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Abstract: Information and probability are common words used in scientific investigations. However,
information and probability both involve epistemic (subjective) and ontic (objective) interpretations
under the same terms, which causes controversy within the concept of entropy in physics and
biology. There is another issue regarding the circularity between information (or data) and reality:
The observation of reality produces phenomena (or events), whereas the reality is confirmed
(or constituted) by phenomena. The ordinary concept of information presupposes reality as a source
of information, whereas another type of information (known as it-from-bit) constitutes the reality from
data (bits). In this paper, a monistic model, called the cognizers-system model (CS model), is employed
to resolve these issues. In the CS model, observations (epistemic) and physical changes (ontic) are
both unified as “cognition”, meaning a related state change. Information and probability, epistemic
and ontic, are formalized and analyzed systematically using a common theoretical framework of the
CS model or a related model. Based on the results, a perspective for resolving controversial issues of
entropy originating from information and probability is presented.

Keywords: cognition; cognizers system; information; probability; entropy; observer; observation;
(un)certainty; relative frequency

1. Introduction

Science has been increasingly diversified into various disciplines or research fields, creating
many concepts and terms used with special meanings inherent to each field. However, very few
fundamental concepts are shared by almost all of them. “Information” and “probability” are such
concepts, and these terms play wide and essential roles in scientific investigations. Science uses
two types of fundamental language: Epistemic (from Greek epistémé, meaning “knowledge”) and ontic
(from Greek 6n, ont-, meaning “being”). Epistemic language concerns how to know (understand) about
object things or processes; ontic language concerns the object things or processes. Several essential terms are
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shared in the sciences, such as: “Observer/observation”, “measurement”, “data”, “phenomenon”, “event”,
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and “[un]certainty” for the epistemic field; and “system”, “measurement device”, “matter/energy”, “state”,
“change”, “interaction”, “process”, and “pattern” (“form”, “structure”, “
and “[dis]order” as related terms) for the ontic field.

The concepts of information and probability involve both epistemic and ontic fields under the

same terms; epistemic and ontic are sometimes referred to as “subjective” and “objective”, respectively,

configuration”, “[dis]organization”,

for these concepts. Probability has two meanings: The degree of the certainty of an event occurring,
as the epistemic concept, and the relative frequency of an event (or state) occurring, as the ontic
concept [1]. Hacking [2] called this duality as “Janus-faced”. Information is also used to mean
knowing (or knowledge, data) as an epistemic concept, and pattern-transmission as the ontic one [3,4].
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Dictionary definitions of the term “information” are given as (1) facts provided or learned about
something, (2) what is conveyed or represented by a particular arrangement or sequence of things [5].
The term “inform” etymologically means: Form the mind to, describe, to give form or shape to (ibid.),
including both epistemic and ontic processes. For example, sequence data of a DNA molecule is
epistemic information for biologists who want to understand a particular process of life. Such DNA
molecule can also act as ontic information within a living cell when its sequence pattern is transmitted
to another pattern of an amino-acid sequence of a protein. Concepts of entropy and of the amount of
information also inherit these dual meanings of probability and information [6].

This duality of epistemic and ontic (or subjective and objective) fields (the E-O duality) in
these concepts produces conceptual and theoretical problems when they are used under the same
mathematical formalisms. For example, controversy exists as to whether entropy in physics represents
a quantity of a subjective state of knowledge or a quantity of objective properties about an observed
system [7,8]. In addition, there is another aspect of the issue of E-O duality: When an observer is
a material entity as a member of a material system and not an epistemic entity outside the system.
This aspect is easily understood by considering that scientists are also material entities as humans who
can interact with object systems, social or natural, under investigation (e.g., observation of animal
behavior, experiments in quantum physics). In biology, living entities, such as animals, plants, and
microbes, are all material entities functioning as subjects of knowing through their neural and/or
inter- or intracellular signal molecule processing of information within an observed system such as
an ecosystem. Here, “knowing” by organisms is not an epistemic but rather a material process that
is evident in behavioral and brain sciences. Immune networks can also work as cognitive systems,
like brains, in which the production of an antibody promotes or suppresses the production of other
antibodies, generating a network of cellular-level events [9,10]. The E-O duality suggests knowing
(observation) and material changes (such as movements, action) have not yet unified into a single
concept, according to which, information and probability theories have not yet unified in a monistic
framework. In this paper, I describe such a monistic model for information and probability, called the
cognizers-system model (the CS model), in which observations (epistemic) and physical changes (ontic)
are both described as cognition, defined as “state change in relation to other entities”; put simply,
“related state change”.

Another fundamental issue exists in theorizing information and probability. The above argument
is based upon the initial assumption that the external reality (or universe) exists as it is. However,
it is unclear whether data are caused by an observed system that exists independent of observation
(i.e., the ordinary type of information), or data create something real (i.e., it-from-bit type of information),
which is a difficult issue in philosophy [11-13], physics [4,14-18], and biology [19-22]. This issue may be
called “the circularity of entailment between epistemic and ontic fields” (denoted “the E-O circularity”).
This circularity, like “the chicken or the egg” problem, occurs as follows: Observation of the reality
existing independently of a subject produces phenomena (or events) in the subject, whereas the reality
is realized (constituted) from phenomena. In other words, observation presupposes the existence of
reality outside the observer, whereas the reality is confirmed by observation. This circularity has been
recognized historically, which is clearly represented in a fragment by Democritus: “The intellect says:
“Ostensibly there is color, ostensibly sweetness, ostensibly bitterness, actually only atoms and the
void”; to which the senses retort: “Poor intellect, do you hope to defeat us while from us you borrow
your evidence? Your victory is your defeat” [14] (Chapter 6). In quantum physics, information can be
understood as data or distinction from which physical reality is made; it-from-bit by Wheeler [16] is
this kind of information. Nakajima [23] proposed an internalist model for explaining how the external
reality can be “realized” (or “to become real”) from the phenomena by the subject (the self, the mind).
This kind of information, as realization, is important in science in which scientists try to constitute
natural/social reality from data (phenomena) and in understanding living systems. Scientists and
living systems, in general, cannot go outside themselves. All they are capable of is processing data,
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creating (models of) reality, and acting; in principle, they cannot determine whether the data originate
from real things that exist outside.

To avoid confusion from terminology, let us use the term “observation” of something as to know
something that is presupposed to exist, whereas “realization” of something is knowing something as
a construct by the subject; “knowing” is used as a collective term to mean either of them. Therefore,
the E-O circularity teaches us that knowing (or knowledge) can have two different meanings in this
context: To observe (observation) and to realize (realization: Making it real). As represented in the E-O
duality, the epistemic concept of information indicates knowing (or knowledge, data). According to
the two meanings of knowing (i.e., observation and realization), there are two epistemic information
concepts: The information as observation and the information as realization. The former is usually
used in information science founded by Shannon and Weaver [24], whereas the latter is usually called
it-from bit information in contemporary physics [4,16].

Presumably, no one doubts the importance and roles of the concepts of information and probability
and derived or related concepts, entropy and the amount of information, in promoting scientific
investigations. However, the E-O duality together with the E-O circularity produces a complicated
situation of information-theoretical approaches in science, particularly biology. In this paper, I attempt
to provide clear definitions in a single, monistic framework, called the cognizers system model,
and explain the relationships between them. In this endeavor, two types of world modeling
are distinguished: One is the internalist model in which only a subject entity is given and its
environment (or the external world) is derived within the subject (“internalist model” is different
from “internal model”; see Section 7.1). The other is the externalist model in which the world and its
material elements (entities) are given (defined) as a hypothesis and described from outside. The former
model is more conservative than the latter because its modeling is based on data or percepts that the
self has and no entity is assumed.

2. Overview

The major aim of this paper is to present a monistic framework of information and probability
theories. First, from an externalist point of view, I describe the cognizers-system model (hereafter,
the CS model) for unifying epistemic and ontic languages by use of the concept “cognition” as a state
change in relation to other entities. The term “cognition” in the CS model is different from common
usage of the term, where it is used exclusively for the epistemic field in the ordinary usage, whereas
it is used for both epistemic and ontic fields in the CS model. In this paper, I first overview the CS
model and the extended concept of cognition (Section 3): The cognition concept unifies the epistemic
state-changes in observation for a mental subject and the ontic state-changes for a material subject
as state-changes of an entity of the same kind. This extended usage can resolve the issue of E-O
duality in the framework of the CS model. Both epistemic and ontic entities are called “cognizer”,
which is a subject of state-changes in relation to other cognizers, i.e., interactions, in a cognizers-system.
Then, I address the E-O duality in information and probability concepts. “Information” is defined as
the related state-change. Therefore, “information” has the same meaning as “cognition” in the model.
Thus, epistemic information and ontic information are conceptually unified and explained in the same
language, i.e., the CS model. The relationship between various types of probability concepts, including
the degree of certainty and relative frequency, as well as entropy and the amount of information,
are formalized and explained within the same framework of the CS model. In particular, three types of
observer, the meta, external, and internal observers are distinguished for theorizing. The meta-observer
is the model builder of a CS model as the world. External observers exist outside observed sub-systems.
Internal observers are system components of an observed system.

Secondly, from an internalist point of view, I address the issue of E-O circularity using a more
conservative model in which only a temporal sequence of data or percepts are assumed, and I seek
for an algorithm that can derive foreign elements that do not belong to the given sequence.
The derived elements are formed within the subject, e.g., in the downstream of the sequence or



Entropy 2019, 21, 216 4 of 26

another. The algorithm I propose is called inverse causality, the contraposition of the statement of
the principle of causality. Inverse causality corresponds measurement (distinction) of different states
of the reality in the above externalist CS model. This argument concludes that quantum physical
measurements, represented as it-from-bit information, assume the inverse causality that is equivalent
to the deterministic world model (i.e., the principle of causality). If the subject can perform this kind
of algorithmic processing, it constitutes an internal model for the external reality. From the view
point of the meta-observer (builder of the internalist model), many such subjects can exist—a subject
cannot look over a population of subjects including itself due to the incapability of going outside of
itself. From this viewpoint, their internal models can vary depending on the entire dataset that each
subject has, and on partial data chosen from the entire dataset and used for derivation. This variation
of internal models about external reality can explain the diversity of umwelt in living systems in
an ecosystem. In science, a variety of world views can exist depending on the subject.

Lastly, I attempt to unite the externalist and internalist models into a single theory. The major idea
is that the externalist model is built within a subject. In other words, the externalist model is a kind
of internalist model that is built within a subject for realizing reality from phenomena occurring to
the subject.

During this course of the argument, I review publications concerning the above models and then
describe an entire synthetic framework toward a unified theory. Using the internalist and externalist
models, several types of information and probability concepts are defined and explain how they are
related to others.

3. Externalist Model of the World and Systems: Cognizers-System Model
3.1. The World, Systems, and Cognizers

3.1.1. Overview

The meta-observer describes a model of the world as the whole system of cognizers, i.e., the CS
model. The whole cognizers system (the world) is a metaphysical construct, which is a model of the
world. Part of the world can be observed as a system, which is a collection of interacting cognizers
(inter-cognition). A variety of partial cognizers systems (e.g., system A in Figure 1) can be harbored
in a nested-hierarchical way or another in the world. There are two types of cognizer functioning as
observers: External and internal observers. In the CS model, cognition and cognizer are general terms
that include observation and observer as special kinds of cognition and cognizer, respectively, which
are used dependent on the context. The term observer is usually used for a cognizer that has a memory
as an internal structure, and observation is used for memory-involving cognition. External observers
do not belong to the system they each observe (e.g., external observer A in Figure 1), whereas internal
observers belong to the system they each observe. Whether a given cognizer (observer) is “external”
or “internal” (identically, outside or inside, respectively) to a particular system does not depend on
their location in the physical distance space; instead, it depends on the membership to the system as
a component. The meta-observer exists nowhere and nowhen within the world; it rather exists at the
meta-level of the world-as-a-model and knows the world as an omniscient entity.

3.1.2. External Cognizers (Observers)

Any set of cognizers within the world (i.e., the whole cognizers system) can potentially form
a partial system (e.g., system A in Figure 1). Hereafter, “system” is used instead of “partial system”
when not confusing. Cognizers outside a focal system comprise “the environment of the system”,
which is the rest of the world. An external observer, which may include a measurement device, belongs
to the environment of the observed system. The system boundary is arbitrary in modeling. However,
in science, the boundary is chosen such that the system behaves approximately deterministic. This is
possible when the system is delineated such that the environment of the system is nearly constant to
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the system. Notwithstanding such delineation, any system within the world is not deterministic in
a strict sense because events occurring outside, including acts of observation, may cause uncertain
behavior of the system through interactions, even though very weak, with entities outside the system.
However, as is often seen in science, it is possible that theoretical models for those partial systems
behave deterministically by assuming their environments are constant or controlled by a certain
deterministic rule.

External observer A

. o .

° « °* M °
o ° °
sysioma ® .
° °
. ¢ b
. °
i .
World

Figure 1. Externalist model of the world using the cognizers-system model (CS model). The meta-observer
describes a model of the world (squared area). Dots denote cognizers in the world. The world is the
whole cognizers system that can harbor partial systems (e.g., system A). There are two types of cognizers
functioning as observers: External and internal observers. External observers, e.g., external observer A,
do not belong to the system they observe, whereas internal observers, e.g., internal observer a, belong
to the system they observe.

3.1.3. Internal Cognizers (Observers)

An internal observer belongs to an observed system as a component. Internal observers do
not observe entirely the partial system to which they belong to (e.g., system A in Figure 1); instead,
they each observe their environments (the rest of the system) that interact with them—this environment
should not be confused with “the environment of the system”. For example, when you observe a person
in conversation with yourself, your observation occurs internally in the two-person system, consisting
of the person and you. The person you observe is your environment, and this environment also
observes you.

3.2. Cognition in Cognizers-System Model

Definitions of cognition and cognizer are as follows: Cognition is a determination of a particular
state in relation to states of others. The determination involves two fundamental properties of cognition:
(1) Discrimination between different states of others, with discriminability as its ability; (2) selecting
one particular state among many possibilities, with selectivity as its ability. The entity that performs
cognition is called a cognizer. A cognizer is a material, or subject entity, that has a particular state at
each moment and changes its current state to another state, including non-change (i.e., a change to the
same state, as a special case), depending on the states of cognizers in the environment. The cognition
concept in the CS model includes any state-change of an entity (cognizer), including the acquisition
of data by an observer and movements of physical entities. Formally, a cognizer C is defined with
its own state-space, C, and the property that determines its state-change, fc, in relation to others,
as defined above.

The world is composed of cognizers. The world, the whole cognizers system, is a deterministic
system in a discrete time unit. A two-cognizers system, for example, consists of two cognizers forming
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the world (Figure 1). Being composed of only two components does not necessarily mean the system
is simple. It is possible, for example, to take a particular atom as one cognizer, and take the rest
of the universe as another cognizer; this is not simple. Figure 2 shows a two-cognizers system
composed of a focal cognizer C; with state space Cy, and its environmental cognizer E with state
space E. The environmental cognizer may be composed of many cognizers, such as Cy, C3, ..., Cy.
Arrows indicate temporal state-changes of component cognizers by cognition, which is formalized
as fci1 (c;, e) = ¢j; fe(ci, €;) = ¢j (i = x, j = y in Figure 2), where fc1: C1 X E — Cyand fp: C1 x E = E,
where italicized capitals are used to denote cognizers, and bold-faced capitals denote their state sets;
the arrow (—) indicates mapping by the function F, as follows. The state transition of the whole system
is given as

ey (Ci/ 61'), (fCIIfE)(Ci/ 61'), (fCI/fE)Z(Ci/ ei)/ ey

where (fc1, fe)(c;, e;) is defined as (fc1 (c;, e), fE (ci, e;)), which is simply denoted as F(c;, ¢;), where F is
the motion function or the whole system. Therefore, we obtain

sy (Ci/ ei)/ F(Ci/ ei)/ Fz(cl', ei), ooy
where (c;, e;) is the state of the whole system U with the state space U (F: U — U). Therefore, we obtain
ooy, Fup), FP(uy), . ..,

where u; = (c;, ¢;). The CS model is deterministic by F (Appendix A).

State Space of
Cognizer 1 (C4)

State Space of
the environment (E)

State Space of the
whole system (C4 x E)

Figure 2. A two-cognizer system composed of a focal cognizer C; with state space C; and its environmental
cognizer E with state space E. The environmental cognizer may be composed of many cognizers such
as Cy, C3, ..., Cy. Arrows indicate temporal state-changes of component cognizers by cognition.

From the meta-observer’s viewpoint, “cognition” is defined as a state change of a focal cognizer in
relation to the current state of the environment. Suppose that a focal cognizer changes its state from c; to
¢j when the environment state is e;. From a cognizer viewpoint, this cognition (¢; — ¢j) occurs in relation
to the environment (state ¢;), which can be interpreted as an “event” for the cognizer, which experiences
the environment by observation (cognition); the arrow (—) indicates a state-change. Each state is not
an event for cognizers; “state” is a meta-observer’s language. This aspect of cognition corresponds to
an epistemic representation of information, as described in detail below. From the viewpoint of the
meta-observer or an external observer, cognition ¢; — ¢j occurs in relation to states of other cognizers
in the system. In this sense, cognition is a related state-change. This aspect of cognition corresponds
to an ontic representation of information (i.e., related state-change), as described in detail below.
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The related state-change includes unrelated state-change as a special case; i.e., non-discrimination
between different states of environmental cognizers.

4. Cognition and Information

In this section, I attempt to resolve the issue of the E-O duality in information and probability
concepts, by using the concept of “cognition” in the CS model, in which epistemic knowing and
material movements, including movements of physical particles, are both represented as a cognition
by cognizers. The difference between epistemic and ontic fields depends on the types of cognition
and/or the cognizer under consideration.

4.1. State and Event

In the CS model, state and event are different concepts. States are defined by the meta-observer
(MO), who can discriminate every state from others in the CS model. Any cognizer inside the world
cannot identify the states of the object cognizers directly; instead, it knows them by cognition;
cognition may be interpreted as observation, event, or measurement, depending on the context.
An event is a particular cognition by a focal cognizer about a given object state—"object” may be
a system-within-the-world observed externally, or the cognizer’s environment. Two or more states,
e.g., Uy, Uy, ..., Uy, of an object may be cognized as the same by a focal cognizer (C), e.g., cx — cy for
those objects’ states. In this case, the same event occurs to the cognizer as the result of the cognition
(observation) of these states; in other words, the cognizer cannot discriminate between these system
states. Because the MO’s discrimination ability is perfect, each state of a CS corresponds uniquely
to a cognition of the system by the MO. Therefore, for the MO, state and event are equivalent to
each other.

4.2. Cognition as Epistemic and Ontic Information

Epistemic information is knowing about an object. For a subject, knowing is the occurrence of
events by observation of an object system or the subject’s environment. In the CS model, cognition
is a state-change of a cognizer in relation to other cognizers; here, the state-change indicates that the
former cognizer observes, or is informed of, the latter cognizers. Therefore, epistemic information is
cognition—a state-change related to an observed system or the cognizer’s environment.

Ontic information is usually understood as pattern transmission occurring among entities within
an observed system; “pattern” can be paraphrased as structure, configuration, or form. Any pattern
that entities can form is represented as an interrelation among the states of the entities. Mathematically,
a particular relation among the states of entities can be identified with a subset of the direct product
of state-sets (or state spaces) of the entities (Appendix B). Therefore, given two cognizers (A and B),
which are each composed of a plural number of sub-cognizers (i.e., cognizers at the next lower level
of hierarchical organization of cognizers). Their state-changes (cognitions) involve state-changes of
the sub-cognizers, and therefore, changes in their state-relation (pattern). Consider one-way pattern
transmission from A to B within a given system where B cognizes A, leading to a particular state-change
of B in relation to A’s state. Here, B’s state-change can be represented as a change in the internal state
or state-pattern that component sub-cognizers form.

Notably, epistemic information can also be represented as pattern transmission in the CS model,
when pattern transmission occurs from an object to an observing cognizer, a knower, which is
composed of cognizers at the next lower level. Consider an observing cognizer C; composed of
k cognizers C11, C12, ..., Cyx at the lower level. When C; takes state ¢;, it is represented as a k-tuple
of states of the lower-level cognizers, i.e., c; = (c1j, ¢2i, ... , k). Therefore, a cognition for C; can be
represented as (1, €2i, - - - , Cki) —* (C1j, €2j, - - - , Ckj) Occurring in relation to the state of the environment
harboring m cognizers, e; = (e1;, €;, - .. , €y)- This representation of epistemic cognition shows that
cognition involves changes in the internal state of a cognizer or the pattern that sub-cognizers form, as
represented for ontic information described above.
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To conclude, epistemic information as knowing and ontic information as pattern transmission
can be conceptually unified in terms of cognition. From the viewpoint of a cognizer as a knower
(internal or external observer), cognition is event-occurrence by observation, generating changes in
the internal state of the cognizer, in relation to an observed cognizer. From the viewpoint of a third
cognizer (internal or external), cognitions between two groups of observed cognizers can generate
pattern transmission from one group to another, which occurs within an observed system or within
the environment for the third observer.

4.3. Discriminability and Selectivity of Cognition

Cognition determines one particular succeeding state of itself in relation to a focal object,
such as an observed system for an external cognizer or the environment for an internal cognizer.
This determination, performed by a focal cognizer with a particular property and represented by
its motion function f (Section 3.2), involves two aspects of cognition: Discrimination and its ability,
discriminability; and selection and its ability, selectivity. Discrimination aspect of cognition refers to
a differential state change against different states of the observed system or the environment (its ability
is called discriminability). The selection aspect of cognition refers to the selection of one particular
succeeding state among the many possibilities in relation to others. The term “choice” is used for
another meaning in the CS model, which means to choose a particular piece of information (data)
for determining the succeeding state Nakajima [6]. The selection represents the meaning aspect of
information by highlighting the relationship with other entities.

Accordingly, information has two aspects of cognition in the framework of the CS model.
For example, a driver can discriminate colors of the signal light at an intersection, acting differently in
response to them. This discriminability of cognition is the distinction aspect of information, which
is focused by Shannon’s information theory [24]. Normal drivers stop, do not go, for the red signal.
This is the selection (selectivity) aspect of information that cannot be manifested by the discrimination
concept. Selectivity of cognition concerns the meaning of the red light. The states (colors) of a signal
light relate a driver to the states of other cars. Based on a signal perceived, a succeeding state is selected
(determined) by the driver, giving rise to a consequent relation with others. Living systems need to
manage this meaning aspect of information, because they, as teleonomic systems, act to experience
favorable events to maintain a particular relationship with their environments [6,25] (Section 6.3 in
Reference [6]).

The term “choice” is used in the original form of Shannon’s theory [24], meaning the determination
of one message among the many possible. Notably, this term represents the aspect of discrimination,
not selection, in determination. This is because the theory does not address a particular functional
relationship between a sender’s state and a sent message, i.e., the meaning content of each
message. Weaver declares that “The concept of information applies not to the individual messages
(as the concept of meaning would), but rather to the situation as a whole” [24] (Chapter 2).
A message sending-receiving process can be translated into the CS model as follows. Consider that
a message-sender is an observed system, and a receiver is a cognizer observing the sender, external or
internal to a given CS. Determination (choice) of one message by the sender means the determination
of one particular sender state, being coded as a message among n possible ones, which is then sent.
By receiving the message, a receiver then determines (changes from a previous state to) a particular
state related to the sender state; in other words, the receiver can discriminate between # different states
of the sender as an observed system. In this sending-receiving process, determinations (cognitions)
performed by the sender and the receiver involve both discrimination and selection. Shannon’s theory
focuses on the discrimination aspect of determination (cognition) by each of them. However, the theory
does not deal with a particular relationship on which selectivity focuses between two states, before and
after-in time determination for each, and that between the sender and receiver states, as the theory
does not care about the contents of messages, focusing on only the number of messages.
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5. Probability

5.1. Overview: Probability Concept in the CS Model

The above arguments provide a particular perspective for resolving the issue of the E-O duality
by extending an ordinary cognition concept to a more general concept as a relational state change,
applicable to either epistemic or ontic fields. This extension does not imply that higher-level cognitive
processes in the brain can be simply reduced to cognition at a physical level, or that physical entities
have mind-like properties. I review a probability theory using this extended concept of cognition
and cognizer in the framework of the CS model, based on previous works on this subject [6,25-27]
and develop it further for theorizing different concepts of entropy measure in a single theoretical
framework of probability theory.

Although the mathematical theory of probability has developed extensively since the
axiomatization by Kolmogorov [28], a variety of interpretations of probability exist in science.
The traditional interpretations of probability [1] include subjective (or epistemic) and objective
interpretations. The former considers that probability means the subjective or epistemic degree of
the certainty of the event occurring, whereas the latter considers that probability means the objective
property of a system, which is represented in terms of relative frequencies of events in the system.
However, these concepts are all probability for external observers or model builders. Nakajima [6,26,27]
focused on the probabilities of events occurring to material entities within a material system, including
the degree of certainty and relative frequency of events occurring to a material entity. This type
of probability has not been addressed by the traditional probability interpretations. For example,
consider the probability of a particular event that a bacterial cell experiences after a particular action,
or the relative frequency of the event that the bacterium encounters predators without being eaten
during a certain period of time. These probabilities can be considered from a viewpoint of an external
observer whose observation does not affect the probabilities. However, a bacterium is a subject,
like us humans, which also observes the external reality and acts in a particular way. Bacterial cognition
or action affects the probabilities of events occurring to the bacterium. In this case, the probability is
used for entities internal to an observed system, which is called “internal probability”, whether it is
a degree of certainty or relative frequency in the long run.

I attempt to unify these different concepts, including some of the traditional interpretation
relevant to science and internal probability, into a single framework in the CS model in which
epistemic knowing and ontic observation/action are unified as “cognition” (Table 1). In this framework,
the interpretation of probability varies according to the observer who experiences the event in question,
and whether or not the probability depends on a particular observation. There are external and internal
observers; the meta-observer is not included here, because it is not an observer that experiences events,
instead of playing a role in the description and explanation of the probabilities of events occurring
to cognizers in the world. In addition, the probability of an event can mean the degree of certainty
of the event occurring under a particular observation (cognition) or the degree of how often the
event occurs without reference to any particular observation (cognition). The former type is usually
called an epistemic (or a subjective) concept of probability, whereas the latter the objective concept or
the relative frequency concept. However, the former probability can be represented in terms of the
relative frequency of the event occurring under a particular observation. For example, take a repeated
coin-toss experiment: The relative frequency of coming up heads under a particular observation or
data about the initial state of the experiment, which provides an epistemic degree of certainty of
occurring heads in the future, if the initial condition of each toss is observed as the same. Therefore,
this type is called as cognition-dependent probability, denoted Pcog. The latter type of probability
(usually called relative frequency) involves counting the number of a focal event occurring under
overall observations, including different contents, to the total number of events occurring. Therefore,
[ call this type the overall-cognitions probability, denoted Pyyerall- Peog and Poyeran concepts are each
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divided into sub-concepts depending on whether events are observed by external or internal observers.
As summarized in Table 1, there are four types of probability.

Table 1. Four types of probability depending on the cognizer (observer) and on conditions for determination.

External Cognizer Internal Cognizer
Determined under a particular cognition External Peog Internal Peog
Determined under overall cognitions External Poyeran Internal Pyyeran

Lastly, a certain type of subjective probability, called the degree of belief [1], should be mentioned
here. Within the framework of the CS model, this type of probability is not identified as probability;
instead, it is treated as a kind of mental state of a subject, related to the determination of a particular
action among those available; such states are applicable only to human or related organisms with
higher cognitive faculties.

Let us consider an experiment of repeated coin-tosses for illustrating the concepts of Pyyeran and
Pcog for external and internal observers. The MO describes a theoretical model for the behavior of
the coin-toss system. This system is composed of a coin, a coin-tosser, a table, a person who observes
this experiment, and others; these are all cognizers in the whole CS model. The person is an external
observer (EO), who, as a cognizer, watches this experiment without affecting the coin-toss system
(a part of the world). The coin-tosser is an internal observer (denoted as an 10), a cognizer within the
coin-toss system, who interacts (inter-cognizes) with the coin. The coin, the table, and molecules in
the air are all cognizers, which are subjects experiencing events. Therefore, these physical entities can
also be called internal observers in the CS model, although they do not have enough internal memory
to be called an “observer” in ordinary language. Here, let us focus on the two persons as observers:
One internal (coin-tosser) and the other (watcher) external.

5.2. Probability for the Meta-Observer (MO)

Events for the MO are identified in terms of “states” of the world or of its partial cognizers-systems.
In other words, events occur in the world or partial systems. As represented previously (Section 3.2),
the world, modeled as a cognizers system, is a state generator by which a succeeding state of the world
is determined uniquely from a previous state. A cognizers system under consideration may consist
of n cognizers; therefore, the states of the entire system can be represented in terms of the n-tuple of
component cognizers’ states. Probabilities for the MO should not be differentiated into Pyyerail and Peog
because events are defined as subsets of system states. The MO can count the number of system states
belonging to a given subset (A;) defined in terms of n-tuple states (e.g., a subset of the system states
that the dice comes up heads), denoted #A;. It can also count the number of states of the entire set (X)
of system states under consideration, denoted #X. The ratio of the former to the latter, i.e., #A]-/ #X,
provides the probability. Here, #4; = | Aj | and #X = IX| when states occur only once in the sequence,
which is true in a deterministic system [26]. Pcog is given as the same manner as that producing Pyyerai,
except that a subset (A;) is defined in relation to a particular condition. The condition may be that
states of A;j have a particular relation with states occurring before in the time sequence.

This probability of an event is not a mere description of actual relative frequencies of events,
but rather values actualized as a consequence of the system properties, fc and fg, in Section 3.2,
evolving from a given initial state. In the CS model, the objective property of a system yields relative
frequencies of events defined in terms of a subset of system states. This objective property of a system
for yielding relative frequencies of events (defined in terms of a subset of system states) is similar to
the propensity concepts of probability by Popper [29], although Popper denies the deterministic world.
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5.3. Probability for External Observer (EO)

Events for an EQ, including a measurement device, can be defined in terms of “cognition” by the
EO, occurring in relation to particular states of an observed system. In other words, events are not
something occurring in the observed system, instead of occurring to the EO in relation to the system.
However, an event can refer to a particular state (or particular states) of the system because cognitions
occur in relation to states of the system. Due to this relatedness, events occur in an EO as if they occur
in the system (this aspect is explained in Section 7).

5.3.1. External P,yeran

The Poyeran measures the probabilities of events observed by an EO under various kinds
of cognition (observation) by the EO (e.g., an observer of a coin-toss experiment from outside).
The mechanism for determination is given similar to the MO, except that the EO’s discriminability is
not perfect. Consider a partial system S with state-space S in the world U. A cognizer C as an EO, with
state-space C, observes the system states by cognition. Consider a population of cognitions (¢; — ¢j,
including i = j; ¢; ¢; € C) by observation that occurred during a certain period of time (note that any
cognition can occur two or more times without violating determinism). The external Py, 0f a focal
event (cognition) is defined as the ratio of the number of focal events to the total number of events
occurring in the population.

S is usually composed by a plural number (say 1) of cognizers. Therefore, the cognition ¢; — ¢; by
an EQ, including a measurement device (cognizer), may be represented as (c;1, ¢, - - - , Cin) = (¢j1, Cj2,

. c]-n), where component states correspond to states of the component cognizers in S. Here, an EO
may focus on some of the system components. As stated previously, a cognizers system is a state
generator by cognitions among cognizers. Therefore, events occurring to an EO are cognitions of these
states generated by the observed system; in this sense, probabilities of the events are objective. Pattern
formations or transfers occurring among cognizers can be described in terms of the probabilities
(external Pyyeran) Of events referring to states of component cognizers.

5.3.2. External Peog

The external P.,g measures the probabilities of events observed by an EO under a particular
cognition (observation) by the EO (e.g., an observer of a coin-toss experiment from outside).
The mechanism for determination is illustrated in Figure 3. State changes of an EO and an observed
system are indicated with arrows, in which intermediate states may exist between the states shown.
The EO in a given state (cy € C) cannot discriminate between different states of the observed system
Sx1,8x2/ - -+ » Sxn (€ Sx C S), i.e., the EO cognizes them as the same, changing to ¢, (€ C). This cognition
cx — ¢y is an observation (cognition) of the system (e.g., “a coin was tossed in such and such
a way”). Corresponding to this observational cognition, n resultant states Sy1, Sy2, -+ -+ Syn (e Sy C S)
occur—there are 1 resultant states if the system changes states in a one-to-one mapping under the
assumption that the system is effectively isolated from the system’s environment. If the EO cognizes
either of the three states, Sy1, Sy2, Sy3, as the same resultant event ¢, — ¢;1 (e.g., heads), the Peog is
given as 3/n (Figure 3). This is the external probability (Pcog) of an event (¢, — ¢,1) occurring under
the conditional cognition or observation (cy — ¢;). The state changes, in the above illustration, are
extracted from a continuous state sequence, such as: ... , (cx, 5x1), (cy, syl), (21,7 ), -+ s (Cx, Sxa), (cy, sy4),
(cz2, ) -

Observational cognition is not necessarily a prediction of a resultant event, which may be a visual
perception or a hearing of sounds. If ¢y — ¢, is a perception whose semantic content is that “the coin
will come up heads”, and if the resultant observation is always “tails”, the probability of tails under
this predictive perception (cx — ¢y) is 1; i.e., the result under the prediction is completely certain.
The semantic contents of a prediction are a matter of code that links a cognition and a relation
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between a subject and an observed system, as illustrated in Section 4.3, using driver’s selectivity to
signal-light colors.

sx Sy
m
Syste
Sy1 Sy2 Sy3 Cz1
External cognizer Cy —_— cy,
(observer) ~
Sy Syn Cz2

Figure 3. The degree of certainty of an event occurring to an external observer (cognizer) C with
state-space C. C may include a measurement device (cognizer). cx — ¢, indicates an observational
cognition of the system, and ¢, — c,7 or ¢, indicates resultant cognitions of the external cognizer C.
sxi — Syi (1 < i < n) represents a cognition (state-change) of the entire system S with state-space S
observed by the external observer. Arrows indicate state-changes, which may include intermediate
states between a given state and the next state.

5.4. Probability for Internal Observer (I10O)

Events for an 1O can be defined in terms of cognition by the IO, occurring in relation to particular
states of the environment. In other words, events are not something occurring in the environment,
instead of occurring to the IO in relation to the environment. However, an event can refer to a particular
state (or particular states) of the environment because cognitions occur in relation to states of the
environment. Due to this relatedness, events occur to an IO as if they occur in the environment
(this aspect is explained in Section 7). IOs may include a measurement device. Traditional probability
concepts have not focused on this type of probability. This concept was formalized by Nakajima [26,27]
and named internal probability, which includes internal Pyyerai and Peog types. The internal probability
should play an essential role in explaining living processes because living systems are internal observers
or players within an ecosystem that cope with their environments to survive and reproduce.

5.4.1. Internal Pgyeran

The internal Pyera1 measures the probability of events occurring to (experienced by) an 10
under various kinds of cognition (action) by the cognizer (e.g., a coin-tosser). The mechanism for
determination is given similarly to the external Pgyean, €xcept that 10s interact with cognizers of
the system to which they belong. Consider an observed system S with state-space S in the world U.
A cognizer C, as an IO with state-space C, observes the environment E with state-space E by cognition;
cognition is not restricted to a change in internal states, which can include changes in physical
states, such as position, velocity, and others. Consider a population of cognitions (c; — ¢;, including
i=J; c; ¢j € C) by its observation, which occurred during a certain period of time. The internal Pgyeran
of the event (cognition) in focus is defined as the ratio of the number of events to the total number
of events occurring in the population. The major difference of this internal Pgyeran from the external
Pgverall is that the environment interacts with the IO.

5.4.2. Internal Pcog

The internal Pcog measures the probability of events occurring to (experienced by) an IO under
a particular cognition (action) by the cognizer (e.g., a coin-tosser). The mechanism for determination
is illustrated in Figure 4. The determination is similar to external Pc,g but the important difference
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is that a focal cognizer interacts with the environment. State-changes of an IO (focal cognizer) and
the environment are indicated with arrows, in which intermediate states (not shown in the figure)
may exist between the states. The IO in a given state (c;y € C) cannot discriminate between different
states of the environment ey, €y, . . . , exy (€ Ex C E). In other words, the IO cognizes them as the same,
changing to ¢, (€ C). This cognition ¢y — ¢, is an action (cognition) of the environment. Corresponding
to this action, n resultant states €yl, €y2, - , Cyn (€ Ey C E) occur; there are n resultant states if the
system changes states in a one-to-one mapping under the assumption that the system is effectively
isolated from the system’s environment. If the IO cognizes either of the three states, ey1, €y2, €y3, as the
same resultant event ¢, — ¢, (e.g., heads), the Pcog is given as 3/n (Figure 4). This is the probability
(internal Pcog) of an event (¢, — ¢1) occurring under the conditional cognition or action (cx — cy).
The state changes in the above illustration are extracted from a continuous state sequence, such as: ...,

(CX/ exl)/ (Cy/ eyl)/ (CZI/ ')/ ey (CX/ €x4)/ (Cy/ 6y4)/ (CZZ/ ')/ e

Ex Ey
Environment — —_
€y1 €y2 €y3
y ; Cz.,
Internal cognizer Cy —> Cy ~a

(observer) T
Figure 4. Degree of certainty of events (internal Peog) occurring to a focal internal observer (cognizer) C
with state-space C. ¢y — ¢y indicates an observational cognition of the environment and ¢y, — ¢, or ¢;;
indicates resultant cognitions of the internal cognizer C. e;; — ¢,; (1 < i < n) represents a cognition of
the environment, where ¢; = fE (cx, €y). Arrows indicate state changes, which may include intermediate
states between a given state and the next state.

In a coin-toss experiment, each cognition by the coin-tosser is a process of sensing-and-acting
involving the sensors, the brain, and effectors. A coin-tosser experiences a particular probability
(Pcog) distribution of events (heads and tails) corresponding to a particular kind of action of tossing
(i.e., cognition ¢y — c;). Consider a skillful coin-tosser. They could experience a biased probability
(internal Pcog) of heads or tails by manipulating the coin-toss [30]. The coin is also a cognizer that
cognizes the coin-tosser and changes its state. A biased coin may cognize the coin-tosser’s hand and
the table surface differently compared with a normal coin.

As stated previously, internal observers in this framework are not restricted to cognizers equipped
with a certain amount of memory and information processing ability. Even molecules can act
non-randomly due to their electromagnetic properties in water, for example. Therefore, their chemical
properties can affect encounter probabilities, in terms of internal Peog and Pgyerail, with other molecules,
and can affect chemical-reaction rates within a living cell [31,32].

5.5. Relationship between Pyyera and Peog

Let us address the next question as to the underlying relationship between Pgyeran and Peog,
external or internal, which remains unclear. As demonstrated in Figures 3 and 4, the probability (Pcog)
of a resultant cognition (event) (e.g., ¢, — ¢;1) under a particular cognition (cx — ¢y) is a conditional
probability determined for the observational cognition; this probability is obtained by the ratio of
the number of a focal resultant cognition (3 occurrences of ¢, — c;1) to the total number of resultant
cognitions (3 occurrences of ¢y, — ¢;1 plus [n — 3] occurrences of ¢, — ¢;).
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The same event, such as ¢y — Cz1, can occur under other observational cognitions for conditions.
Using mathematical expression of conditional probability, the Peog of event A; (e.g., ¢y — ¢;1), occurring
under cognition B; (cx — ¢y) earlier in time, is expressed as P(A; | B;) (= 3/n in Figure 4). P(B;) is the
Poverall Of B;. Therefore, YV ; P(A;|B;)P(B;) = P(A;). This equation indicates the relationship between
the Peog of event A; under observational cognition B;, and the Pyyeran of event A; (Appendix C for
a general representation). In other words, the Pyyeran of event Aj, P(4), is obtained by summing
P(A; | B;)P(B;) for various cognitions B; as conditions for occurrence of 4; in a state sequence.

Remember that, in repeated coin-tosses, the Pcog of heads is 1 or 0 under observations by
the Laplace’s demon [33], to which no uncertainty exists in the prediction derived from their
observation (cognition). However, the Pgyeran Of heads is nearly one-half, even to this omniscient entity.
This relationship between the Peog and Poyeran of events can be explained using the above formulation:
P(A;1B;) = 0 or 1 according to the demon’s observation, B;. B; includes two kinds of observations:
“Such and such an initial state was observed; therefore, it will come up heads” (denoted By) and
“such and such an initial state was observed; therefore, it will come up tails” (denoted Bt). Assume
that the initial states of the repeated coin-toss systems are random, i.e., P(By) ~ P(Bt) ~ 1/2, where
P(B;) is Poyeran Of observational events of the initial states of the system—the trials of coin-toss can also
be considered to be connected into a single, continuous state-transition of system. Let event “heads” be
denoted as Ay. Therefore, P(Ag | By)P(By) =~ 1 x 1/2,and P(Ag | Br)P(Bt) =~ 0 x 1/2, for the demon.
Therefore, P(Ay | By)P(By) + P(Ag | Br)P(Bt) = P(Ap) ~ 1/2, where P(Ay | By) is the Peog of heads (Ap)
under observation By, P(Ay | Br) is the Pcog of heads under observation Br, and P(Ap) is the Pyyeran of
heads. This relationship between the Pyyeran and the Peog is true for the cases of EOs and IOs, for which
P(Ap | B;) varies between 0 and 1 according to their discriminability.

5.6. What Determines P(B;)?

P(4; | B;) discussed in the above section can include external and internal Pcog, and the mechanisms
for determination are elucidated in Figures 3 and 4, respectively. What about P(B;)? Let us discuss
what determines P(B;) for the case of EOs who observe experiments. Experiments are partial systems
constructed by a scientist, an external cognizer. A plural number of replicate systems can be constructed
and run in parallel along the same time course or sequentially in time. A coin-toss experiment can be
understood as a simple model for experimental systems in science. A coin-tosser can be replaced with
a coin-tossing robot if they want to remove the complex human factor from an experimental system.
Consider a relationship between two events, i.e., an observation at the beginning of coin-tossing,
and an observation of the result, heads or tails. The first observation is of the initial state of the
coin-toss experiments. When coin-toss experiments are repeated, in parallel or sequentially, the results
show a nearly 50:50 ratio of heads:tails. This result indicates that the initial states (conditions) were
distributed almost evenly for those resulting in heads and those resulting in tails: P(By) ~ P(Br) ~ 1/2,
where By and Bt are subsets of observational events (initial-state events) resulting in heads and
tails, respectively, as above. Here, an initial state is realized by an observation (cognition) for an EO.
P(B;) indicates a probability distribution of observations, B;, about initial states for particular kinds of
experiments which are repeated.

What then determines P(B;)? This probability distribution does not depend on a particular
observation; in other words, it is Pyyerqn distribution and is unrelated to knowledge. If determinists
seek to explain the probability distribution in terms of system states earlier in time based on causality,
then they would be led to an infinite regress, as discussed by Landé [34] and Popper [29]. In the
CS model, the answer is that P(B;) is determined by the entire CS (i.e., the world), which includes
an external cognizer observing a partial system, or an internal cognizer observing its environment
(Figure 1). This answer is also true for the cases of IOs because the relative frequency of observational
events (B;) occurring to an IO is determined by the entire CS.
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6. Entropy and the Amount of Information

6.1. Overview

Probability focuses on measuring the degree of occurrence of a particular event, which does
not address the diversity of events. Entropy measures the diversity of events with their probability
distribution. Entropy plays a powerful role in measuring the uncertainty of events occurring as the
epistemic aspect of diversity, or in measuring the (dis)organization or (dis)order of an observed
system or the environment as the ontic aspect. In the previous section, four types of probability were
presented depending on whether a cognizer (observer) is inside a system or outside and on conditions
for determination (Table 1). Therefore, four types of entropy, H = ¥_; P; log, P; ! using the four types
of probability, can be derived accordingly. They are measures for the uncertainty of events or for the
disorder of a system, with each for IOs or EOs. In addition, four types of the amount of information are
discussed as a measure of uncertainty reduction and disorder reduction, respectively, for IOs or EOs.

6.2. External Entropy (Hcog) and the Amount of Information (Iceg)

Entropy for external observers (cognizers) is called the external entropy, which includes Heog
and Hgyerall- Heog is obtained from a probability (Peog) distribution of events experienced (observed)
by an external cognizer (observer) under a particular cognition (observation) by the cognizer, denoted
external Hcog. According to Shannon’s mathematical theory of information (or communication),
the amount of information is the amount of entropy (H = }; P; log, P; 1) reduction by observation or
receiving a message. Therefore, the external Hcog is a typical case of entropy described by Shannon’s
information theory. In other words, this entropy measures the uncertainty of events occurring under
a particular kind of observation by an EO. Here, a particular kind of observation is identified by
a particular kind of state change of the EO in relation to states of an observed system.

Information, i.e., cognition, by an external cognizer affects probabilities of events occurring to
the cognizer under the information, hence affecting the entropy value. The amount of information
measures the degree of a difference in external Heog that is generated by a difference in information.
Information for EOs is knowing (obtaining data) by observation. Therefore, a difference in data may
generate a difference in the entropy (Hcog) value about an observed system. The difference in Heog is
the amount of information (Icog) for an EO, denoted external Iog. External Ioog is identical to Shannon’s
amount of information in its ordinary sense. Here, information indicates “distinction” or “choice”
undergone by receiving a message, where a message-sender corresponds to an observed system,
and a receiver to an EO. In other words, information as distinction reduces uncertainty about an object.

Remember that information defined as cognition has two aspects of cognition: Discrimination and
selection (Section 4.3). The main reason why Shannon’s theory addresses the amount of information,
and not the meaning of information, is because the theory implicitly defines information as the
distinction (discrimination) and ignores its selection aspect. For example, the Heog value is the same in
the cases of the 80:20 ratio and the 20:80 ratio of heads to tails occurring under a particular cognition by
an EO of a coin-toss experiment. However, the two cases might have different meanings and worth for
the EO if heads and tails can have different importance for the EO. The aspect of information relating
to meaning or worth is important when the EOs considered are living systems because they need to
maintain a particular relation with their environments.

6.3. External Entropy (Hyperan) and the Amount of Information (Iyyeran)

Hoveran is obtained from a probability (Poyeran) distribution of events experienced (observed) by
an external cognizer (observer) under various kinds of cognition (action) by the cognizer; denoted
external Hoyyeranl- As stated previously, Poyeran is usually called relative frequency. Distribution of
external Pgyeran Values can represent the degree of disorder or disorganization, which can be measured
by Hyyerall, denoted as external Hyerar, using Shannon’s H where external Pgyerqn is used for P.
External Hoyeran is the entropy independent of a particular observation (information, cognition).



Entropy 2019, 21, 216 16 of 26

Disorder or disorganization becomes an objective description by defining it formally, although it
sounds subjective when used in isolation from a formalism.

Consider a system observed ay an EO. The system is composed of cognizers C;, C,, C3,
..., Cy. The EO observes their state-changes and obtains a set of events that refer to their states
(Section 5.3). From the relative frequencies of these event occurrences, the EO can obtain the
probabilities (external Pyyeran) Of events (cognitions) referring to the states of components (cognizers)
in the observed system during a particular period of time. When the distribution of probabilities
(Poveralr) of events about these components is more uniform, producing a higher external Hyyerqy value,
the system has visited a wider area of its state space.

Let us consider the amount of information for external Hyera1- Recall the example of a repeated
coin-toss experiment. The external Pcog of coming up heads is between 0 and 1, which depends on the
ability to discriminate the coin-toss system. If an EO has a higher discriminability, the Pcog of heads
(or tails) approaches 1 or 0 for an observation; therefore, external Heog approaches near zero. However,
the external P,yeran Of heads (or tails) remains near % for any observer, the demon, or humans, which is
an objective property of the system side to yield such a frequency of coming up heads (or tails).
External Hyera may not be affected by a difference in the observer’s discrimination ability under the
assumption that the observers under consideration can identify, at least, outcome events distinctly
(e.g., heads and tails). Under this assumption, external Hyeran values obtained by different EOs are
the same, and therefore the amount of information (i.e., external Iyeran) Obtained by altering the EO
is zero. In this sense, external Pgyeran and Poyerani-based entropy (i.e., external Hyyeran) appear to be
objective descriptions of an observed system.

The external Hyeran changes if the functions (properties) of cognition (fc, fg in Section 3.2)
are altered. For example, compare a coin-toss experiment using a biased coin and using
a normal coin. In this case, their external Hyeran Values should be different. Therefore, this difference
(i.e., external Ioyeran) can measure the amount of a certain type of ontic information, which is the
production of a pattern or order by interactions among entities. In a famous thought experiment
proposed by Maxwell [35], an imaginary being, later called Maxwell’s demon, generates a non-uniform
distribution of molecules in a vessel divided into two portions by a wall with a small hole. The demon
affects the related state-changes of molecules by opening or closing the hole. If the demon is interpreted
as an imaginary trick to understand the effect of an alteration of the physical properties of molecules
concerning how they act (move), this imaginary experiment would suggest that discriminative and
selective cognitions (i.e., actions or movements) by each system component can generate a particular
pattern measured in terms of external Hgyer. The amount of information, in the sense of forming
a pattern (external I yeran), can be measured by a difference in the external Hyyeran Values between
two systems, as above. Recently, a new approach using topological techniques (TDA) is being
developed to process very large data sets, known as big data [36,37]. This approach is based on
information (data) as patterns or a form of data-point clouds sampled (observed) from an observed
system for an EO (data analyst). The topological forms may be related to external Hyyeran-

6.4. Internal Entropy (Hcog) and the Amount of Information (Iceg)

Entropy for internal observers (cognizers) is called the internal entropy (Nakajima [6]),
which includes Heog and Hyerall, €ach obtained by using the equation of Shannon’s H. Heog is obtained
from a probability (Pcog) distribution of events experienced by an internal cognizer under a particular
cognition (action) by the cognizer, denoted internal Heog, which is represented in Figure 4. Here, events
are identified by cognitions by an IO, as represented by ¢y — ¢, and ¢y — ¢,1 or ¢, in Figure 4, which are
not identified by an EO, such as a scientist. For example, an organism experiences various kinds of
events as a result of a particular action with a certain probability distribution of events.

Information, i.e., cognition, by an internal cognizer affects internal Pcog, and hence internal Hcog-
The amount of information measures the degree of a difference in entropy generated by a difference in
an information process. Consider the following case in Figure 4. Suppose that the cognition ¢y — ¢
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becomes more discriminative: For example, ¢y — ¢, for ey1, ex2, and ey3; and cx — ¢, for other states of
E. In this case, under ¢y — ¢y, the cognizer experiences the consequent event ¢, — c,; with a probability
of 1 (Peog = 1, Heog = 0). As such, a probability distribution following a given cognition is altered by
alteration of that cognition. The difference in the first Heog minus the second Heog can represent the
amount of information of the second cognition relative to the first (i.e., internal I.og). The internal Icog
measures the amount of uncertainty reduction by the action for the material entity. It is a ubiquitous
property that living systems possess relatively high abilities to discriminate between different states
of environments and act selectively (appropriately). The internal Iog can measure their properties of
cognition relative to those of their ancestors.

It is sometimes stated that environments are uncertain for living systems. This may be true
for an EO because the uncertainty of system behavior reflects mainly system properties involving
uncertain actions from the outside (Figure 1). However, it is not the environment that is uncertain
for IOs. The uncertainty of events occurring to IOs is not determined only by the environment
side, but by interactions between a focal subject and the environment. Information (cognition) does
not occur in one way, but in both ways among cognizers. Depending on their discriminative and
selective cognitions, the environments for IOs, such as living systems, are not necessarily uncertain
in terms of internal Heog. These interactions are not effectively modeled in Shannon’s framework of
communication systems.

6.5. Internal Entropy (Hyperan) and the Amount of Information (Iyyeran)

Hoveran for an 1O is obtained from a probability (internal Pgyera11) distribution of events experienced
by an internal cognizer under various kinds of cognition (actions) by the cognizer, denoted internal
Hgyeran- For example, an organism experiences various kind of event with a particular probability
distribution during the lifetime. Again, events are identified by cognitions by an IO, not by an EO.
The relationship between Hgyeranl and Heog is understood from the relationship between Pgyeran and
Peog (Section 5.5 and Appendix C). In Maxwell’s thought experiment discussed previously for external
Hoveran and Ioyeral, @ pattern formation (i.e., becoming non-uniform distribution) of molecules is
viewed from an EO. Now, we can understand another implication of this experiment by shifting
the observer from an EO to an IO—a probability distribution of events viewed from the demon as
an internal cognizer. Suppose that molecules in a vessel do not have discriminative and selective
properties to generate a non-uniform distribution themselves. However, through discriminative and
selective actions by the demon, the demon experiences events of a non-uniform molecular distribution
(internal Hoyeran). This non-uniform distribution can also be observed for any EO in terms of external
Hoyvera- The important point of this internal view is that the probability distribution depends on the
IO, unlike in the case of EOs, because it is a consequence of interactions (intercognitions) between the
IO and other components in the system.

Similarly to internal Pcog, an alteration in cognitive properties affects internal Hyyera- Accordingly,
a difference (i.e., the internal I yeq11) between internal Hyeran for a referential original cognizer and
that for a cognizer with a new cognitive property, can measure the amount of information of the
alteration of cognition property relative to the original property (i.e., internal I yeran). This measures
the effect of an alteration of cognitive properties on internal Hgyeran-

6.6. Heog and Hoyerqy for Living Systems

The internal Heog and Hgyeran play an essential role in understanding living systems because
they focus on the probabilities of events experienced by internal cognizers in relation to their actions
and the properties of how they act in response to their environments. A question then arises as to
whether there is any tendency or principle about the relationship between biological evolution and
HCOg or Hoyerall-

Internal Heog measures the uncertainty of events followed by a particular cognition or action.
Therefore, it is conceivable that lower values of internal Hog are better for a living system, as long as



Entropy 2019, 21, 216 18 of 26

favorable events for survival and/or reproduction occur at higher probabilities than less favorable
events. However, as widely known in evolutionary ecology [38,39], there may be a trade-off
between organism phenotypic traits that increase survivability by discriminative and appropriately
selective actions using developed sense-organs and brains (e.g., vertebrates), and traits that increase
reproductivity by yielding more offspring (e.g., invertebrates). Due to this trade-off, living systems with
a higher internal Hog than alternative types can evolve in a certain environment, where traits reducing
the internal Hcog confer a relatively high cost on reproduction due to physiological or developmental
constrains. Under such a condition, genetic types yielding more offspring or eggs can achieve a higher
lifetime net reproductive output (i.e., a higher fitness) despite low survivability. Therefore, the internal
Heog for living systems tends to decrease through natural selection; however, in general, it may not
necessarily decrease due to the trade-off between traits increasing survivability and reproductivity.
The internal Hgyer, is also related to living systems and their evolution because they require
an appropriate probability distribution of events in their lifetime to maintain their internal order
(i.e., survival) and reproduce. Some events, such as encounters with resources or prey organisms
in a lifetime, can increase both survival and reproductivity; some events, such as encounters with
predators, can decrease survivability, and others such as encounters with mating partners, can increase
reproductivity. It is conceivable that the best lifetime probability distribution, in terms of the relative
frequencies of events experienced by a living system (i.e., the internal Hgyerqn), exists depending on
its biotic and abiotic environment. Therefore, hypothetically, the internal Hgyeran for living systems
neither tends to decrease nor increase but converges toward a particular range of values in evolution,
depending on their survival/reproductive strategies and niches in ecosystems. Lastly, the concept
of the probability distribution in the internal Hgyeray ignores the order of occurrence of events in
a lifetime, which is important for determining survivability and reproductivity for living systems.
A good theoretical measure is required for estimating an overall (lifetime) survival-and-reproductive
success (i.e., fitness) of living systems in the CS model, which should be developed in the future.

7. An Internalist Model: Realization by Inverse Causality

7.1. Overview

I address the issue of E-O circularity, the interdependence between observation and the external
reality. Observations of the external reality produce phenomena (or events) in a subject, whereas the
external reality is realized (constituted) from phenomena (Figure 5a). For a subject, the occurrence of
phenomena or data is not necessarily “observation” of something, because nothing might exist outside
the subject, such as in dreams and hallucinations. Derivation of something external from phenomena is
called “realization”. From an internalist point of view, I aim to develop a conservative model without
assuming the external reality and the world (E and U in the CS model, respectively; Section 3), in order
to understand how a given subject can constitute an internal model of the external reality based on
a given sequence of phenomena or data (Figure 5b). To this aim, I first review an internalist model of
realization by inverse causality (denoted the inverse-causality model) developed by Nakajima [6,23],
then attempt to link this model to the CS model, an externalist model, toward a comprehensive
information theory.

b
@) (b)
_ Realiztion v i "Modelof . | Phenomena |
H . B .
Ext((egr::{erse)ahty (Phel;?r?\(v:etna) : external reality : (events, data)
_ R R
Observation

Subject (the self)

Figure 5. (a) The circularity of entailment between epistemic (“phenomena”) and ontic (“external reality”)
fields, i.e., the E-O circularity. (b) The internalist model representing a possible way for the subject to
construct a model of the external reality within based on phenomena or data.
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The terms “phenomena”, “data”, and “events” are used interchangeably, which are represented
as m; — m; in the model. The term “internal model” is used to mean a model of the external reality
constituted within a subject (cognizer) with memory and data (percepts) processing capabilities,
like living systems, in the world. The term “internalist model” is used to mean a model based on
a stance of internalism as a fundamental stance for the mind-world relationship, which expounds that
phenomena occurring to a subject, or mind activities, depend only on the subject [40,41].

7.2. Realization by Inverse Causality

As a sequence of data (percepts or sense data; Appendix D for sense data), which are represented as
meaningless symbols, it is the primary sequence of data, M with the set M of symbols. Foreign symbols,
which do not belong to the first sequence, are derived from the first sequence by a principle
(or algorithm), called the inverse causality, originally developed by Nakajima [23], which is the
contrapositive of the principle of unique-successor.

The unique-successor principle stipulates that “Every element in the temporal sequence has
a unique successor”. Inverse causality is defined as: “If a given perceptual sequence satisfies the
unique successor principle, no operation is required. If not, new foreign elements are introduced into
the sequence in order that every perceptual element is a unique successor of an immediately previous
element of the new sequence”. The inverse causality (if F(a) # F(b), then a # b) is the contrapositive of
the unique-successor principle (if 2 = b, then F(a) = F(b)). Note that this principle does not exclude the
case where different elements are followed by the same element; that is, F(a) = F(b) when a # b.

Consider the simple example of a sequence of data occurring in succession, M:

mo, my, My, ..., Mo, My, M3, ..., 1)

where m; = mnj, if and only if i = j; M = {mg, my, my, m3, ... }. This sequence does not fulfill the
unique-successor principle because the first m; is followed by m;,, and the second m; by m;3. Therefore,
through an operation of inverse causality on M (ICM), the first and second m; are differentiated by
introducing the foreign symbols ¢y* to the first m1;, and e; * to the second one; here, derived symbols
are marked with an asterisk (*) to distinguish them from symbols used for states of the environment in
the CS model (Section 3). ¢;* is not a state of the external reality, but a state of the subject that refers to
something external. Therefore, the sequence now becomes

mg, (my, ep*), my, ..., mp, (my, e1%), ms, ..., 2)

The consequent sequences are generated downstream of M, i.e., within the subject.

From a viewpoint of the meta-observer in the CS model, the operation of inverse causality on M
can be interpreted as a measurement process detecting the external reality with state set Eo* = {eg, e1}.
Measurement is a causative discrimination process by a measurer between different states of an
external reality [42,43]. Accordingly, the perceptual changes occurring at m;, such as (1, ¢p*) — my;
(m1, e1*) — m3, can be a process of cognitive discrimination about something by the subject. Using the
state concept, the differences to be discriminated are differences in the state of something.

Noticeably, Sequence (2) does not fulfill the unique-successor principle at the whole level because
it contains a non-unique determination: my — (my, ep*), or my — (my, e1*), although it fulfills the
principle at M level. Therefore, inverse causality is, again, operated for Sequence (2) at the whole level
(denoted as ICW). To fulfill the unique successor principle, new foreign symbols, e,* and e3*, must be
introduced to the first and second . Then, the following sequence is obtained:

(mg, e2*), (m1, e9*), my, ..., (mg, e3*), (mq, e1*), m3, ... ,. 3)

By operation of ICW, the symbols referring to the external reality E;* are constituted with state
set E1* = {ep*, 1%, e2%, e3*}. The ICW process constitutes symbols for an undetectable reality (E;*)
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mediated through an ICM-constituted reality (Eo*) within the subject. The derivation of symbols by
ICM is a minimum realization process without recourse to the semantic contents of individual percepts,
whereas the derivation by ICW is more progressive, which is mediated through a directly-derived
(ICM-constituted) reality. The ICW-based measurement includes device-mediated measurements,
which are widespread in natural sciences, including physics, chemistry, and biology.

Without ICW, the first and second 1y — m; in Sequence (1) can produce no information in terms
of Shannon’s information or Bateson’s information as “any difference that makes a difference” [44].
The ICW process explicitly represents the it-from-bit type of information. According to Wheeler [16],
an elementary quantum phenomenon is “the elementary device-intermediated act of posing a yes-no
physical question and eliciting an answer”. He calls this device-intermediated realization of “it”
as “it from bit”: “Every it—every particle, every field of force, even the spacetime continuum
itself— derives its function, its meaning, its very existence entirely—even if in some contexts
indirectly—from the apparatus-elicited answer to yes or no questions, binary choices, bits” (Bold face
in the original text). A subject, such as an experimenter, obtains a bit about a physical object
(e.g., the detection/non-detection of a photon) mediated by the device. This device-mediated derivation
of an external reality is equivalent to ICW. This poses a question as to whether our universe is
deterministic or indeterministic (Appendix E).

The ICM process directly measures the external reality in different states. What then does the ICW
process measure? The ICW process operates on perceptual transitions, my — m; — m, or m3. This
pattern of transitions has the same structure of internal probability (Section 5.4.2). From a determinist
viewpoint, chance arises from ignorance about the object [33]. In this sense, the ICW process measures
something hidden that cannot be directly observed, only mediated through probabilistic events.

As an internalist model, the inverse-causality model starts with a temporal sequence of primary
data, which do not fulfill the principle of causality, and nothing is assumed that entails or causes
the data. ICM/W operate on a memorized sequence of the data (or percepts) occurring in succession
(Sequence (1)) to produce a sequence of derived or secondary data that fulfill the causal principle
(Sequence (3)). Through this process, the derived sequence contains something that entails or causes the
primary data. The ICM /W processes are impossible for a subject without any capacity for memorizing
a temporal sequence of data, which exists at every moment of now. Although data sequences in
memory are timeless in the sense that data synchronically form a (fragment of) sequence, their
sequences contain a temporal order or structure. ICM/W processing proceeds in the direction of time,
i.e., from the present to the future. However, it proceeds data-in-sequence in the opposite direction of
their temporal relations, i.e., from data occurring later to earlier. Here, it is important to distinguish
the logic of the principle of causality and of its contrapositive, the inverse causality, from a material
process that obeys the principle. Bateson [44] points out that the if, then of causality and that of logic
are different; the former contains the time, whereas the latter is timeless.

Lastly, let us focus on the diversity of internal models of the external world (the environment).
How does the inverse-causality model relate to this diversity? ICM/W-constituted reality (Eo* and E1¥)
in the above description is a set of symbols referring to the whole external reality that has not been
differentiated into individual objects, such as oxygen and nitrogen molecules or two balls on a table,
for example. The differentiation of a constituted reality requires ceteris-paribus ICM /W measurements
of a focal object by assuming states of the remainder of the constituted reality are the same. One possible
source for generating a diversity of internal models among subjects arises from differences in the
dataset that each subject has. Another source can arise from differences in the choice of data used
for ICM/W processing from the dataset, depend on different degrees of importance of data for
subjects. This variation in the internal model about the external reality can explain the diversity of
internal models in the living systems, which may correspond to what Uexkiill [19,20] called “umwelt”.
All the data that can be obtained are restricted by sensors (molecules or organs) for organisms, and
by measurement devices for scientists. Data are chosen from the entire dataset obtained by a subject,
and the reality is divided into plural objects as an internal model, depending on the strategy to
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survive/reproduce for organisms. Similarly, in science, a variety of world views (models) have been
proposed depending on the group of scientists in various fields, and also on differences in research
interest (curiosity) and abductive reasoning for scientists.

7.3. Cognizer Equipped with an Internal Model

The above processing of symbols by ICM/W requires a processor and the memory of data
sequences, which are not explicitly described in the inverse-causality model. If a subject does not
have any processor and memory for data, the subject exists in the form of a single phenomenon
(m;) occurring now, with each being replaced by another occurring another now. With additional
assumptions explicit in the CS model, the subject M can be modeled as a certain type of cognizer, which
has a certain amount of memory and an information processing capability, like living systems and
robots. In the following, the ICM process is incorporated into the CS model (ICW is not the focus here).

Consider a system and an external observer as represented in Section 5.1 (Figure 3). The observer
consists of two partial cognizers, sensor, and memory cognizers, which are represented as (sensor state,
memory state). The sensor can change its state from 0 (as a basal state) to another, suchas 0 — 1, 0
— 2,...,0 — n, as measuring cognitions through which it can discriminate between n differences
about the system. Arabic numbers are used for simplicity that does not necessarily represent quantity,
but they can. It is assumed that the sensor returns to the basal state 0 after measurement. This property
is similar to neural cells. In addition, the memory can take states g, p1, ..., yn.

In Figure 6a, the sensor changes state from (0, pg) to (1, y#p) by cognizing the system in state
s1, which is a discriminative cognition and also functions as an ICM measurement. In this process,
the memory now cognizes the sensor in state 1 and changes from y to ji;. The sensor then returns
to the basal state 0, and the entire state of the observer becomes (0, y¢7). This observer’s cognition
is represented by clarifying the intermediate state, (1, yo) between (0, yp) to (0, p1), as shown in
Figure 6a. If the intermediate states between (0, y;) and (0, y;,1) are concealed, the process is obtained
as shown in Figure 6b. Cognition by an EO determines a unit time, and therefore the timescale of the
observed system.

(@ (b)

S, S, S3 S, S, S3
c—>e—e—e—>c—> ° > o > o >
O ) (Lu) (Op) (2p) (0m) (0, 1o) (0, 1) (0, p,)

Figure 6. Observation (blue arrows) of an object system S by an external observer using inverse
causality processing (ICM). (a) State transition of an object system S, s; — s; — s3, ..., sy; and that
of its observer, (0, ug) — (1, uo) — (0, 1) = (2, u3) = (0, u2), ..., (-, -). The observer’s states are
represented as (sensor state, memory state). The sensor changes from its basal state (0) to another
state (1, 2, ... ) by measurement. After ICM measurement, the sensor returns to the basal state 0.
Measurements are recorded in the memory, such as ji, jt1, #2. (b) The observer’s state transition is
modified to obtain a state transition synchronizing with the system, such as (0, ug) — (0, p1) — (0, u2),
by removing intermediate sensor-states that are not in the basal state.

The above example uses the case of an external observer, but the same treatment can be applied
for internal observers when interactions occur between a focal observing cognizer and an object system
(i.e., the environment of the cognizer). When focusing on living systems with a certain type of internal
cognizer (observers) equipped with sensors and memories, the above model may be useful compared
to the abstract version of the CS model used in Sections 3 and 5. The above argument using the
inverse-causality model indicates that mathematical formalism of the ICM/W processes and that of
the CS model are quite compatible with each other.
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8. Conclusions

The information concept is often used without explicit definition, usually reified as if it is a material
entity, and sometimes confused with the amount of information. In this paper, “information” is defined
as the related state-change, which is nothing other than “cognition” in the CS model. The cognition
concept unifies the epistemic state-changes for observers and the ontic state-changes for material
entities in the framework of the CS model, through which the issue of the E-O duality can be resolved
(Sections 3 and 4).

By using this framework, four types of probability (Section 5) and four types of entropy as
a measure of the probability distribution (Section 6) are elucidated. The different interpretations of
the same mathematical formulation of entropy and those of the amount of information, due to the
differences between the four probability types, cause controversies in physics and biology. Scientific
investigations would remain in a conceptual mess if different concepts of entropy and information,
as discussed separately in Section 6, were not differentiated clearly under the same mathematical
formulae in the literature. Based on the framework presented in this paper, a detailed discussion of
specific controversies in various research fields is required in the future.

Lastly, the E-O circularity has been addressed from an internalist model in which only a temporal
sequence of data (percepts) are assumed (i.e., the inverse-causality model; Section 7). Information
in this internalist model is not identical to “cognition” in the CS model because this model
assumes the existence of entities (cognizers) outside a focal cognizer. In the inverse-causality model,
the inverse-causality process (i.e., the contrapositive of the statement of the principle of causality)
generates symbols referring to external entities, which is the it-from-bit type of information. The inverse
causality corresponds to measurement (distinction) of different states of reality in the CS model
(an externalist model). It is suggested that the inverse causality process can be incorporated into the CS
model (Section 7.3). A certain kind of cognizer can perform this kind of data processing to constitute
symbols referring to the external and build an internal model for the external reality. Therefore,
the mathematical formalism of the inverse causality processes and the CS model are compatible with
each other.
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Appendix A. Deterministic Formalization in the Cognizers-System Model

Determinism can be formalized using the cognizers-system model. Deterministic systems obey the
principle of causality. The principle postulates that given a state of the world (i.e., the whole cognizers
system) at any point in time, the successor state is uniquely determined by both the world state and the
world property represented as the motion function (F). In other words, given that two states (1; and u;)
of the world are the same, i.e., u; = u;, then their successor states are the same, i.e., F(u;) = F(u;):

If u; = uj, then F(u;) = F(u)). (A1)

Consider the two-cognizers system of a focal cognizer, C, and its environment, E, with motion
functions fc and fg, respectively. Here, fc: U — C, fr: U — E, where C, E, and U (= C x E) are the state
spaces of the focal cognizer (C), the cognizer’s environment (E), and the world (U), respectively.
F(u;) can then be expressed as (fc (u;), fr (u;)), where u; = (c;, ;). Designating (fc(u;), fe(u;)) as
(fc, f) (wi) = F(u;), where (fc, fg) () is denoted as F(). fc determines one successor state of C, ¢; uniquely
in terms of a given world state, u; (= (¢, ¢;)). This transition is expressed as fc(c;, ¢;) = ¢;. Similarly,
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fE determines a successor state of E, ej, uniquely in terms of a given world state, which is expressed as

fe(ci, e1) = ¢ (ci, ¢c; € C, ¢;, ¢; € E). As such, the causal principle is obtained in terms of cognizers.
Ifu; = uj, then fc(u;) =fc(1/l]'),‘ ifu; = uj, then fr(u;) =fE(Ll]'), (A2)

where u; = (c¢;, ¢;), and u; = (cj, ¢j)
Equation (A2) is equivalent to Equation (A1) because Equation (A2) can be expressed as: if u; = u;,
then (fc(uy), fe(uy)) = (fe(uy), fe(u;)), where (fe(uy), fe(uy)) = F(u;), and (fe(u)), fe(uy)) = F(u;) by definition.
Taking the contraposition of Equation (A1), the causal principle is obtained in another form:

If F(ui) # F(u]), then u; 7& u]-. (A3)

This implies that given two different states occurring at two different points in time, then their
preceding states are also different. Note that Equation (A3) does not imply that if u; # u;,
then F(u;) # F(uj). In other words, the same world state may proceed from different previous states
without violating the causal principle.

The above causal principle can again be expressed equivalently in terms of motion functions of
the cognizers, as follows. Taking the contraposition of Equation (A2), the followings are obtained:

If fo(u;) # fo(uy), then w; # uy; if fe(u;) # fe(uj), then u; # u;. (A4)

Equation (A4) is equivalent to Equation (A3) because Equation (A4) can be expressed as: If f-(u;),
fe() ) # (fc(uy), fe(u))), then u; # u;. Again note that it is not necessarily true that if u; # u;, then fc(u;)
# fc(uj) and that if u; # uj, then fp(u;) # fe(u;). It is possible that fc(u;) = fc(u;) when u; # u;, without
violating the causal principle. When both C and E change respectively to the same state in terms
of the different states of U, u;, and uj, then the world arrives at the same state from different states.
At this point in time, two-to-one mapping occurs, which does not violate determinism, that is, the causal
principle Equations (A1) or (A3). However, according to this principle, the world will follow the same
path after arriving at the same state.

Appendix B. Pattern as Relation

In the set theory, a particular relation among elements of k sets is represented as a subset of the
direct product of the k sets. A particular pattern (or structure, organization, or order) that is formed
by k cognizers can be represented in terms of a relation among the states of the cognizers under
consideration, in which a k-ary relation can be defined by a subset of the direct product of k state
sets (spaces).

Consider a cognizers-system (CS) with state-space U, and this system is composed of cognizers,
C1, Gy, ..., Cy, with state-spaces C; (1 < i < n). U can be defined as the direct product of all
these components, i.e., U = [] Ci. Direct products of state-spaces of k component cognizers,
e.g., C1 X C x Cs, can also be considered by choosing from the set {Cy, C, ..., Ca}. A subset of such
a direct product represents a relation between states of cognizers, e.g., C;, C», and C3. For example,
a particular configuration of atoms or molecules forming a polymer molecule can be represented using
a subset that defines their positional states in relation to each other.

Given a CS and a set of the states that occurred in a particular period of time under consideration,
we can consider the number of states belonging to a particular subset of the direct product of particular
cognizers’ state sets as a pattern formed by the component cognizers. The ratio of this number to
the total number of states of the CS dynamics in that period of time is the relative frequency of the
pattern occurring. Such pattern formation by cognizers can be attained by particular discriminative
and selective actions of cognizers [26,27].
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The above description of a pattern, in terms of relation, uses the concept of state from the viewpoint
of the meta-observer. However, the same description of patterns is possible for EOs and 10s by
considering that states of an observed system, or of its part, are constituted (realized) by cognitions.

Appendix C. General Representation for the Relationship between Pcog and Poverall

The argument in Figures 3 and 4 uses cx — ¢, — ¢;1 0T ¢;» as an example of the cognition sequence
of an EO or IO, which is extracted from a continuous state sequence, such as: ... ¢y, ¢y, 1, ..., Cx,
Cy, €22, --- , Cn. Let us consider a general form of a one-to-many correspondence between a given
conditional cognition (cx — ¢;) and N kinds of resultant cognitions (c¢;” — ¢z, ¢;2, . . . , or ;). Note that
each kind of cognition can occur two or more times in the sequence.

In this general form, the starting state (c,") of the second cognitions (results) is not necessarily
the same as the end (cy) of the first cognition (observation). Let us denote cx — ¢y as observation B;,
which may include two or more kinds of cognition, such as B; and B,; and, ¢;” — c; (1 <k < N) as
a resultant event A; occurring under B;.

A given sequence of percepts of an EO or IO can be represented, for example, as

...,By, Ay, ..., By, Ay ... By As, ..., By, A1 ..., Ba Ay ... By A, ...,

where ordered pairs (observation, result) are represented, e.g., (B, A1). P(A; | B;), P(4;), and P(B;) can
be obtained from the sequence. The summation of P(4; | B;)P(B;) for all B; equals P(4;).

Appendix D. Sense Data and the Reality

In the philosophy of perception, sense data indicate percepts that occur immediately in the self or
the mind. According to Russel [13] (Chapter 1), sense data are “the things that are immediately known
in sensation: Such things as colors, sounds, smells, hardness, roughness, and so on”. In the standard
usage of this term, sense data are the kind of thing we are directly (or immediately) aware of in
perception, not something derived from direct awareness. For example, when one sees a table, the
percept “this table” is not a sense datum, which is a mental idea derived from such sense data as
shapes and colors. The idea of “table” is a percept that is indirectly derived from these sense data,
occurring in the mind. However, there is no validation that sense data are caused by something existing
independently of the self, which can be understood by considering sense data occur in hallucination
and dreams [45,46]. In this paper, immediate percepts like sense data and derived data are not
distinguished in the internalist model because they differ only in meaning to the self. Solipsism holds
that I (the self) alone exists, and others are representations of the self. This proposition cannot be
proved to be false. A possible resolution of the issue of E-O circularity is to find a way to constitute
representations for the external reality (i.e., “inverse causality” in this paper), which is consistent with
the externalist model (i.e., “measurement” in this paper).

Appendix E. Inverse Causality and (In)Determinism

Whether our universe is deterministic or indeterministic cannot be empirically determined
because both are unfalsifiable hypotheses [27]. However, the device-mediated measurement is
undeniably an essential process in science, which is evident in the descriptions for Materials and
Methods section in publications. Surprisingly, the realization by device-mediated measurement
is possible under the assumption that the world fulfills the unique-successor principle, which is
equivalent to the contraposition of determinism. It may be true that the future cannot be predicted
using data (percepts) from the past because it is impossible to know the motion function of the world F
(Section 3.2) from a finite amount of past data [47,48]. In other words, the deterministic state-sequence
can be constructed only for past events that have already happened. Here, we can have two different
stances about determinism of the world model in Section 3. The first stance is that the world (delineated
by the square frame in Figure 1) is open to the future [29], which continues to become enlarged by
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incorporating new entities thus far unknown. The second is that the world has already included
everything, including the “would-be-discovered” part, which is described currently as the unknown
environment of us. Both are, again, metaphysical assumptions, but it is important to clarify when we
debate the issue of (in)determinism.
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