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Abstract: Liposomes are consolidated and attractive biomimetic nanocarriers widely used in the
field of drug delivery. The structural versatility of liposomes has been exploited for the development
of various carriers for the topical or systemic delivery of drugs and bioactive molecules, with
the possibility of increasing their bioavailability and stability, and modulating and directing their
release, while limiting the side effects at the same time. Nevertheless, first-generation vesicles
suffer from some limitations including physical instability, short in vivo circulation lifetime, reduced
payload, uncontrolled release properties, and low targeting abilities. Therefore, liposome preparation
technology soon took advantage of the possibility of improving vesicle performance using both
natural and synthetic polymers. Polymers can easily be synthesized in a controlled manner over
a wide range of molecular weights and in a low dispersity range. Their properties are widely
tunable and therefore allow the low chemical versatility typical of lipids to be overcome. Moreover,
depending on their structure, polymers can be used to create a simple covering on the liposome
surface or to intercalate in the phospholipid bilayer to give rise to real hybrid structures. This review
illustrates the main strategies implemented in the field of polymer/liposome assembly for drug
delivery, with a look at the most recent publications without neglecting basic concepts for a simple
and complete understanding by the reader.

Keywords: liposomes; polymers; liposome surface modification; hybrid vesicles; physicochemical
stability; encapsulation efficiency; drug release profile; mucopenetrating/mucoadhesive properties;
stimuli-responsive properties; versatile targeting platform

1. Introduction

Since their appearance at the limelight of science, liposomes have offered researchers
a great variety of application possibilities despite the relative simplicity of their prepa-
ration. The lipid molecules (mostly phospholipids, Scheme 1) of which they are made
behave like building blocks that auto-assemble in a supramolecular architecture ordered
on spherical shapes, once they are dispersed in an aqueous environment. These lipid
molecules, with the hydrophobic region paired to exclude water, form double layers that
close in on themselves, enclosing part of the solvent in which they are dispersed, similarly
to biological membranes [1–3]. Their peculiar architecture and structural analogy with
biological membranes have given impetus to studies on membrane fusion, on the recon-
stitution of integral membrane proteins, on membrane compartmentalization, and finally,
on protocells and the origins of life [4]. Moreover, the structural versatility of liposomes
allow the design of vesicles of any size, degree of lamellarity, and composition for the
most varied applications. The possibility of loading liposomes with molecules of different
polarities both in their aqueous lumen and in the phospholipid bilayer, and the possibility
of decorating them with a variety of molecules to gain peculiar properties, soon opened
the way for their use in the field of drug delivery and targeting. An extraordinary scientific
production has been dedicated to the development of liposomal carriers for the topical or
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systemic delivery of drugs and bioactive molecules, with the possibility of increasing their
bioavailability and stability, and modulating and directing their release, while limiting the
side effects at the same time. Today, liposomes for tumor targeting, gene therapy, genetic
vaccines, immunomodulation, photodynamic therapy, transdermal applications, and many
more represent a concrete reality in real-time clinical applications [5,6]. Furthermore, the
versatility of liposomes is such that they can bioconjugate and increase the biocompatibility
even of hard materials, both nanostructured (such as quantum dots, carbon nanotubes,
and gold nanoparticles) and inorganic-based surfaces (such as titanium and silica), for the
production of fluorescent and magnetic probes [7–10] or medicated surfaces for prostheses
or other applications [11].
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onic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Bottom: Schematic drawing of a 
generic phospholipid with the two alkyl chains depicted as black wires and the polar head repre-
sented by a red circle. 

However, liposomes are not free from defects. Their stability over time is limited, and 
in the absence of precautions, they show a tendency to coalesce and sediment. In the pres-
ence of biological fluids, plasma proteins interact with the surface, limiting their in vivo 
circulation lifetime [12]. The payload that can be retained is limited and the hydrophilic 
one can diffuse unwanted across the membrane. Finally, liposomes are characterized by 
a lack of site-specificity, as well as low targeting abilities [5]. Therefore, the liposome prep-
aration technology soon took advantage of the possibility of improving vesicle perfor-
mance using both natural and synthetic polymers. 
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lecular weights and in a low dispersity range. They are more stable than lipid molecules 
and less prone to undergoing oxidative degradation phenomena. Like the lipids used for 
the preparation of liposomes, amphiphilic polymers can be prepared with the most varied 

Scheme 1. Chemical structures of most commonly used (phospho)lipids for liposome prepara-
tion. From top to bottom: The zwitterionic 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC),
principal constituent of natural membranes; the zwitterionic and fusogenic 1-palmitoyl-2-oleoyl-
phosphatidylethanolamine (POPE); the anionic 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG);
the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Bottom: Schematic drawing
of a generic phospholipid with the two alkyl chains depicted as black wires and the polar head
represented by a red circle.

However, liposomes are not free from defects. Their stability over time is limited,
and in the absence of precautions, they show a tendency to coalesce and sediment. In the
presence of biological fluids, plasma proteins interact with the surface, limiting their in vivo
circulation lifetime [12]. The payload that can be retained is limited and the hydrophilic one
can diffuse unwanted across the membrane. Finally, liposomes are characterized by a lack
of site-specificity, as well as low targeting abilities [5]. Therefore, the liposome preparation
technology soon took advantage of the possibility of improving vesicle performance using
both natural and synthetic polymers.

Polymers can easily be synthesized in a controlled manner over a wide range of
molecular weights and in a low dispersity range. They are more stable than lipid molecules
and less prone to undergoing oxidative degradation phenomena. Like the lipids used
for the preparation of liposomes, amphiphilic polymers can be prepared with the most
varied block structures, and therefore, they are able to intercalate in the lipid bilayer. Their
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properties are widely tunable and therefore allow the low chemical versatility typical of
lipids to be overcome [13].

There are a variety of ways in which polymers of various kinds can become part of the
architecture of liposomes (Figure 1). Hydrophilic polymers can coat the surface of the vesi-
cles by physical adsorption (Figure 1A). Neutral polymers (poly-vinyl pyrrolidone (PVP),
poly-vinyl alcohol (PVA), etc.) can adsorb by hydrogen bonds to the vesicle surface rich in
hydroxyl and oxo groups [14], and the ionic ones (chitosan, polylysine, etc.) can interact by
electrostatic interaction with the bilayer charged by ionic lipids or other additives [15,16].
In addition, by suitably choosing oppositely charged polyelectrolytes, it is possible to
realize a multilayer shell by the layer-by-layer electrostatic deposition method [17].
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ties, and Residence Time of Vesicles in Biological Fluids 

Liposomes present important advantages such as biocompatibility, biodegradability, 
and the ability to encapsulate hydrophilic, hydrophobic, and amphiphilic compounds. 
However, one of the major drawbacks of conventional liposomes is their rapid clearance 
from the bloodstream [29,30]. To overcome this drawback, surface modification of the lip-
osomes has proven to be a successful strategy to improve the stability and half-life of lip-
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col (PEG), are used as surface coatings in order to extend the liposome blood circulation 
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Figure 1. Polymer/liposome assembly. (A) Hydrophilic polymers are physically adsorbed onto
liposome surface; (B) polymers are polymerized or undergo a phase change, trapping the vesicles
inside; (C, left) polymers are covalently bonded to the polar head of phospholipids; (C, right)
polymerizable monomers are reticulated to form a network surrounding the vesicles; (D, left)
amphiphilic polymers are homogeneously distributed in the bilayer or (D, right) segregated in
separate domains.

In other circumstances, a polymer can be polymerized starting from its monomers in
the presence of liposomes, thus trapping vesicles within their structure (Figure 1B) [18]. The
same result can be obtained with polymers whose solubility depends on the pH, by adding
them to a liposome suspension in soluble form and then inducing their solidification by
appropriately varying the pH [19,20]. Alternatively, liposomes can be included in a hybrid
hydrogel matrix of polysaccharides [21].

A very popular way to coat liposomes with polymers is to covalently bond polymers
to the polar head of phospholipids. Some of these modified phospholipids are commer-
cially available or can be synthesized according to specific needs. This is the case of
polyethyleneglycol(PEG)ylated and polyglycerol(PG)ylated lipids, respectively. They can
be easily dispersed in the lipid blend during vesicle preparation. After hydration of the
lipid film, these modified lipids self-assemble in the bilayer, with the lipid part acting as
a hydrophobic anchor in the lipid palisade and the hydrophilic polymeric portion facing
the aqueous part [22,23] (Figure 1C, left). Alternatively, polymerizable monomers can
be linked to lipid molecules or to cholesterol, to induce their polymerization to form a
network surrounding the vesicles (Figure 1C, right) [24]. It is also possible to crosslink the
hydrophobic tails of the lipids within the liposomal bilayers [25].

A mixture of lipids and amphiphilic polymers can be used to give rise to hybrid
vesicles, in order to obtain structures with intermediate physical properties between the
two amphiphiles (Figure 1D). Many block copolymers are commercially available, and
others can be synthesized to fit specific experimental needs. The preparation of hybrid
vesicles does not involve particular changes in the traditional protocols for the preparation
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of liposomes, and the copolymers are generally added to the lipid blend in the first stage of
vesicle preparation. The type of structure that can be obtained depends on the compatibility
between the lipid and polymeric building blocks in terms of dimensions and chemical–
physical properties, as well as the polymers/lipids ratio. It is therefore possible to obtain
very different types of vesicles, in which the limit forms have the polymeric molecules
homogeneously distributed in the bilayer (Figure 1D, left) [22,26,27] or segregated in
separate domains (Figure 1D, right). Although this last configuration has mainly been
observed and studied in micrometric giant vesicles that have limited applications in the
field of drug delivery [26,27], examples relating to nanostructured vesicles have also been
reported [28].

Although the reasons for using polymers in liposome preparations are very numerous,
they can be grouped into the following macro categories, all aiming to overcome some
classic limitations of first-generation liposomes or endow them with specific properties
and potentials:

• Improving the physicochemical stability, the stealth properties, and the residence time
in biological fluids

• Improving the encapsulation efficiency, reducing payload leakiness, and modulating
drug release profile

• Conferring mucopenetrating/mucoadhesive properties
• Conferring stimuli-responsive properties
• Providing a versatile targeting platform

Obviously, that proposed is only one of the possible classifications, and does not come
without a certain degree of arbitrariness. In fact, each property induced by polymers on
liposomes inevitably borders on or partially overlaps with other properties. Decorating
a vesicle with a hydrophilic polymer such as PEG means stabilizing it sterically at the
same time, giving it stealth and mucopenetrating properties, with the possibility of also
introducing useful functions for targeting purposes. In any case, in this review, the various
strategies implemented in the field of polymer/liposome assembly for drug delivery were
summarized and illustrated, with a look at the most recent publications without neglecting
basic concepts for a simple and complete understanding by the reader.

2. Polymer/Liposome Assembly to Improve Physicochemical Stability, Stealth
Properties, and Residence Time of Vesicles in Biological Fluids

Liposomes present important advantages such as biocompatibility, biodegradability,
and the ability to encapsulate hydrophilic, hydrophobic, and amphiphilic compounds.
However, one of the major drawbacks of conventional liposomes is their rapid clearance
from the bloodstream [29,30]. To overcome this drawback, surface modification of the
liposomes has proven to be a successful strategy to improve the stability and half-life of
liposomes in the bloodstream. In particular, hydrophilic polymers, such as polyethylene
glycol (PEG), are used as surface coatings in order to extend the liposome blood circulation
half-life from a few minutes to several hours [31]. The mechanism of improving their
circulation time was attributed to steric hindrance induced by PEG that prevents their
aggregation and inhibits the absorption of plasma proteins and reticuloendothelial system
uptake [32,33] (Figure 2).
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Figure 2. Scheme representing the mechanism for increased circulation time of PEG-decorated
liposomes. (A) Conventional liposomes, bearing hydrophilic (orange balls) and hydrophobic (yellow
stars) loads, aggregated and attacked by plasma proteins (Y-shaped antibodies in yellow and green);
(B) stealth liposomes with PEG functionalization (cyan “hairs”) whose surface cannot be reached by
plasma proteins.

The steric stabilization conferred by PEG is influenced by the size of the liposomes, as
well as to the extension of PEGylation. It was reported that for sizes higher than 275 nm,
the stealth property of PEG-liposomes is significantly compromised [34], and that extensive
PEGylation can also cause the inhibition of cellular uptake [33].

Moreover, the chemical and structural features of PEG derivatives influence the sta-
bility and stealth properties of PEG-decorated liposomes. Mastrotto et al. evidenced that
in vivo, long linear, or branched PEGs chains are less efficient in improving the stealth
features of liposomes compared to short PEG chains. This behavior was attributed to the
lower possible resistance of long/branched PEGs to shear stress arising during blood circu-
lation [35]. Recent studies also exploited the possibility of the PEG on PEGylated liposomes
of binding ligands for active targeting, thus combining longevity and targetability for drug
delivery into specific tissues [36].

Taking into account the properties of the PEG listed above and the fact that it is soluble
in both polar and nonpolar solvents, and can be eliminated from the body through a
combination of renal and hepatic pathways [37], it is possible to understand why PEG is
an effective polymer coating for pharmaceutical application.

PEG-liposomes, however, have been found to induce immunogenic responses, which
can lead to hypersensitivity reactions [38–40], and to the accelerated blood clearance
phenomenon, which accounts for the rapid systemic clearance of PEGylated nanocarriers
upon repeated administrations [41]. Therefore, although PEG remains the gold standard
for the steric protection of liposomes, many studies aim to identify other polymers that can
confer stability and long circulating properties to liposomes.

Earlier studies described long-circulating liposome preparation using poly[N-(2-
hydroxypropyl) methacrylamide] [42], polyvinyl alcohol [43], and L-amino-acid-based
biodegradable polymer–lipid conjugates [44]. Studies on the influence of liposome charge
and polymer molecular mass evidenced that opsonins with different molecular masses
might be involved in the clearance of liposomes [45].
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Recently, liposomes modified with polyglycerol have also been proposed as an alter-
native to PEGylation. The use of polyglycerol, in fact, prevents induction of the accelerated
blood clearance phenomenon upon repeated administration. Moreover, hyperbranched
polyglycerol exhibiting multiple hydroxyl groups at their ends appeared to mediate a
stronger cellular internalization into macrophages [41].

Superhydrophilic zwitterionic polymers such as poly (carboxybetaine) (PCB) can
stabilize liposomes as an alternative to PEG. In addition, PCB-modified liposomes exhibited
good retention of the hydrophilic drug and long blood circulating characteristics in vivo
without the need to add cholesterol to the lipid formulation [46]. On the other hand, a
novel lipid/poly-phosphocholine conjugate can stabilize the liposomes against aggregation
similarly to PEG and allow them to act as very efficient lubricating elements, readily
attaining superlubric performance, useful in potential biomedical applications [47].

Pluronic F127 (PF127) is another polymer used as an alternative to the most traditional
PEG for liposome coating. PF127 is a triblock nonionic surfactant largely used as a food
additive and is approved as a pharmaceutical component for cancer drugs. It has a
high circulation time, high bioavailability, and can stabilize liposome preparations. Stable
dipalmitoyl phosphatidylcholine liposomes coated with an PF127 copolymer were obtained
for hypericin loading and delivery [48]. In this study, the liposome preparation was kept
stable by the copolymer for 6 months in the solid state and up to 20 days for the nondry
formulation. In addition, thermal stability of the formulation was observed up to 50 ◦C. In
addition, the modification of liposomes with PF127 can enhance their mucus penetration
and cellular uptake [22,49] (see Section 4). PF127-covered liposomes also show the more
efficient delivery of coumarin 6 to enterocytes than unmodified liposomes [50].

Other useful copolymers are 2-methacryloyloxyethyl phosphorylcholine and n-butyl
methacrylate (PMPC-co-BMA) or the latest 2-(methacryloyloxy)ethyl phosphorylcholine
and methacrylated polyhedral oligomeric silsesquioxane that can interact with the liposome
surface and enhance its stability in physiological conditions [51]. Recently, novel cholesteryl-
functionalized block copolymers as molecular stabilizers for stealth liposome preparation
have been proposed by Kenneth et al. [52]. The authors observed that the employed block
copolymers offer resistance to micellization through the insertion into the lipid bilayer
of multiple cholesteryl moieties per molecule, with a minimum number of such moieties
per molecule required for effective copolymer insertion into the bilayer and liposome
stabilization (Figure 3).

Polymers 2021, 13, x FOR PEER REVIEW 6 of 23 
 

 

Earlier studies described long-circulating liposome preparation using poly[N-(2-hy-
droxypropyl) methacrylamide] [42], polyvinyl alcohol [43], and L-amino-acid-based bio-
degradable polymer–lipid conjugates [44]. Studies on the influence of liposome charge 
and polymer molecular mass evidenced that opsonins with different molecular masses 
might be involved in the clearance of liposomes [45]. 

Recently, liposomes modified with polyglycerol have also been proposed as an alter-
native to PEGylation. The use of polyglycerol, in fact, prevents induction of the acceler-
ated blood clearance phenomenon upon repeated administration. Moreover, hyper-
branched polyglycerol exhibiting multiple hydroxyl groups at their ends appeared to me-
diate a stronger cellular internalization into macrophages [41]. 

Superhydrophilic zwitterionic polymers such as poly (carboxybetaine) (PCB) can sta-
bilize liposomes as an alternative to PEG. In addition, PCB-modified liposomes exhibited 
good retention of the hydrophilic drug and long blood circulating characteristics in vivo 
without the need to add cholesterol to the lipid formulation [46]. On the other hand, a novel 
lipid/poly-phosphocholine conjugate can stabilize the liposomes against aggregation simi-
larly to PEG and allow them to act as very efficient lubricating elements, readily attaining 
superlubric performance, useful in potential biomedical applications [47]. 

Pluronic F127 (PF127) is another polymer used as an alternative to the most tradi-
tional PEG for liposome coating. PF127 is a triblock nonionic surfactant largely used as a 
food additive and is approved as a pharmaceutical component for cancer drugs. It has a 
high circulation time, high bioavailability, and can stabilize liposome preparations. Stable 
dipalmitoyl phosphatidylcholine liposomes coated with an PF127 copolymer were ob-
tained for hypericin loading and delivery [48]. In this study, the liposome preparation was 
kept stable by the copolymer for 6 months in the solid state and up to 20 days for the 
nondry formulation. In addition, thermal stability of the formulation was observed up to 
50 °C. In addition, the modification of liposomes with PF127 can enhance their mucus 
penetration and cellular uptake [22,49] (see Section 4). PF127-covered liposomes also show 
the more efficient delivery of coumarin 6 to enterocytes than unmodified liposomes [50]. 

Other useful copolymers are 2-methacryloyloxyethyl phosphorylcholine and n-butyl 
methacrylate (PMPC-co-BMA) or the latest 2-(methacryloyloxy)ethyl phosphorylcholine 
and methacrylated polyhedral oligomeric silsesquioxane that can interact with the lipo-
some surface and enhance its stability in physiological conditions [51]. Recently, novel 
cholesteryl-functionalized block copolymers as molecular stabilizers for stealth liposome 
preparation have been proposed by Kenneth et al. [52]. The authors observed that the 
employed block copolymers offer resistance to micellization through the insertion into the 
lipid bilayer of multiple cholesteryl moieties per molecule, with a minimum number of 
such moieties per molecule required for effective copolymer insertion into the bilayer and 
liposome stabilization (Figure 3). 

 
Figure 3. Hybrid stealth liposomes stabilized by cholesteryl-functionalized block copolymers. The 
cholesteryl moieties (red sticks) insert into the bilayer while the tails (in blue) protrude toward the 

Figure 3. Hybrid stealth liposomes stabilized by cholesteryl-functionalized block copolymers. The
cholesteryl moieties (red sticks) insert into the bilayer while the tails (in blue) protrude toward the
aqueous phase, protecting the liposomes from coalescence and plasma proteins. Reproduced with
permission from [52]. Copyright © 2018 American Chemical Society.

Hyaluronic acid (HA)-coated liposomal formulations have also been studied. HA is a
natural negatively charged linear hydrophilic polysaccharide, composed of the repeating
glucuronic acid and N-acetyl-D-glucosamine disaccharide units linked by alternating β-
1,4 and β-1,3 glycosidic bonds. The biocompatibility, biodegradability, nontoxic, and
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nonimmunogenic nature make HA a suitable alternative to PEG [53]. Different studies
indicated that the hydrophilic coating provided by HA prevents opsonin adsorption to the
liposome surface and increases drug circulation, as well as the affinity binding to tumor
recognition sites [41,53,54].

Among polysaccharides, chitosan is largely used as a coating material because it is
positively charged and readily interacts with the negatively charged liposomal surfaces,
ensuring a firm coating that enhances liposome stability, with respect to both size and
drug loading, in the biological fluid [33,55,56]. To increase the resistance of chitosan-based
systems to the harsh gastrointestinal environment, modifications of their surface to obtain
multilayered or multivesicular carriers have been reported [54–58]. Multivesicular carriers
created by coating liposomes with chitosan followed by crosslinking with biocompatible
β-glycerophosphate were reported [59]. The possibility of functionalizing chitosan has
made it possible to obtain copolymers such as PEG-chitosan that stabilizes liposomes,
encapsulating the novel prodrug of doxorubicin modified by stearoyl-spermine [60].

Another polysaccharide used for the stabilization of liposomal systems is starch given
its great availability, biocompatibility, and biodegradability [61]. For example, Nahar et al.
prepared stable starch-coated magnetic liposomes that resulted in a promising inhalable
carrier for accumulation of the fasudil drug in the pulmonary vasculature [62], while
Salem et al. developed an oral starch-liposome formulation that increased the stability and
tolerability of sodium alendronate [63].

Increased alendronate sodium oral bioavailability was also achieved by covering the
liposomes with Eudragit L100 [64]. Eudragits are pH-sensitive methacrylic acid copolymers,
which are of great importance especially in the oral delivery of bioactive molecules. In
fact, the main obstacles to efficient oral drug delivery using liposome carriers are the high
acidity of the gastric environment, the presence of enzymes, and the mucosal barrier [58]
(see Section 4). In particular, Eudragit S100 with increased solubility at pH ≥ 7 is suitable
for the development of pH-responsive carriers for colonic drug delivery (see Section 5).

Another study reported a liposome system decorated with proteins and DNA that
combine the useful properties of both liposomes and biomacromolecules. In particular, lipo-
somes decorated by crosslinked and glycosylated lactoferrin were stabilized by the protein
layer and preserved the antioxidant activity of the encapsulated 7,8-dihydroxyflavone, thus
resulting in promising delivery systems for protecting and transporting bioactive compo-
nents [65]. Lectin-conjugated liposomes were also prepared as biocompatible, bio-adhesive
drug carriers [66]. On the other hand, functionalizing liposomes with DNA has produced a
diverse range of hybrid materials useful in drug delivery. For example, liposomes densely
functionalized with DNA hindered the degradation of the conjugate by serum proteins,
increasing the stability in biological environments and cellular uptake [67]. Baumann et al.
prepared lipid vesicles coated and stabilized by a semirigid DNA network, based on the
connection of three-arm branched DNA junctions inspired by the structure of clathrin [68].
As the self-assembly of clathrin on biological membranes facilitates the endocytosis process,
materials inspired by its ordered structural appearance are of great interest. Combining
this aspect with the possibility to functionalize the DNA, liposomes prepared by Baumann
et al. are particularly promising for drug delivery application.

3. Polymer/Liposome Assembly to Improve Encapsulation Efficiency, Reducing
Payload Leakiness and Modulating Drug Release Profile

In addition to the steric stabilization, the grafting of polymers into the lipid bilayer
increases the hydrophilicity of the liposome and their subsequent stability in an aqueous
environment [69], and influences liposome permeability and physicochemical properties
such as drug loading and leakage [70] (Figure 4). For example, PEGylated liposomes have
been found to possess high drug loading capacities up to 90% [71,72]. Furthermore, the
presence of PEG in the liposome composition has been shown to reduce leakage of the
entrapped compounds from liposome particles kept in a phosphate buffer solution (PBS)
and in fetal bovine serum (FBS) [73]. The membrane permeability of PEGylated liposomes
is, in fact, affected by the molecular weight of the PEG molecule, the amount of PEG-lipid
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conjugates, and the type of linkage between the hydrocarbon chain and PEG chain of
PEG-lipid conjugates [74]. In particular, the addition of an amide linkage in a conjugated
chain has been shown to reduce the leakage of the entrapped model drug goniodiol
without affecting the entrapment efficiency, by decreasing the liposome permeability [73].
In addition, the coverage of liposomal surfaces with layers of natural polymers such as
enteric polymers, proteins, and polysaccharides, generally used to protect liposome in the
gastrointestinal tract, reduces payload leakiness, enhancing the drug bioavailability [57,64].
For example, the cross-linked chitosan/liposome hybrid system showed a high entrapment
efficiency of quercetin [75], while Eudragit S100-coated liposomes improved the site-specific
release, preventing drug leakiness [20,57], and poly-electrolyte-stabilized liposomes loaded
with doxorubicin showed 4–6-fold-enhanced oral drug bioavailability with respect to
conventional liposomes [55].
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The drug release rate depends on the composition of liposomal membranes, such as the
type of fatty acid acyl chains of phospholipids and percentage of cholesterol, that affects the
rigidity of the carrier membrane [76]. However, by combining the relatively compact lipid
bilayer interior with a mobile steric surface barrier on the vesicle surface, one should obtain
lipid vesicles that are optimally suited for both the long-term circulation in the blood and
for the sustained drug release under physiological conditions [77]. Therefore, liposomes
for the sustained drug release were made by modulating the properties of the bilayer (by
adding, for example, particular components such as glycolipids, phosphatidylinositol, and
monosialoganglioside [78]), or by the surface modification of the liposomes with sialo-
glycopeptides or PEG [77]. However, very recently, it has been shown that in individuals
with anti-PEG antibodies, a rapid release of drugs by PEGylated liposomes occurs. In fact,
it has been shown that anti-PEG IgG and IgM antibodies bind to PEG molecules on the
surface of the liposomal doxorubicin PEG coating (Doxil, Doxisome, LC-101 and Lipo-Dox),
with the consequent activation of the complement, formation of a complex of membrane
attachment in the liposomal membrane, and the rapid release of the encapsulated drug of
up to 40% from the liposome [79].

In addition, hydrogels based on both natural and synthetic polymers can be used as
depots for bioactive agent-loaded liposomes, for slow drug release. Among others, polymer
hydrogels based on fibrin, chitosan, alginate, dextran, Carbopol, and polyvinyl alcohol have
been used for this purpose. In this way, a sustained release of drugs loaded with liposome in
a polymeric-based depot system offers the possibility of reducing the dosing frequency and
the side effects [80]. In this context, the modulated release of a model hydrophilic drug from
liposomes entrapped in chitosan/gelatin hydrogels obtained by double crosslinking with
glutaraldehyde and sodium sulphate/sodium tripolyphosphate has been described [81].
A release-controlling liposome-modified hydrogel as an artificial scaffold for promoting
the angiogenesis and osteogenesis in bone regeneration was recently designed. A photo-
crosslinkable gelatin derivative (GelMA) was combined with a drug-loaded liposome, and
the ability to control the phased release was observed in the composite hydrogel, including
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the early release of the hydrophilic drug (deferoxamine), mid-term release of the bioactive
macromolecule (bovine serum albumin and bone morphogenetic protein 2), and long-term
release of the liposoluble medicine (paclitaxel) [82].

4. Polymer/Liposome Assembly to Confer Mucopenetrating/Mucoadhesive Properties
to Vesicles

Mucus is a complex aqueous gel layer that covers the mucosal membranes of the
respiratory tract, the gastrointestinal tract, the reproductive tract, and also the ocular
surface. Its composition depends on the anatomical site where it is produced and on
the health conditions of the underlying epithelium, but it mainly comprises water and
mucin fibers, lipids, salts, proteins, as well as sloughed cells, bacteria, and various cellular
debris [83]. The viscoelastic properties of the mucus very often constitute a formidable
obstacle for drug delivery systems that have to cross it before delivering the drugs to their
target (Figure 5A). Nanostructured carriers have been shown to have the ability to cross
the dense network of mucin more effectively than large ones. Therefore, first-generation
phospholipid/cholesterol liposomes of suitable size (<100 nm) are ideal candidates for this
purpose. However, it is possible to use a number of natural and synthetic polymers to
enhance the transport capacities of liposomes and also to increase their stability in these
harsh conditions [84]. Two opposite strategies are possible to increase the drug delivery
performance of liposomes when mucus is an obstacle, decorating the surface of the vesicles
with suitable polymers. The first way is to increase the mucoadhesive properties of the
vesicles, so that the liposomes can adhere to the mucus layer to increase the residence
time of the incorporated drugs and therefore to improve the contact with the absorption
membranes (Figure 5B). On the contrary, the second way involves making the liposomes
mucopenetrating, that is, the ability to diffuse more deeply through the mucus layer and
therefore more effectively reach the underlying epithelium (Figure 5C) [84].
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Figure 5. Scheme of a generic tissue formed by several cells (in orange with blue nuclei) covered
by mucus (in yellow). (A) Conventional liposome unable to cross the mucosal barrier; (B) liposome
covered by polymer, increasing the mucoadhesive properties of the vesicle; (C) liposome decorated
with polymer conferring mucopenetrating properties to the vesicle.

In vitro tests showed that positively charged but uncoated liposomes already exhibit
mucoadhesion; therefore, this property is believed to be driven primarily by electrostatic
interactions with the negatively charged glycoproteins that make up mucus [85,86]. How-
ever, positively charged naked liposomes show limited biocompatibility, and therefore,
coverage with polymers is usually preferred. Surface-modified liposomes can be made
by coating with both natural or modified mucoadhesive polysaccharides such as alginate,
chitosan, pectin, or with synthetic polymers such as Eudragit and Carbopol [21,87–89].
Natural polysaccharides are extracted from plants, algae, and the exoskeleton of some
crustaceans. These natural polymers are biocompatible and generally safe to use, and
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exhibit strong mucoadhesive properties through electrostatic interactions or hydrogen
bond formation [84,90]. It is also possible to increase the mucoadhesive properties of these
polymers with appropriate derivatizations at the –OH and –COOH groups. Chitosan, a
cationic polysaccharide, is perhaps the most popular of the polymers used in association
with liposomes to obtain mucoadhesive vesicles. Adamczake and co-authors prepared
polysaccharide-coated liposomes with a positive, negative, or neutral charge for drug deliv-
ery to the oral cavity. Several polysaccharides were used for coating vesicles: Alginate and
low-ester pectin (both hydrophilic and negatively charged), chitosan (hydrophilic and pos-
itively charged), and hydrophobically modified ethyl hydroxyethyl cellulose (amphiphilic
and neutrally charged). The mucoadhesion properties were studied using an in vitro
method, allowing the vesicles to interact with a mucus-producing confluent HT29-MTX
cell-line. Positive chitosan-coated liposomes showed the best mucoadhesive properties,
although the chitosan-coated systems showed lower biocompatibility than the uncoated
systems. Alginate-coated liposomes proved to be an attractive alternative in the treatment
of chronic diseases of the oral mucosa, thanks to their higher mucosal biocompatibility, spe-
cific mucin interactions, and moderate mucoadhesion properties [91]. Natural antioxidants
with antimicrobial activity such as resveratrol and curcumin have also been incorporated
into chitosan-coated liposomes, for example, for vaginal delivery. The increased bioad-
hesiveness and the good mucus permeation capabilities make chitosan-coated liposomes
suitable systems for the topical treatment of vaginal inflammation and infections [92,93].

Many chitosan derivatives have been recently prepared to enhance its mucoadhe-
siveness and overcome its limited solubility in water at neutral and basic pH [94]. Zhao
and collaborators used chitosan glycol to coat liposomes loaded with Sorafenib, thus
overcoming the limitations of native chitosan, which has a very low aqueous solubility
above pH 6.5. A second layer of Eudragit S100 was then added to protect the glycol
chitosan-coated liposomes from the gastric environment and release them at pH ≥ 7. This
layer-by-layer coverage strategy allowed the increase in the cellular uptake of Sorafenib in
Caco-2 cells with moderate toxicity [95]. Al Harthi et al. developed liposomal donepezil
HCl dispersed into thiolated chitosan hydrogel for the treatment of Alzheimer’s disease. A
disulfide bridge formed by interaction between the thiol groups of modified chitosan and
the cysteine groups of glycoproteins in the mucus, improving the mucoadhesive properties
of the liposomes. The in vivo results showed that liposome incorporated into chitosan
hydrogel significantly increased the blood concentration and the brain content of donepezil
compared to the oral tablets, and that thiolated chitosan had the highest mucoadhesive
capability [96]. At the same time, thiolated chitosan enables controllable drug release,
permeation and enhancement of cell absorption, inhibition of efflux pumps and enzymes,
and other useful properties [94].

Fully synthetic polymers are also useful in increasing the mucoadhesive properties of
liposomes. For example, maleimide-functionalized PEGylated liposomes were explored as
mucoadhesive vehicles for drug delivery to the urinary bladder. These vesicles exhibited
greater retention on mucosal surfaces compared to other tested liposomes and longer drug
release properties. Excellent mucoadhesive performance of maleimide-functionalized PEG
is due to the ability of the polymer to form covalent linkages with thiol-groups present in
mucins [97] (Figure 6).
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On the other hand, the polymers used to confer mucus-penetrating properties to the
liposomes are nonionic, long-chained, and hydrophilic in nature; that is, they are polymers
capable of avoiding most of the weak interactions that allow the adhesion with mucus,
namely those of a hydrophobic and electrostatic nature. Polymers such as PEG and Pluronic
copolymers are widely employed in liposome modification to improve vesicle diffusion in
highly viscoelastic mucus. For example, Jøraholmen et al. developed mucus-penetrating
PEG-liposomes containing interferon α-2b for the localized therapy of human papilloma
virus infections. Ex vivo penetration studies performed on the vaginal tissue obtained from
pregnant sheep showed elevated interferon penetration from PEG-liposomes with respect
to the control. In addition, the absence of interaction between the PEG-modified liposomes
and mucin was shown [98].

The way in which the polymer decorates the liposome surface can affect its effective-
ness. Li et al. investigated the intestinal mucus-penetrating properties of two types of
liposomes modified by PF127, i.e., PF127-inlaid liposomes and PF127-adsorbed liposomes.
Cellular uptake studies were conducted in Caco-2 cells and analyzed using both confocal
laser scanning microcopy and flow cytometry. The diffusion efficiency of the two types
of PF127-modified liposomes through intestinal rat mucus was found to be higher than
that of unmodified liposomes, but PF127-inlaid liposomes showed a significantly higher
cellular uptake with respect to PF127-adsorbed liposomes. In addition, the two types of
PF127-modified liposomes seem to have different cellular uptake mechanisms [49].

The polymer molecular weight and surface density on the nanocarrier also affect the
mucus penetrating ability, although their real effect should be evaluated case by case [99].
In a very recent paper, Yamazoe et al. investigated the feasibility of densely PEG-modified
liposomes for the oral delivery of peptides in an in vitro artificial mucus model. In addition,
they compared the oral absorption of these mucus-penetrating vesicles and mucoadhesive
liposomes modified with glycol chitosan. The intracellular uptake of both liposomes was
evaluated in Caco-2 and mucus-secreting Caco-2/HT29 cultures. The intracellular uptake
of PEG-liposomes was unaffected by mucus in the co-culture system, whereas the cellular
uptake of glycol chitosan-liposomes was lower. Oral absorption in vivo was higher for
densely PEGylated with respect to unmodified liposomes and was PEG-concentration-
dependent. In any case, an excessive PEGylation decreased drug blood concentration [100].

Recently, PF127- and PEG-liposomes were prepared for the treatment of chronic respi-
ratory diseases by inhalation, and their ability to penetrate a pathological mucus obtained
from chronic obstructive pulmonary disease (COPD)-affected patients was compared. Be-
clomethasone dipropionate was used as a model drug, and small unilamellar liposomes
of about 50 nm and of a surface electric charge close to zero were made by the detergent
depletion method. The penetration studies of mucus from COPD patients showed that
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the PEG-liposomes were the most mucus-penetrating vesicles after 27 h (Figure 7). Both
preparations with the two polymers did not cause any effect on bronchoalveolar lavage
fluid proteins after aerosol administration in the mouse. However, PEG-liposomes proved
to be most valid in terms of penetration through the pathologic sputum, uptake by airway
epithelial cells, and safety profile [22].
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Finally, liposomes modified with a combination of polymers have been proposed
that can perform both the functions of mucus-adhesion and mucus-penetration. Liu et al.
developed a mucus adhesion- and penetration-functionalized chitosan-thioglycolic acid-
Pluronic F127 (CS-TGA-PF) liposome system for oral delivery of paclitaxel. The prepared
liposomes were more stable than the unmodified ones and demonstrated a sustained
release of paclitaxel in simulated gastric fluid and intestinal fluid. In addition, CS-TGA-PF
liposomes absorbed a three-fold amount of mucin compared with that of unmodified
vesicles, which would prolong their residence time on the mucosal surface of the intestinal
tract. The intestinal mucus adhesion and penetration efficacy of modified liposomes
was studied by observing the intestinal absorption and distribution. The results showed
increased liposome uptake by the gastrointestinal mucosa and improved drug intestinal
absorption [101].

5. Polymer/Liposome Assembly to Confer Stimuli-Responsive Properties to Vesicles

To be strongly effective, liposomes should be able to enter into the target cells as
intact structures and release the encapsulated drug in the desired region. To this end, a
common practice is to cover or decorate the liposomes with particular functional groups
and coating materials to extend the systemic circulation time and enhance the penetration
capability toward the target cells. Near the target cell or after entrance, usually through
the endocytosis (more often pinocytosis) mechanism, the coating should be amenable,
under the action of particular external stimuli, to be dissolved or detach from the lipo-
some surface (Figure 8A), leading ultimately to the drug release to the external medium.
Alternatively, when liposomes are internalized in the endosomes, the local acidic pH can
induce a conformational change of the coating polymer that can result in (i) the formation
of transmembrane channels (Figure 8B) or (ii) the collapse of the coating polymer that
destroys the liposome bilayer. Both mechanisms lead to the release of the encapsulated
material, enhancing its intracellular bioavailability, especially when the drug is metabolized
in lysosomes.
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Temperature and pH are widely studied triggering stimuli as they often differ from
physiological values in pathological areas [102,103]. For example, lower pH values are typical
for inflammation areas, solid tumors, and heart or brain tissues injured by ischemia [104]. pH-
Sensitive liposomes (PSL) made of 1,2-diacyl-sn-glycero-3-phosphoethanolamine (diacyl-PE)
and mildly acidic amphiphiles, such as oleic acid or cholesteryl hemisuccinate, have been
proposed among the first formulations, showing efficient delivery of diverse molecules to
the cytoplasm [105]. In particular, 1,2-dioleoyl-PE (DOPE) forms a bilayer structure (Lα
phase) at neutral pH, but when the pH is lowered under a certain threshold, a transition
to the inverted hexagonal phase II (HII phase) occurs, causing membrane destabilization
and cargo release [106]. However, the in vivo applications of these preparations is limited
by their moderate stability and/or rapid removal by the mononuclear phagocyte system
(MPS) after intravenous administration [107]. Therefore, to obtain clinically viable formu-
lations, it is important to focus on serum-stability and in vivo half-life. Serum stability
is most commonly obtained by incorporating into the bilayer structure a small amount
of a PEGylated lipid, usually a N-(carbonyl-methoxypolyethylene-glycol-2000)-dyacil-PE
(PEG2000-PE) or PEG5000-PE, depending on the length of the PEG moiety. (see Section 2).
These stable formulations of liposomes can be endowed with a pH-induced uncovering and
cargo release capability, covering them with pH-responsive polymers [108] whose protona-
tion leads to destabilization of the bilayer lipid structure [109]. One of the first examples
of this class of macromolecules are copolymers of N-isopropylacrylamide (NIPAM) and
methacrylic acid (MAA) [110], in which the pH-sensitive moiety is the carboxylic group
of MAA. Terminally alkylated NIPAM/MAA copolymer was used to cover PEGylated
liposomes. The chosen PEGylated lipid, PEG5000-PE, efficiently increased the circulation
time, did not impair pH sensitivity, and the properties were maintained after incubation in
serum [109].

Ghanbarzadeh et al. [111] prepared pH-sensitive and plasma-stable liposomes using
PEG-poly-(monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) loaded with rapamycin.
The deprotonated state of the carboxylic acid groups at neutral pH warrants the solubility of
PEG-PMMI-CholC6 that precipitates at low pH because of the protonation of carboxylates,
increasing the lipophilic character of the polymer. The consequent liposome surface
destabilization leads to a rapid payload release. In vitro studies showed high stability at
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neutral pH with less than <10% of leakage in plasma after 3 h and efficient rapamycin
delivery with more than 60% of cell inhibition upon lowering the pH to 6.5 in HT-29 cells.

A dual-stimuli-sensitive biocompatible polymer was developed by Kono et al., based
on hyperbranched poly(glycidol) (HPG) bearing temperature-sensitive oligo(ethylene
glycol)s (OEGs) and pH-sensitive succinyl groups [112]. Liposomes of phosphatidylcholine
covered with this polymer could be destabilized upon both a slight temperature increase
(30–40 ◦C) and slight pH decrease (4.0–5.5) due to the protonation of carboxyl groups of
the grafted polymer that changes its character from hydrophilic to hydrophobic (Figure 9).
Liposome destabilization was also attributed to hydrogen bonds formation between the
polymer carboxyl groups and the phospholipid head-groups. Simultaneous stimulation by
low pH and high temperatures resulted in an enhanced cargo release than the temperature-
induced one alone.
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PSLs can also be prepared by the incorporation of protonable lipids within the li-
posomal membrane such as cholesteryl hemisuccinate (CHEMS) [113], which switches
from negatively charged at neutral pH to neutral at acidic pH, thereby causing bilayer
disruption. As already mentioned, PSLs are usually PEGylated. The PEGylated lipid can
be inserted by mixing it in the lipid blend used for the liposome formation (pre-insertion
method), resulting in PEG polymer protrusion from both sides of the bilayer. Alternatively,
preformed liposomes can be incubated with different amounts of PEGylated lipid micellar
solutions that insert in the bilayer (post-insertion method), leading to protrusion of the
PEG polymer only on the exterior side of the liposome [114]. It is postulated that the
viscosity of the inner lipid monolayer is reduced, leading to increased bilayer fluidity,
facilitating the Lα-HII transition upon pH decrease. PSLs with post-inserted PEGylation
show an enhanced pH-dependent release, suggesting that post-insertion PEGylation may
offer advantages in terms of pharmacokinetics. Xu et al. proposed a polymeric deriva-
tive, poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate (PEtOz-CHEMS), to construct
PSLs loaded with doxorubicin (DOX) [115], inserting the polymer using the post-insertion
method [116]. These PEtOzylated liposomes (PEtOz-L) showed an acidic pH-induced
size increase, a pH-dependent DOX release, and a better in vitro cellular uptake at pH 6.4
compared with conventional liposomes (CL), CHEMS-modified liposomes (CH-L), and
PEGylated liposomes (PEG-L). It was demonstrated by confocal laser scanning microscopy
images that PEtOz can help liposomes achieve the “endosomal escape” as the liposomes
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can fuse with the endosomal membrane thanks to the acidic conditions of endosome and
release DOX into the cytoplasm. The in vitro cytotoxicity of PEtOz-DOX-L was found
higher than those of CL-DOX, CH-DOX-L, and PEG-DOX-L under low pH conditions,
confirming the pH-responsive PEtOz as a promising material for intracellular targeted
delivery system.

The addition of cholesterol-terminated poly-(acrylic acid) (Chol-PAA) to liposome with
the post-insertion method, followed by crosslinking with 2,20-(ethylenedioxy)-bis(ethylamine),
forms a pH-sensitive polymer cage, inducing the release of two pharmacologically active
types of cargo (namely AsIII and NiII) co-encapsulated in the liposomal core. The chemo-
mechanical release property arises from the stimuli-responsive conformational change of
the polymer cage, due to the protonation of the free acrylate groups at low pH, which in
turn, perturbs the lipid membrane [117].

DPPC:cholesterol liposomes were grafted with a poly(isoprene-b-acrylic acid) diblock
copolymer to produce PLS entrapping curcumin as a free drug and as a water-soluble
inclusion complex with PEGylated tert-butylcalix [4] arene, which allows the drug to
occupy both the phospholipid membranes and the aqueous core of liposomes [118]. In
this case as well, cargo release was due to protonation-induced liposome destabilization.
Bioassay data showed that PLS-curcumin was superior in terms of cytotoxic activity
compared to both the free drug and curcumin embedded in non-pH-sensitive liposomes,
efficiently inhibiting the viability and proliferation of resistant cell lines.

A slightly different approach was proposed by Huang et al. [119], in which the pH-
induced membrane perturbation caused by the grafted polymer resulted in transmembrane
channel formation, leading to the hydrophilic cargo release. The channel-forming poly-
mer was poly(acrylic acid)-g-poly(monomethoxy ethylene glycol) (PAAc-g-mPEG), that
spontaneously self assembles into liposomes when mixed with the cationic lipid, didode-
cyldimethylammonium bromide (DDAB), through cooperative electrostatic interactions.
To prepare copolymer/DDAB complex assemblies, a solution of the copolymer at pH 8.9,
where AAc units are completely dissociated, was added into a vial containing a dry DDAB
film followed by overnight incubation under stirring. Upon decreasing the medium pH
to 5.0, a particle swelling was observed, due to the reduced ionization of AAc residues,
leading to a loss of both electrostatic interaction between DDAB and AAc moieties and hy-
drophobic association originally induced by electrostatic pairings. The vesicular membrane
was more hydrated and permeable to water influx into the inner aqueous compartment,
explaining the observed swelling. Nevertheless, the virtually unchanged diffraction peak
at 2θ = 2.93◦ in the WXRD pattern with pH suggests that the ordered interpenetrated
layer morphology is still retained, and the structural transition only occurs in localized
regions. It is therefore postulated that the local unionized AAc residues found at pH 5.0
are re-orientated into the membrane, forming transmembrane channels.

Another example of PSL, this time triggered by a slightly alkaline pH, is described by
Barea et al. [57,120]. The aim was to prepare drug-loaded liposomes for oral administration,
targeted to the colon. Vesicle coating should hence resist the acidic pH of the gastrointestinal
tract, preventing the ingress of bile salts, which would lead to premature drug release,
and dissolve in the slightly basic pH of the colonic tract. To this aim, liposomes made of
POPC/cholesterol 7:2 and containing the model drug 5-ASA were prepared by the thin
film hydration method that produces multilamellar vesicles (MLV), subsequently resized
by extrusion through membranes of decreasing pore size. The obtained nanocarrier was
first coated with chitosan, able to reduce the intake of bile salts, and then entrapped in
microspheres of the pH-responsive Eudragit S100, a methacrylic acid copolymer, using a
double emulsion-solvent evaporation technique. In vitro drug release studies showed that
drug release was prevented (>10%) within a simulated stomach and small intestine, while
in the simulated large intestine, the Eudragit S100 coating was degraded, triggering the
release (>85%) of the encapsulated drug. Subsequently, a green method for the Eudragit
S100 liposome coating was proposed by De Leo et al. [20]. In detail, the model drug
curcumin was encapsulated into small unilamellar vesicles (SUVs) of about 40 nm prepared
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by the micelle-to-vesicle transition method (MVT) starting from ethanol solutions. A
coating with Eudragit S100 was obtained by dissolving the liposomes and the polymer in a
slightly alkaline solution (phosphate 0.1 M pH 8.0) in which the polymer is soluble. This
solution was quickly diluted to 1:10 in an acidic solution (acetic acid 0.25% v/v pH 3.5) that
induces polymer precipitation around the liposomes, forming small clusters of micrometric
dimensions. The Eudragit S100 covering could be easily dissolved at pH ≥ 7.0. Curcumin-
loaded liposomes displayed the same antioxidant activity of free curcumin in ethanol,
a negligible antioxidant activity when covered with the polymer, which reversed to the
normal one after polymer removal. In a subsequent work [19], the uptake by Caco-2
cells of vesicles loaded with curcumin and coated with Eudragit S100 was assessed. At
pH > 7.0, the Eudragit S-100 coating dissolves, releasing the nanometric liposomes and
allowing them to enter Caco-2 cells. The curcumin released upon vesicles dissolution
was then able to significantly decrease intracellular ROS levels induced by H2O2. In this
way, the possibility of realizing gastroresistant liposome formulations was demonstrated
for the delivery of antioxidant molecules to Caco-2 cells used as a model of intestinal
epithelial cells.

PSL embedding both the hydrophobic rapamycin (RAPA) and the hydrophilic dox-
orubicin (DOX) were also prepared using glycol chitosan (GC) to achieve the pH-triggered
drug release profile [121] (Figure 10). To this aim,ω-liposomes made of docosahexaenoic
acid (DHA) and loaded with RAPA were first prepared by the thin-lipid-film hydration
method. GC and DOX where covalently bound together, forming an amide bond after
activation with EDC (1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide) and NHS (N-
hydroxy-succinimide). Finally, GC-DOX/RAPA ω-liposomes were prepared by dissolving
GC-DOX in deionized water (pH 6.5) and adding it dropwise to a RAPA ω-liposome
solution under stirring, forming a precipitate that was collected by centrifugation. The
complexation is driven by the electrostatic interaction between the liposomes, which have a
strong negative surface charge, and glycol chitosan, which has oppositely charged surface
amine groups. RAPAω-liposomes were 90 nm in diameter with a −30 mV surface charge,
increasing to 130 nm upon complexation with GC-DOX at a ratio of 20:1, while the surface
charge was partially neutralized to −15 mV. To evaluate their pH stability, GC-DOX/RAPA
ω-liposomes were incubated at various pH values (pH 4.0, 5.0, 6.5, or 7.4). The particle
size was stable near pH 7.4 and 6.5, while aggregation of the particles started from pH
5.0 due to the decrease in surface charge because the amine group of GC is protonated
by hydrogen ions under acidic conditions. The neutralization of the surface charge forces
particles to interact with each other, disrupting the structure of the particles and leading to
cargo release.

pH-Temperature dual-sensitive liposomes (CPTLPs) were obtained as an efficient drug
delivery system [122] exploiting the temperature sensitivity of 1,2-dipalmitoyl-sn-glycero-
3-phosphocholine (DPPC) and the pH sensitivity of polyaspartic acid (PASP) grafted
with octylamine (PASP-g-C8). The resulting nanovector showed improved targeting and
availability of liposomes to cancer cells. Liposomes made of cholesterol and cationic
temperature-sensitive lipids, loaded with the model drug Cytarabine (CYT), were first
prepared and covered with pH-sensitive PASP-g-C8 using octylamine for anchoring. The
zeta potential of CPTSLs was −42 mV, suggesting a stable colloidal system. CPTLPs
remained active in both normal tissues (with pH 7.4 and 37 ◦C) and tumor tissues (with pH
5.0 and 42 ◦C) and showed significant pH-temperature sensitivity and a more prolonged
release than control groups. MTT tests indicated that the cell apoptotic effects induced by
liposomal CTY compared with free CTY were nearly 30% higher in HepG2 cancer cells,
and 20% lower in healthy cells.
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6. Polymer/Liposome Assembly to Provide Targeting Platform

Targeting ligands for the functionalization of the vesicles can be implemented in the
formulation of liposomes in order to increase their application potential in the field of drug
delivery, from cancer therapy to bacterial biofilm and fungal infection treatment, and from
gene delivery to applications for vaccines [36,123,124]. An appropriate polymeric func-
tionalization or a polymeric coverage can be used to obtain liposomes capable of reaching
their target through a passive or active strategy. In Section 2, we illustrated how a PEG
coating can provide stabilization of vesicles in biological fluids and, in particular, increase
their residence time in the bloodstream. This is achieved by avoiding interaction with
serum proteins and avoiding the recognition and elimination mechanisms that constitute
the body’s first line of defense. As cancerous tissues have enhanced permeability and
limited lymphatic drainage, long circulating liposomes can accumulate there similarly
to other macromolecules. This effect is called the enhanced permeability and retention
(EPR) effect [125] and, therefore, the PEGylation of liposomes can be considered a passive
targeting strategy. It has been observed that the improved solubility together with the
decreased liposome aggregation induced by PEG leads to a 10 times longer circulation time
and increases liposome accumulation into the target tissues [126–128]. The dimensions of
the liposomal carrier proved to be crucial in determining the extent of this effect, which
seems to be maximized for diameter values less than 200 nm [129].

Alternatively, it is possible to adopt an active targeting strategy, which allows the
binding of the lipid carrier in a selective way on its target, releasing its payload in the
tumor (or pathological) microenvironment and therefore increasing the effectiveness of
the therapeutic treatment and, at the same time, lowering drug doses, reducing side
effects. The active targeting of liposomes involves the grafting of a targeting ligand
to the surface of vesicles, capable of recognizing a specific receptor expressed by the
cellular target. Such a targeting ligand can be noncovalently incorporated in the bilayer
or most commonly covalently linked to lipids or to the distal end of polymers anchored
to the bilayer, commonly PEG chains of PEG modified lipids. These lipid building blocks,
functionalized with the desired ligand, can be added to the lipid formulation in the first
step of liposome preparation, or they can be grafted via (mixed) micelles to the preformed
liposomes [130,131].

The commonly used targeting ligands are antibodies, proteins, peptides, carbohy-
drates, aptamers, and small molecules capable of being recognized by specific cell surface
proteins or receptors on cancer cells [132,133] (Figure 11).
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The PEGylated lipids used in the formulation of the targeted liposomes have the PEG
chain that ends with a suitable functionality, capable of forming a covalent bond with a
functionality present on the ligand. PEGylated lipids with these characteristics can be
synthesized ad hoc but are now widely commercially available. For example, PEGylated
lipids are available, which terminate with an amino group or a carboxylic group, useful for
the formation of an amide bond with the ligand; or ending with a maleimide group useful
for the formation of thioether bonds by reaction with a thiol group, or groups suitable for
“click chemistry” reactions.

At the same time, the polymers used for other specific functions can perform target-
ing functions, confirming the great versatility of liposomal systems. This is the case for
hydrophilic polysaccharide HA, used as a backbone of the multifunctional pH-responsive
polymers. Recently, Miyazaki et al. designed HA-based pH-sensitive polymer-modified
liposomes having not only pH-sensitivity but also targeting properties to cells expressing
CD44, which is known as a cancer cell surface marker [120].

7. Conclusions and Perspectives

Liposomes are very versatile carriers capable of satisfying many of the experimental
needs that arise in the field of drug delivery. The properties of first-generation phospholipid
vesicles can be expanded thanks to the possibility of grafting both natural and synthetic
polymeric molecules into the bilayer, to obtain second- and third-generation vesicles with
increased stability, load capacity, and ability to respond to external stimuli or to actively
recognize a specific target. Alternatively, the liposomes can be incorporated in a suitable
polymeric matrix capable of responding to stimuli or acting as a deposit of drugs and
bioactive molecules.

In this review, a representative overview of the various manufacturing and application
possibilities in the field of polymer/liposome assembly was presented, with a look at the
most recent literature, without however omitting the fundamental concepts.

Research in this sector is active both in the synthesis of new polymeric materials,
as well as in the creation of new architectures and in the supramolecular organization
of the various building blocks, as evidenced by the vast literature available in the vari-
ous databases.

The challenge in the future will be to expand the basket of commercially available
materials (amphiphilic polymers, modified lipids, responsive molecules, etc.), while at the
same time, containing the costs that today constitute the bottleneck for the scaling-up of
these innovative materials and their real clinical applications.
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