–0.948)

3DSE 0.884 (0.852–0.916) 0.801 (0.759–0.843) 0.809 (0.755–0.863) 0.877 (0.841–0.913) 0.705 (0.647–0.764)
3DResNet 0.863 (0.829–0.898) 0.81 (0.769–0.851) 0.755 (0.696–0.814) 0.849 (0.810–0.888) 0.7 (0.639–0.761)
C3D 0.868 (0.834–0.902) 0.861 (0.825–0.898) 0.760 (0.701–0.818) 0.859 (0.823–0.896) 0.764 (0.705–0.822)

Radiological interpretation 0.888 (0.856–0.92) 0.830 (0.79–0.869) 0.946 (0.915–0.977) 0.963 (0.942–0.985) 0.766 (0.714–0.818)

(D) External testing vs. radiological interpretation for at-risk patients
Observation level Deep learning models ST3DCN 0.892 (0.861–0.922) 0.952 (0.926–0.979) 0.743 (0.685–0.801) 0.810 (0.765–0.855) 0.931 (0.893–0.969)

3DSE 0.881 (0.849–0.914) 0.801 (0.751–0.85) 0.839 (0.791–0.888) 0.852(0.806–0.897) 0.785 (0.733–0.838)
3DResNet 0.886 (0.854–0.917) 0.797 (0.747–0.847) 0.798 (0.745–0.851) 0.820 (0.771–0.868) 0.773 (0.719–0.828)
C3D 0.881 (0.848–0.913) 0.865 (0.822–0.907) 0.789 (0.735–0.843) 0.825 (0.779–0.871) 0.835 (0.784–0.886)

Radiological interpretation 0.900 (0.87–0.93) 0.837 (0.791–0.882) 0.963 (0.938–0.988) 0.963 (0.938–0.988) 0.837 (0.791–0.882)
Patient level Deep learning models ST3DCN 0.881 (0.839–0.923) 0.951 (0.924–0.978) 0.706 (0.624–0.788) 0.870 (0.83–0.91) 0.875 (0.809–0.941)

3DSE 0.884 (0.842–0.926) 0.809 (0.76–0.858) 0.798 (0.726–0.87) 0.892 (0.852–0.933) 0.669 (0.592–0.746)
3DResNet 0.879 (0.837–0.921) 0.801 (0.751–0.851) 0.765 (0.688–0.841) 0.876 (0.832–0.919) 0.650 (0.571–0.729)
C3D 0.875 (0.832–0.918) 0.866 (0.823–0.908) 0.765 (0.688–0.841) 0.884 (0.843–0.924) 0.734 (0.656–0.812)

Radiological interpretation 0.885 (0.844–0.926) 0.837 (0.791–884) 0.933 (0.888–0.978) 0.963 (0.937–0.988) 0.735 (0.665–0.805)
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Deep learning algorithm for HCC diagnosis
and 0.982 (95% CI, 0.966–0.998), respectively, superior to that
of radiological interpretation (AUC 0.932, 95% CI, 0.910–0.954,
p <0.001; AUC 0.931, 95% CI, 0.901–0.961, p <0.001,
respectively). In addition to high NPVs (0.89–0.938), relatively
higher PPVs of 0.949–0.976 were achieved. Additional sensi-
tivity analyses are detailed in Table S6 and Fig. S6.

The interobserver agreement of LI-RADS interpretation
among the three reporting radiologists was excellent, with a
Fleiss’ ĸ value of 0.972 (95% CI, 0.960–0.984) and 0.966 (95%
CI, 0.951–0.981) at the patient and observation levels,
respectively. Discrepancies that required consensus reading
were found in 17 (3.09%) patients and 22 (2.82%) observations.

Misclassification analysis

Details of misclassification analyses are provided in Table S7,
with examples of misclassified patients depicted in Fig. S7.
False-positive observations were present in 12.1% (n = 130)
and 14.5% (n = 104) of internal validation and external testing
observations, respectively. When considered in combination,
44.4% (n = 104) of false positives were cholangiocarcinoma or
liver metastasis. False-negative observations were less
frequent, present in 2.4% (n = 26) and 2.2% (n = 16) in internal
validation and external testing observations, respectively, with
LR-5 observations comprising 45.2% (n = 19).

Discussion
The current study illustrated the high accuracy of 3D deep
learning models for diagnosing HCC on CT, with ST3DCN
achieving observation-level AUCs of 0.901–0.919 during inter-
nal validation and external testing, compared with radiological
interpretation and the other three models, with AUCs of
0.839–0.900 and 0.878–0.915, respectively. Corresponding
NPVs in ST3DCN were similarly high at 0.945–0.966, compared
with radiological interpretation at 0.855–0.939 and the other
models at 0.807–0.933. The clinical applicability of ST3DCN is
potentially huge, especially when, over the next two decades,
the incidence and mortality of liver cancer is expected to in-
crease by 60% worldwide.2

The foundation of our deep learning models was epitomized
by several important features. First, the quality and represen-
tativeness of collected data are key. A crucial component of our
deep learning model is foregoing a purely histology-based
ground truth, which can result in considerable ascertainment
bias by neglecting substantial cohorts of patients without his-
tology.23 Instead, we adopted a clinical composite reference
standard,9 via integration of clinical and radiological charac-
teristics, to ensure that our model was representative and
reflective of real-world practice. The current study differed from
other published research, which specifically focused on differ-
entiating between specific types of liver tumor, such as be-
tween HCC and a combination of intrahepatic
cholangiocarcinoma, metastasis, and hemangioma.35–37 Other
key components were our data-driven approach and adequate
sample size, which were important in anticipation of hetero-
geneous standards and large variations in medical imaging
equipment and scanner settings.19 A data-driven approach in
deep learning avoids overfitting and improves versatility in
clinical application.18

Second, the performance of our deep learning models was
robust, performing well in different clinical scenarios. Most
025. vol. 7 j 101219 8
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Fig. 3. AUC curves of different 3D deep learning models. (A) Internal validation for overall patients; (B) internal validation for at-risk patients; (C) external testing for
overall patients; (D) external testing for at-risk patients. Among all models, Spatio-Temporal 3D Convolution Network (ST3DCN; blue line) had the highest diagnostic
performance, achieving AUCs of 0.862 and 0.919 at the observation and patient level, respectively during internal validation and 0.881 and 0.901, respectively during
external testing. (E) When discounting cholangiocarcinomas and liver metastases for overall patients in external testing, AUCs of 0.981 and 0.982, respectively were
achieved. 3DResNet, Three-Dimensional Residual Network; 3DSE, Three-Dimensional Squeeze-and-Excitation; C3D, Convolutional Three-Dimensional.
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Fig. 4. Visualization of deep learning classification results. Heatmap plots for three different slices from the same computed tomography (CT) scan of three patients
(A) with hepatocellular carcinoma (HCC) and (B) non-HCC. The odd rows depict the CT scan in the portovenous phase. For heatmaps in the even rows, the red color
indicates the most risky area for HCC, while the blue area indicates the least risky area. Grad-CAM, gradient-weighted Class Activation Mapping.

Deep learning algorithm for HCC diagnosis
published research lacks our more comprehensive approach
because of difficulties in obtaining large, well-curated co-
horts,38 and even fewer include the active comparator of
radiological interpretation or LI-RADS.39 The AUCs of
ST3DCN remained high in specifically at-risk patients and
small observation sizes, as well as during external testing, an
indication of the generalizability of the model. The similarly
high AUC during the singular analysis of either the arterial or
portovenous phase is an intriguing finding, and could suggest
a potential role for opportunistic screening in general
abdominal CT scans, which might only comprise a portove-
nous phase.40 The consistently high NPVs of ST3DCN is
important and implies that the model could be deployed as an
JHEP Reports, --- 20
initial screening tool for excluding HCC, facilitating the
reporting prioritization of radiologists.

Third, our deep learning models were supported by strong
technological foundation. We adopted a 3D approach in the
architecture of our models, with ST3DCN uniquely considering
the multiphasic nature of CT. This distinctive approach enabled
the acquisition of different visual spatiotemporal information,
which we believe was crucial for achieving a high diagnostic
performance. The risk of misclassification was inevitably pre-
sent, but small (Table S7), with the main issue being the number
of false positives that were cholangiocarcinoma and liver me-
tastases. Given that most metastases are hypovascular, the
merits of routine acquisition of arterial dominant-phase images
25. vol. 7 j 101219 10
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during CT is disputable,41 and with our inclusion criteria
requiring an arterial phase triphasic CT scan, the subsequently
low number of cholangiocarcinoma and metastases in our in-
ternal training cohort (n = 52) could had contributed to the
eventual diagnostic performance. Nevertheless, when dis-
counting these two conditions, the ST3DCN achieved a very
high AUC of >0.95 during external testing. Future dedicated
training of cholangiocarcinoma and metastases triphasic im-
ages could further improve its performance.

There is widespread consensus among the radiology field
that AI is a tool that can assist in optimizing the decision-
making process, rather than being a replacement for radiolo-
gists and clinicians.42,43 Our present study emphasized algo-
rithm interpretability, data quality, and generalizability, which
are all important factors for a successful deep learning
healthcare model.44 However, our present model is not appli-
cable to MR; given that MR technology differs fundamentally
from that of CT, a MR-based model will require future research
of comparable magnitude. Currently, both imaging modalities
are equally recommended by international guidelines,12
JHEP Reports, --- 2
although CT has greater accessibility because of its rapid
acquisition time, lower costs, and wider availability, especially
in Asia.16 Our study was also limited by the relatively low
number of histologically confirmed HCCs and small HCCs of
<2 cm, inter-reader variability during radiological interpretation,
as well as only including data from Asian patients; nevertheless,
>70% of liver cancers worldwide are diagnosed in Asia,45

where our developed model is likely to have the highest clin-
ical appeal.

In conclusion, our developed deep learning models, espe-
cially ST3DCN, were highly accurate for the diagnosis of HCC
on CT, performing significantly better than radiological inter-
pretation during internal validation and being non-inferior to
radiological interpretation during external testing. The strong
performance of ST3DCN was similarly retained in different
sensitivity analysis, demonstrating its robustness. Thus, if
widely applied, deep learning could facilitate a timely and pre-
cise diagnosis of HCC, expediting outcomes for patients, and
could be a valuable tool for reducing the high mortality rate of
liver cancer.
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