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A B S T R A C T   

Background: Despite advancements in treatments for multiple sclerosis, insidious disease progression remains an 
area of unmet medical need, for which atrophy-based biomarkers may help better characterize the progressive 
biology. 
Methods: We developed and applied a method of longitudinal deformation-based morphometry to provide voxel- 
level assessments of brain volume changes and identified brain regions that were significantly impacted by 
disease-modifying therapy. 
Results: Using brain MRI data from two identically designed pivotal trials of relapsing multiple sclerosis (total N 
= 1483), we identified multiple deep brain regions, including the thalamus and brainstem, where volume loss 
over time was reduced by ocrelizumab (p < 0.05), a humanized anti-CD20 + monoclonal antibody approved for 
the treatment of multiple sclerosis. Additionally, identified brainstem shrinkage, as well as brain ventricle 
expansion, was associated with a greater risk for confirmed disability progression (p < 0.05). 
Conclusions: The identification of deep brain structures has a strong implication for developing new biomarkers of 
brain atrophy reduction to advance drug development for multiple sclerosis, which has an increasing focus on 
targeting the progressive biology.   

1. Introduction 

Multiple sclerosis is an immune-mediated disorder of the central 
nervous system (CNS) and a leading cause of neurological disability in 
young adults. Multiple sclerosis is characterized by acute inflammatory 
disease activity leading to white matter demyelination and insidious 
progressive neurodegeneration, which results in neuroaxonal injury and 
accelerated grey matter atrophy (Compston and Coles, 2008; Miller 
et al., 2002). Grey matter atrophy may result from retrograde degen-
eration following focal white matter injury, but may also occur inde-
pendently of white matter abnormalities (Calabrese et al., 2015). 

Furthermore, grey matter atrophy occurs early in the disease course 
(Calabrese et al., 2007; Dalton et al., 2004; De Stefano et al., 2003), and 
shows greater correlation with clinical worsening than white matter 
changes (Fisniku et al., 2008). The availability of brain MRI in clinical 
practice and clinical trials enables systematic, non-invasive assessment 
of grey matter atrophy in the CNS. 

Approved multiple sclerosis disease-modifying therapies (DMTs) 
generally reduce clinical relapses and acute disease activity in patients 
with relapsing multiple sclerosis (Sastre-Garriga et al., 2020; Vargas and 
Tyor, 2017); however, advanced biomarkers are needed to better assess 
their impact on disease progression, which may occur independent of 
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relapse activity and disproportionally affect long-term disability (Cree 
et al., 2019). Development of novel DMTs increasingly focus on target-
ing multiple sclerosis progressive biology, including reducing chronic 
focal inflammation and increasing neurorepair to halt neuro-
degeneration (Villoslada and Steinman, 2020). Therefore, sensitive and 
specific assessments of multiple-sclerosis-induced neurodegeneration, as 
well as novel atrophy-based biomarkers, are essential to facilitate 
development of therapies and advance care in multiple sclerosis. 

Assessments of whole brain volume, while useful in some instances, 
does not fully capture the complexity of multiple sclerosis progressive 
biology (Calabrese et al., 2015) nor the hierarchically modular organi-
zation of the brain (Bullmore and Sporns, 2009). Instead, a localized 
assessment of brain atrophy may capture regional changes that are more 
specific to progressive biology, and thus may provide a better estimate of 
disease progression (Azevedo et al., 2018; Rocca et al., 2020). There is 
increasing evidence that spatial distribution of brain atrophy in multiple 
sclerosis is a non-random process (Haider et al., 2016; Steenwijk et al., 
2016; Eshaghi et al., 2018a). Furthermore, spatial distribution of brain 
atrophy may change during the course of the disease and differ across 
clinical subtypes (Eshaghi et al., 2018a). It is therefore reasonable to 
hypothesize that the effects of DMTs on brain atrophy may also follow 
non-random spatial patterns across brain structures and thus more so-
phisticated methods are needed to quantify local brain atrophy. In 
addition, localized assessments of volume change may provide a more 
sensitive measure of treatment response. Nonetheless, early efforts of 
localized brain volume measurements in multiple sclerosis by using 
voxel-based morphometry (VBM) (Ashburner and Friston, 2000) have 
shown limited association with clinical outcomes (Lansley et al., 2013). 
As a result, whole brain volume change remains a standard assessment 
in multiple sclerosis clinical trials (Sastre-Garriga et al., 2020). 

Measurement of localized brain volume changes may be affected by 
challenges in image registration and segmentation of brain regions and 
is further limited by the slow rate of multiple-sclerosis-related disease 
progression. Such errors can be minimized by methodology improve-
ment and careful design of the longitudinal image processing pipeline. 
Of particular interest, deformation-based morphometry (DBM), which 
benefits from substantial improvements in image registration methods 
and does not necessarily rely on tissue segmentation or brain parcella-
tion, in contrast to VBM or FreeSurfer (Fischl et al., 2004), has the po-
tential to provide a precise voxel-level atrophy assessment (Chung et al., 
2001; Manera et al., 2019). 

This study aims to develop and apply a state-of-the-art longitudinal 
DBM methodology to provide voxel-level assessments of longitudinal 
brain volume changes, and to identify multiple sclerosis brain regions 
that are preferentially protected from volume loss following treatment 
with ocrelizumab (OCR). OCR is a humanized anti-CD20 + monoclonal 
antibody approved for the treatment of relapsing and primary progres-
sive forms of multiple sclerosis, and significantly reduces brain atrophy 
and long-term disability in both populations (Hauser et al., 2017a; 
Montalban et al., 2017; Hauser et al., 2020; Wolinsky et al., 2020). 
Without restriction from predefined anatomical boundaries, the data- 
driven DBM method presented here was applied to identify unique 
spatial patterns of regional brain volume change that were associated 
with OCR treatment, and which may be associated with risk for 
confirmed disability progression. The DBM approach employed in this 
study exhibits great potential as a tool for future development of bio-
markers of brain atrophy reduction for DMTs in multiple sclerosis. 

2. Material and methods 

2.1. Data 

2.1.1. Patient population 
This study was a retrospective analysis of two identically designed 

phase 3 clinical trials of relapsing multiple sclerosis (OPERA I: 
NCT01247324; OPERA II: NCT01412333). Details on patient selection, 

MRI acquisition, and clinical assessments were provided in the original 
report (Hauser et al., 2017a). Briefly, patients were recruited with an age 
range of 18–55 years; 2010 revised McDonald criteria diagnosis of 
multiple sclerosis; Expanded Disability Status Scale (EDSS) score be-
tween 0 and 5.5; ≥ 2 documented clinical relapses within the previous 2 
years or one clinical relapse within the year before screening; brain MRI 
evidence of multiple-sclerosis-related abnormalities. Patients were 1:1 
randomized into two treatment groups: 1) OCR 600 mg every 24 weeks, 
or 2) interferon (IFN) β-1a 44 μg three times per week throughout the 
96-week treatment period. The intention-to-treat (ITT) population 
consisted of 1656 patients from OPERA I and II in total (821 in OPERA I; 
835 in OPERA II). The minimum requirement for analysis of longitudi-
nal changes in brain MRI data were that each patient must have brain 
MRI data available and successfully processed for the baseline and the 
first follow-up visit (Week 24). With this requirement, the patient 
sample size was reduced to 1483, with 742 in OPERA I and 741 in 
OPERA II. Demographic information and disease characteristics at 
baseline for this population are presented in Table 1, which were com-
parable to the ITT population as given in the original report (Hauser 

Table 1 
Demographic and disease characteristics at baseline of the study sample.   

OPERA I OPERA II  

Ocrelizumab 
(N = 375) 

Interferon 
β-1a (N =
367) 

Ocrelizumab 
(N = 374) 

Interferon 
β-1a (N =
367) 

Age, years, 
mean ± SD 

37.2 ± 9.3 37.3 ± 9.5 36.9 ± 8.9 37.2 ± 8.9 

Female sex, n 
(%) 

247 (65.9) 248 (67.6) 236 (66.5) 248 (67.6) 

Time since 
symptom 
onset, years 
± SD 

6.81 ± 6.30 6.22 ± 5.93 6.60 ± 5.93 6.71 ± 6.17 

Time since 
diagnosis, 
years ± SD 

3.87 ± 4.84 3.68 ± 4.56 4.12 ± 4.88 4.03 ± 4.98 

Relapses in 
previous 12 
months, n ±
SD 

1.30 ± 0.66 1.34 ± 0.65 1.34 ± 0.69 1.35 ± 0.75 

EDSS score, 
mean ± SD 

2.79 ± 1.22 2.72 ± 1.27 2.74 ± 1.30 2.75 ± 1.38 

No. of gadolinium-enhancing lesions on T1-weighted MRI, n/N (%) 
0 210/371 

(56.6) 
227/363 
(62.5) 

227/371 
(61.2) 

218/366 
(59.6) 

1 59/371 (15.9) 48/363 
(13.2) 

52/371 (14.0) 57/366 
(15.6) 

2 29/371 (7.8) 29/363 
(8.0) 

28/371 (7.5) 34/366 
(9.3) 

3 19/371 (5.1) 13/363 
(3.6) 

13/371 (3.5) 9/366 (2.5) 

≥ 4 54/371 (14.5) 46/363 
(12.6) 

51/371 (13.7) 48/366 
(13.1) 

Lesions on T2- 
weighted 
MRI, n ± SD 

50.61 ± 38.86 50.33 ±
39.45 

49.30 ± 38.80 50.24 ±
35.08 

Volume of 
lesions on 
T2-weighted 
MRI, cm3 ±

SD 

11.01 ± 14.13 9.48 ±
11.06 

10.56 ± 13.67 10.48 ±
12.31 

Volume of 
lesions on 
unenhanced 
T1-weighted 
MRI, cm3 ±

SD 

3.54 ± 5.98 3.24 ± 5.02 3.47 ± 5.86 3.33 ± 5.24 

Normalized 
brain 
volume, 
cm3 ± SD 

1499.26 ±
83.80 

1498.96 ±
85.85 

1503.66 ±
91.58 

1502.64 ±
89.80 

Abbreviations: EDSS, expanded disability status scale, SD: standard deviation. 
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et al., 2017a). In addition, study sample size per visit is shown in 
Table S1. 

2.1.2. Imaging protocols 
Conventional T1-weighted, 3D-spoiled, gradient-recalled echo brain 

MRI (before Gadolinium injection) was acquired at baseline, Weeks 24, 
48, and 96 (repetition time = 28–30 ms, echo time = 5–11 ms, flip angle 
= 27–30 deg, 60 oblique axial slices of 1 mm in-plane resolution and 3 
mm slice thickness without gap). For measuring lesion burden in white 
matter at every visit, the same T1-weighted brain MRI sequence was 
acquired after Gadolinium injection, in addition to conventional T2- 
weighted 2D multi-slice turbo/fast spin-echo and T2-weighted 2D 
Fluid-Attenuated Inversion Recovery (FLAIR), all of which were ac-
quired with the same slice orientation and voxel size. Lesion burden was 
evaluated centrally at NeuroRx Research, Montreal, Quebec, Canada. 

2.2. Longitudinal DBM pipeline 

The longitudinal DBM pipeline used in this study is illustrated in 
Fig. 1. The main part of this pipeline was recently developed (Tustison 
et al., 2019) within the open source toolkit Advanced Normalization 
Tools (ANTs) (Avants et al., 2014). At its core, the diffeomorphic image 
registration method of ANTs has been developed and extensively 

validated with human brain MRI data (Avants et al., 2011; Klein et al., 
2009) and is widely recognized as a top performer of nonlinear image 
registration in neuroimaging research. The Mindboggle atlas (Klein and 
Tourville, 2012), which is a modification of the popular Desi-
kan–Killiany–Tourville labelling protocol (Desikan et al., 2006), was 
used to identify individual brain structures. 

Prior to individual patient data processing, a population-specific 
group template of the T1-weighted brain MRI was constructed by an 
unbiased, iterative method in ANTs (Avants et al., 2010), with T1- 
weighted brain MR images of 171 healthy adults (aged 20–59 years) 
from the Dallas Lifespan Brain Study (Park Aging Mind Laboratory), 
which had a similar age range as the patients in the OPERA studies. 
Before being fed into the pipeline, each individual brain image from the 
OPERA studies was preprocessed with the following steps: 1) resampling 
to an isotropic resolution of 1 mm; 2) N4 bias correction (Tustison et al., 
2010); and 3) denoising with a non-local algorithm (Manjón et al., 
2010). 

Within each patient, a key step in the longitudinal DBM pipeline was 
to create a single-subject template (SST) from the images of all visits for 
each patient using the same image processing steps that were employed 
to create the population-specific group template. After the SST was 
generated, the spatial transformation between the SST and each indi-
vidual image was used to create a voxel-wise map of the Jacobian 

Fig. 1. Illustration of the longitudinal deformation-based morphometry pipeline. For each patient, a single-subject template (SST) is created with iterative regis-
tration from T1-weighted brain MRI of N time points, which is designed to be unbiased to any time point (left column). For each individual image, the registration 
with the SST of the same patient generates a Jacobian map over the whole brain (right column), which is a voxel-level measure of volume using the SST as the 
reference. A population-specific group template is created in a separate process. The spatial transformation from each SST to the group template allows the Jacobian 
maps in the SST space of each patient to be mapped into a common spatial coordinate of the brain in order to perform group-level voxel-wise analyses. Additionally, 
regional labels can be mapped from the group template to each SST in order to measure volume of regions of interest (ROIs) at the patient level. 
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determinant (also referred to as the Jacobian), which is a measure of 
voxel-level volume in each individual image (as a ratio to the volume of 
the same voxel location in the SST). Longitudinal volume change across 
time points at each voxel can be thus estimated as a change of the Ja-
cobian value at the voxel location. The SSTs were then registered to the 
group template by ANTs. Once the spatial transformation was estab-
lished, individual Jacobian maps in the SST space were transferred to 
the group template for group-level analysis. Additionally, brain masks or 
regional labels can be mapped from the group template to the SSTs so 
that volume change of any brain regions can be measured at the indi-
vidual level. 

2.3. Hierarchical voxel-wise detection of treatment effect 

Voxel-wise detection of treatment effect was performed with the 3D 
Jacobian maps (as voxel-level measure of volume) across visits. Brain 
MRI data from OPERA I and OPERA II were analyzed independently 
using the Analysis of Functional NeuroImages (AFNI) software suite 
(Cox, 1996). Within each OPERA study, we employed a hierarchical 
analysis scheme that consisted of two steps. The first step consisted of 
simple linear regression of the voxel-wise Jacobian against time, 
regardless of treatment. This was iterated over all the voxels in the 
whole brain mask to identify brain regions with significant volume 
change during the entire trial period. For the second step, voxel-wise 
repeated two-way analysis of variance (ANOVA) of Treatment and 
Time was iterated over all the voxels in the regions of significant volume 
changes as identified at the first step. The second-step analysis was to 
identify a treatment effect of OCR on regional volume changes over 
time. This analysis was performed over the detected regions of signifi-
cant shrinkage or significant expansion. At both steps of the hierarchical 
analysis, multiple test correction was applied across all the voxels in the 
whole brain mask based on family-wise error rate, which was performed 
with a cluster-based statistical method implemented in AFNI. Monte 
Carlo simulations with 10,000 iterations were done to determine how 
large a cluster of voxels was required to be statistically meaningful 
(Forman et al., 1995). Given the size of the whole brain mask, the 
minimum cluster extent was estimated at 7,966 mm3 to reach p < 0.05 at 
both the voxel and cluster levels. The patient sample size was matched at 
n = 285 in each treatment arm of each OPERA study based on data 
availability at all visits after image processing and quality assessment, in 
both steps of the voxel-wise analysis. The sample matching at every visit 
was required by the voxel-wise repeated two-way ANOVA as imple-
mented in AFNI, in order to have equal samples in each combination of 
factor levels. 

2.4. Cross-study validation 

The cross-study validation was performed to confirm that treatment 
effects were presented similarly in the two OPERA studies. For the brain 
region that was detected in one OPERA study, we evaluated whether the 
treatment effect was similarly presented in the same brain region in the 
other OPERA study. By extracting the mean Jacobian (as a measure of 
volume) of the detected region, we first performed repeated two-way 
ANOVA of Treatment and Time on the mean Jacobian of the detected 
brain region, which was a comparable analysis with the voxel-wise two- 
way ANOVA as described in the hierarchical analysis. In addition, we fit 
a linear mixed effects (LME) model for each detected region, which had 
the same primary formulation as the repeated two-way ANOVA to assess 
the interaction of Treatment and Time on the mean Jacobian, but 
adjusting for the following covariates: age, sex, geographical region of 
patient (USA versus the rest of the world), baseline measures of body 
mass index, whole brain volume, T1 gadolinium-enhancing lesion count, 
T2 lesion volume, unenhanced T1 lesion volume, as well as total change 
of unenhanced T1 lesion volume at Week 96 from baseline. All these 
covariates were obtained from the original analysis of the OPERA 
studies (Hauser et al., 2017b). The inclusion of both T2 lesion volume 

and T1 gadolinium-enhancing lesion count at baseline was to take into 
account of possible influence of global neuroinflammation on regional 
brain volume changes. The inclusion of unenhanced T1 lesion volume, 
both at baseline and total change during the entire trial period, was 
mainly to control potential influence of white matter lesions on image 
registration between T1-weighed images in the longitudinal DBM 
pipeline, although the change of unenhanced T1 lesion volume was 
generally small over the 96-week trial period. Furthermore, the LME 
modelling was repeated after rebaselining to Week 24, in order to reduce 
the influence of potential pseudoatrophy in the first few months of the 
trials (Zivadinov et al., 2008). The analysis of the mean Jacobian was 
performed with the R software (version 3.5.2), in which the LME 
modelling was done with the lmerTest library (Kuznetsova et al., 2017). 
Outliers in each volumetric measure of the detected brain regions were 
defined as being outside the 99% confidence interval and, thus, were 
excluded from analysis. 

2.5. Association with disability progression 

We finally assessed the relationship of volume change in the detected 
brain region with disability progression with the pooled sample of 
OPERA I and OPERA II. This was performed on the overlap (intersection) 
mask of the detected regions from the two OPERA studies. Given the 
underlying different neuroanatomy and functions, different brain 
structures may have different relationships with disability progression. 
For this consideration, we identified individual anatomical structures 
that showed a substantial presence of detected voxels within the overlap 
mask, and then we assessed how volume change of each individual 
structure might be related to disability progression. The boundaries of 
individual brain structure were based on the Mindboggle brain atlas. 

Confirmed disability progression (CDP) was defined as a composite 
measure of three clinical assessment methods: EDSS, Timed 25-Foot 
Walk (T25FW, a measure of short distance walking speed), and Nine- 
Hole Peg Test (9HPT, a measure of upper limb function) (Elliott et al., 
2019). The 24-week CDP was defined as progression on any one of the 
three components (EDSS, T25FW, or 9HPT): an increase of EDSS score 
from the baseline by at least 1.0 point (or 0.5 points if the baseline EDSS 
score was > 5.5) or a 20% minimum threshold change for T25FW and 
9HPT. This composite measure was able to capture a broader aspect of 
disability in patients with multiple sclerosis, which complemented the 
conventional EDSS score with meaningful measurements of body 
movement in both upper and lower limbs (Cadavid et al., 2017). 

The main analysis of 24-week CDP was done in the comparator IFN 
β-1a arm, for the consideration that the highly effective OCR treatment 
might have a more direct relationship than brain volume measures with 
disease progression. For additional context, we also repeated the whole 
analysis of CDP in the OCR arm. Cox regression models were fit to assess 
the effect of percent volume change in the whole trial period on the time 
to the 24-week CDP based on the composite score, adjusting for age, sex, 
geographical region of patient (USA versus the rest of the world), study 
(OPERA I versus OPERA II), baseline measures of body mass index, 
whole brain volume, unenhanced T1 lesion volume, T1 gadolinium- 
enhancing lesion count, T2 lesion volume, total change of unenhanced 
T1 lesion volume at Week 96 from baseline, and baseline measures of 
three clinical measures which were included in the CDP assessment 
(EDSS, T25FW, and 9HPT). The rationale of adjusting for the lesion- 
based measures was the same as described in the cross-study valida-
tion. Furthermore, the Cox modelling was repeated after rebaselining 
the volume changes to Week 24. 

3. Results 

3.1. Hierarchical voxel-wise analysis and cross-study validation 

At the first level of analysis of each OPERA study, significant volume 
change at the voxel-level were detected (Fig. S1). Proportions of 
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significant volume shrinkage or expansion was assessed in six major 
brain regions based on the Mindboggle atlas, including cerebrospinal 
fluid (CSF), cortical grey matter, deep grey matter, white matter, the 
brainstem, and the cerebellum (Table S2). The detected brain regions of 
significant volume change were similar between the two OPERA studies. 
As expected, significant volume shrinkage was found mainly in grey and 
white matter regions, while significant volume expansion was found 
mainly in CSF. It is also noted that a small portion of grey and white 
matter regions were identified as expansion, while a small portion of CSF 
regions were identified as shrinkage, which were likely caused by the 
partial volume effect in MRI for the limited image resolution. 

3.1.1. Treatment effect in the regions of shrinkage 
In OPERA I, a set of clustering voxels (48.1 cm3) in the regions of 

shrinkage were detected with a significant treatment effect (p < 0.05, 
corrected at the cluster level). This encompassed parts of the thalamus, 
putamen, brainstem, neocortex (including insula, inferior frontal gyrus, 
precentral gyrus), in addition to some white matter near the cortico-
spinal tract as well as in the cerebellum (Fig. 2A). By extracting the mean 
Jacobian of this detected region in OPERA I, the percent volume 
reduction from baseline was numerically less in the OCR arm at every 
follow-up visit, in comparison with the comparator IFN arm (Fig. 2B). 
Repeated two-way ANOVA confirmed a significant interaction between 
Treatment and Time on the mean Jacobian of the detected cluster (F =
53.1, p < 0.001), which indicated a treatment effect on time-related 
volume change. Adjusting for the specified covariates, the LME model 
confirmed a same treatment effect (F = 53.0, p < 0.001), which 
remained significant after rebaselining at Week 24 (F = 18.6, p < 0.001). 
Consistently, by extracting the mean Jacobian of the same brain region 
from the images of OPERA II, the percent volume reduction from 

baseline was also numerically less in the OCR arm at every follow-up 
visit, in comparison with the comparator IFN arm (Fig. 2C). Repeated 
two-way ANOVA confirmed a significant interaction between Treatment 
and Time on the mean Jacobian (F = 58.8, p < 0.001), as well as the LME 
models either with the baseline (F = 56.9, p < 0.001) or after rebase-
lining at Week 24 (F = 14.5, p < 0.001). 

For cross-study validation, the hierarchical voxel-wise analysis in the 
regions of shrinkage was repeated in OPERA II. A significant treatment 
effect was detected in similar brain regions of shrinkage as detected in 
OPERA I, in addition to parts of the posterior cingulate cortex, parietal 
and temporal cortices, and some white matter in corpus callosum (88.9 
cm3, Fig. 2D). By extracting the mean Jacobian of this detected region in 
OPERA II, the percent volume reduction from baseline was numerically 
less in the OCR arm at each follow-up visit, in comparison with the 
comparator IFN arm (Fig. 2F). Repeated two-way ANOVA confirmed a 
significant interaction between Treatment and Time on the mean Ja-
cobian (F = 120.8, p < 0.001), as well as the LME model either with the 
original baseline (F = 117.9, p < 0.001) or after rebaselining at Week 24 
(F = 44.0, p < 0.001). Consistently, by extracting the mean Jacobian of 
the same brain region mask from the images of OPERA I, the percent 
volume reduction from baseline was numerically less in the OCR arm at 
each follow-up visit, in comparison with the comparator IFN arm 
(Fig. 2E). Repeated two-way ANOVA confirmed a significant interaction 
between Treatment and Time on the mean Jacobian (F = 24.0, p <
0.001), as well as the LME models either with the original baseline (F =
23.3, p < 0.001) or after rebaselining at Week 24 (F = 11.0, p < 0.001). 

We extracted an overlap mask (13.30 cm3) that was identified with a 
significant treatment effect in both OPERA I and OPERA II (Fig. 2G). The 
overlap mask contained 12.3% of the thalamus (1.9 cm3), 27.1% of 
brainstem (4.8 cm3), and 3.6% of cerebellum (5.1 cm3, mainly in white 

Fig. 2. Detection of treatment effects in the brain regions with significant volume shrinkage. (A) The F-value map of significant interaction between Treatment and 
Time on Jacobian (as a measure of volume) in the voxel-wise repeated two-way ANOVA, which indicates a significant treatment effect on volume change over time, 
in OPERA I. Percent volume change from baseline (based on mean Jacobian) of the detected region is plotted for (B) OPERA I and (C) OPERA II, for which OPERA II 
serves as an independent test set. (D) The F-value map of significant interaction between Treatment and Time on Jacobian in the voxel-wise repeated two-way 
ANOVA, in OPERA II. The percent volume change from baseline of the detected region is plotted for (E) OPERA I and (F) OPERA II, for which OPERA I serves 
as an independent test set. (G) Overlap of the detections in (A) and (D). The percent volume change from baseline in the overlap region is plotted for (H) OPERA I and 
(I) OPERA II. The colour bar indicates the magnitude of F-values in (A) and (D). The patient sample size was matched at n = 285 in each treatment arm of each 
OPERA study. Error bars indicate standard error. 
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matter). By extracting the mean Jacobian of this overlap mask, the 
percent volume reduction from baseline was numerically less in the OCR 
arm at each follow-up visit in both OPERA studies (Fig. 2H and I). The 
LME models confirmed a significant interaction between Treatment and 
Time on the mean Jacobian in both OPERA studies, either with the 
original baseline or after rebaselining at Week 24 (F > 22.0, p < 0.001). 

3.1.2. Treatment effect in the regions of expansion 
In OPERA I, a significant treatment effect in the regions of expansion 

was detected mainly in the lateral and third ventricles (32.3 cm3, 
Fig. 3A). By extracting the mean Jacobian of this detected region from 
the images in OPERA I, the percent volume increase from baseline was 
numerically less in the OCR arm at every follow-up visit, in comparison 
with the comparator IFN arm (Fig. 3B). Repeated two-way ANOVA 
confirmed a significant interaction between Treatment and Time on the 
mean Jacobian of the detected cluster (F = 60.5, p < 0.001), as well as 
the LME model with the original baseline (F = 58.8, p < 0.001) or after 
rebaselining at Week 24 (F = 4.7, p = 0.03). Consistently, by extracting 
the mean Jacobian of the same brain region from the images of OPERA 
II, the percent volume increase from baseline was numerically less in the 
OCR arm at every follow-up visit, in comparison with the comparator 
IFN arm (Fig. 3C). Repeated two-way ANOVA confirmed a significant 
interaction between Treatment and Time on the mean Jacobian (F =
137.7, p < 0.001), as well as the LME models either with the original 
baseline (F = 130.7, p < 0.001) or after rebaselining at Week 24 (F =
41.0, p < 0.001). 

For cross-study validation, the hierarchical voxel-wise analysis in the 
regions of expansion was repeated in OPERA II. Two clusters of voxels 
were detected with a total volume of 65.0 cm3. One cluster contained the 
lateral and third ventricles, similar to what was detected in OPERA I. 

The other cluster was located near the primary motor cortex (Fig. 3D). 
By extracting the mean Jacobian of the entire detected region from the 
images in OPERA II, the percent volume increase from baseline was 
numerically less in the OCR arm at every follow-up visit, in comparison 
with the comparator IFN arm (Fig. 3F). Repeated two-way ANOVA 
confirmed a significant interaction between Treatment and Time on the 
mean Jacobian (F = 67.6, p < 0.001), as well as the LME model either 
with the original baseline (F = 61.6, p < 0.001) or after rebaselining at 
Week 24 (F = 15.9, p < 0.001). Consistently, by extracting the mean 
Jacobian of the same brain region mask from the images of OPERA I, the 
percent volume increase from baseline was also numerically less in the 
OCR arm across follow-up visits, in comparison with the comparator IFN 
arm (Fig. 3E). Repeated two-way ANOVA confirmed a significant 
interaction between Treatment and Time on the mean Jacobian (F =
27.4, p < 0.001), as well as the LME model with the original baseline (F 
= 25.9, p < 0.001). This treatment effect, however, was not significant 
after rebaselining at Week 24 (F = 1.5, p = 0.21). 

We extracted an overlap masks (29.1 cm3) of the brain regions of 
expansion that were identified with a significant treatment effect in both 
OPERA I and OPERA II (Fig. 3G). The overlap mask contained 85.4% of 
the lateral and third ventricles (13.3 cm3) in addition to some adjacent 
white matter. By extracting the mean Jacobian of the overlap mask, the 
treatment response was present in both OPERA studies (Fig. 3H and I). 
The LME models confirmed a significant treatment effect in both OPERA 
studies with the baseline (F = 58.0 in OPERA I; F = 131.8 in OPERA II; 
both p < 0.001), and a weaker but significant effect after rebaselining at 
Week 24 (F = 4.8, p = 0.03 in OPERA I; F = 41.1, p < 0.001 in OPERA II). 

3.1.3. Identified subregions within individual brain structures 
For further analysis of the relationship with disability progression, 

Fig. 3. Detection of treatment effects in the brain regions with significant volume expansion. (A) The F-value map of significant interaction between Treatment and 
Time on Jacobian (as a measure of volume) in the voxel-wise repeated two-way ANOVA, which indicates a significant treatment effect on volume change over time, 
in OPERA I. The percent volume change from baseline (based on mean Jacobian) of the detected region is plotted for (B) OPERA I and (C) OPERA II, for which OPERA 
II serves as an independent test set. (D) The F-value map of significant interaction between Treatment and Time on Jacobian in the voxel-wise repeated two-way 
ANOVA, in OPERA II. The percent volume change from baseline of the detected region is plotted for (E) OPERA I and (F) OPERA II, for which OPERA I serves 
as an independent test set. (G) Overlap of the detections in (A) and (D). The percent volume change from baseline in the overlap region is plotted for (H) OPERA I and 
(I) OPERA II. The colour bar indicates the magnitude of F-values in (A) and (D). The patient sample size was matched at n = 285 in each treatment arm of each 
OPERA study. Error bars indicate standard error. 
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four subregions of individual brain structures were identified with a 
significant treatment effect in both OPERA I and OPERA II (thalamus; 
brainstem; cerebellum in the regions of shrinkage; lateral and third 
ventricles in the regions of expansion; Fig. 4). With the pooled sample of 
OPERA I and OPERA II (N = 1483), the percent volume change from 
baseline in all the four subregions, regardless of shrinkage or expansion, 
was numerically less in the OCR arm at every follow-up visit, in com-
parison with the comparator IFN arm. The difference between the two 
treatment arms was the largest at the last visit (Week 96) when the 
percent volume change was estimated from the baseline (Cohen’s d =
0.58, 0.54, 0.33 versus 0.67, for the subregions of the thalamus, brain-
stem, cerebellum, lateral and third ventricles, respectively) or after 
rebaselining at Week 24 (Cohen’s d = 0.24, 0.37, 0.16 versus 0.24 for the 
subregions of the thalamus, brainstem, cerebellum, lateral and third 

ventricles, respectively). The LME models confirmed a significant 
interaction between Treatment and Time on the mean Jacobian of each 
of the four subregions either with the baseline (F = 122.5, 122.2, 51.7 
versus 207.6, for detected subregions of the thalamus, brainstem, cere-
bellum, lateral and third ventricles, respectively; p < 0.001 for all) or 
after rebaselining at Week 24 (F = 28.7, 48.3, 11.6 versus 46.9, for 
detected subregions of the thalamus, brainstem, cerebellum, lateral and 
third ventricles, respectively; p < 0.001 for all). 

For a reference, we performed a similar analysis with whole brain 
volume data rebaselining at Week 24, which were estimated by SIENA in 
the original clinical trial (Hauser et al., 2017b). Consistently, mean 
percent reduction of whole brain volume was less in the OCR arm than 
the comparator arm, and the difference between the two arms was larger 
at the last visit (Cohen’s d = 0.21). In addition, the LME model 

Fig. 4. Treatment effects in the identified subregions within individual brain structures. The masks of identified subregions are shown for (A) the thalamus, (B) 
brainstem, (C) cerebellum, and (D) lateral and third ventricles, each of which is followed by plots of the percent volume change from baseline and from Week 24 
(after rebaselining), respectively, in each treatment arm, using the pooled sample of the two OPERA studies (N = 1483). Error bars indicate standard error. 
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confirmed a significant interaction between Treatment and Time (F =
17.8, p < 0.001). These results indicated a smaller treatment effect in the 
whole brain than the detected individual brain regions except the one in 
cerebellum. 

3.2. Association with disability progression 

In the comparator arm (treated with IFN β-1a) of OPERA I and 
OPERA II combined (N = 596), we fitted a series of Cox proportional 
hazards models to assess whether the percent volume change in each 
detected subregion in the brain was associated with time to the 24-week 
CDP. The percent volume change was estimated from either the baseline 
or Week 24 (rebaselining) to the end of the trial period (Week 96), and 
was normalized by z-scoring across patients for each brain region. Fig. 5 
shows the estimated hazard ratio and 95% confidence interval of the 
percent volume change in the detected subregions. The percent volume 
reduction in the detected subregion of the brainstem was significantly 
associated with a higher risk of the 24-week CDP, with the volume 
change estimated from either the baseline (p = 0.006) or Week 24 (p =
0.011). This relationship was not significant in the detected subregion 
within either the thalamus or the cerebellum. In addition, the percent 
volume increase in the ventricles was significantly associated with a 
higher risk of the 24-week CDP, with the volume change estimated from 
either the baseline (p = 0.021) or Week 24 (p = 0.012). After multiple 
test correction of the false discovery rate across all of the above tests, the 
findings in both the brainstem and ventricles remained significant, with 
the volume change estimated from either the baseline or Week 24 (p <
0.05). As a reference, we performed a similar Cox modeling with the 
whole brain volume data as estimated by SIENA in the original trial 
report (Hauser et al., 2017b), and found that the total percent volume 
reduction of the whole brain volume at Week 96 from Week 24 (reba-
selining) was not significantly associated with the 24-week CDP (p =
0.15). 

For additional context, we repeated the Cox modeling in the OCR 
arm of OPERA I and OPERA II combined (N = 655), but there was no 
significant relationship between the 24-week CDP and the percent vol-
ume change of any detected subregions, with the volume change esti-
mated either from the baseline or Week 24 (p > 0.05, uncorrected). 

4. Discussion 

This work focuses on the development and the application of a lon-
gitudinal DBM method to assess voxel-level brain volume changes in 
multiple sclerosis and its potential to advance imaging biomarker 
development with a focus on treatment response and disease progres-
sion. In our analysis of two independent pivotal trials of OCR in re-
lapsing multiple sclerosis, a cluster of voxels of shrinkage were 
identified, including subregions within the thalamus and brainstem, 
where the percent volume loss was significantly reduced by the OCR 
treatment during the trial period, in comparison with the IFN β-1a 
response. The volume increase of brain ventricles, which reflected 
global brain atrophy, was also reduced by OCR. Importantly, the percent 
volume change in the brainstem and ventricles was significantly asso-
ciated with a higher risk of the 24-week CDP in the comparative arm. 
Furthermore, the treatment effect was significant but less on the whole 
brain volume as assessed in the original OPERA trials (Hauser et al., 
2017b). In addition, change of the whole brain volume was not signif-
icantly correlated with disability progression. All these findings together 
support the view that localized brain volume change can be more sen-
sitive to effective therapeutic interventions as well as being more 
correlated with disease progression, and that these local changes may be 
muted when atrophy estimates are made over the whole brain. 

The DBM analysis of brain volume changes relied on precise 
nonlinear image registration across time points of each patient in the 
longitudinal pipeline. In contrast to voxel-based morphometry, which 
has been applied to multiple sclerosis research albeit with only limited 
success (Sastre-Garriga et al., 2020), DBM doesn’t require tissue seg-
mentation. Hence its performance is immune to segmentation errors. 
Given its validated performance of brain image registration (Avants 
et al., 2011; Klein et al., 2009), the ANTs method has been applied to 
multiple sclerosis research, mainly by atlas-based Jacobian integration 
(Andorra et al., 2018; Fadda et al., 2019; Nakamura et al., 2014). The 
present longitudinal DBM pipeline further minimizes registration errors 
by constructing and utilizing an unbiased SST as the reference image for 
the patient level analysis, where the SST had minimum anatomical 
difference with individual images of the same patient. 

The underlying mechanism of brain atrophy in multiple sclerosis 
remains to be elucidated (Calabrese et al., 2015). Since brain atrophy is 

Fig. 5. Association of the percent volume changes in 
the identified subregions within individual brain 
structures with disability progression. The identified 
subregions were within the thalamus, brainstem, 
cerebellum, and lateral and third ventricles, respec-
tively. Cox regression models were fit to assess the 
effect of percent volume change in each identified 
structure on the 24-week CDP, in the comparator arm 
(treated with IFN β-1a) of the two OPERA studies 
together (n = 596). Forest plots of hazard ratio and 
95% confidence interval are provided for the identi-
fied structures. The percent volume change was 
assessed from either baseline (green) or Week 24 
(rebaselining, red), and was normalized by z-scoring 
for each region. Blue boxes indicate shrinkage and 
orange indicates expansion. The number of patients 
who had an event of the 24-week CDP was 174 in this 
sample. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web 
version of this article.)   
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a part of normal aging and many other neurological diseases (Azevedo 
et al., 2019), it is not straightforward to identify multiple sclerosis- 
specific atrophy with conventional brain MRI. Some evidence suggests 
that inflammation-induced axonal transection in the connecting fibre 
tracts may be a major cause of neuronal loss in multiple sclerosis (Cifelli 
et al., 2002). In addition, trans-synaptic degeneration may also play an 
important role (Ontaneda et al., 2021), which allows neuronal injury to 
spread from neuron to neuron through synaptic connection in the brain 
network and thus offers an insight about the spatial distribution of brain 
atrophy. 

As an increase of ventricular volume reflects global brain atrophy, a 
suppression of ventricular volume increase by OCR treatment indicates a 
global improvement against brain atrophy. Given the likely non-random 
spatial distribution of brain atrophy (Steenwijk et al., 2016) and variable 
treatment response across brain structures, a suppression of volume loss 
in specific brain regions may reflect the treatment effect at a finer scale. 
Among the identified brain structures, involvement of the thalamus in 
multiple sclerosis has attracted significant attention in recent years 
(Amin and Ontaneda, 2020; Fadda et al., 2019; Zivadinov et al., 2013). 
The thalamus has extensive neural connections with major cortical and 
subcortical structures, which makes it relevant to a wide range of brain 
functions including sensory, motor, and cognitive functions. For the 
same reason, the thalamus may be particularly sensitive to both diffusive 
neurodegeneration via the mechanism of trans-synaptic degeneration, as 
well as being responsive to neuroprotective therapies (Kipp et al., 2015). 
However, the involvement of thalamus in movement-related functions is 
not fully understood (Sommer, 2003). Although baseline thalamic vol-
ume has been related to clinical progression of patients with relapsing 
multiple sclerosis in a few studies (Eshaghi et al., 2018b), to the best of 
our knowledge, an association between thalamic volume change and 
CDP has not yet been reported. Our data showed no significant associ-
ation of the percent volume change with the risk of the 24-week CDP, in 
the detected subregion of the thalamus. A plausible reason might be that 
the composite disability score used in our analysis did not capture the 
thalamic role in the measured disabilities of this patient population. 

Relatively few neuroimaging studies in multiple sclerosis have been 
dedicated to the brainstem or cerebellum, although both structures are 
highly relevant to the pathology and clinical characteristics of multiple 
sclerosis (Comi et al., 1993; Habek, 2013; Magnano et al., 2014; Naka-
shima et al., 1999). Our finding in the brainstem was particularly 
interesting for the significant association between its volume loss and 
the risk of the 24-week CDP. This association is aligned with the strong 
neural connectivity of the brainstem with both the spinal cord and motor 
cortex via the corticospinal tract (Kerbrat et al., 2020). Spinal cord le-
sions are strongly associated with movement-related disability in mul-
tiple sclerosis (Sastre-Garriga et al., 2020; Schlaeger et al., 2015; 
Tsagkas et al., 2019). Spinal damage could potentially manifest in the 
brainstem due to trans-synaptic degeneration (Ontaneda et al., 2021). 
Spine MRI is often technically much more difficult than brain MRI 
(Sastre-Garriga et al., 2020). There are some recent efforts to measure 
atrophy of upper cervical cord with brain MRI (Lundell et al., 2017). 
Nonetheless, the ability to assess the brainstem atrophy in brain MRI 
may be potentially a useful surrogate biomarker of spinal atrophy. 

The cerebellum is another important brain structure whose 
involvement in multiple sclerosis has been increasingly recognized 
(Parmar et al., 2018). Our detection of the treatment effect of OCR in the 
cerebellum, however, was rather small (3.6% of the whole cerebellum), 
which was mainly located in white matter. This limited finding might be 
due to contamination by the CSF signal in the tightly folded cortical grey 
matter (the folia) of the cerebellum. Due to the small detection size, the 
pattern of volume change in the detected part might not be represen-
tative of the whole cerebellum, when the grey matter compartment was 
largely excluded from the first-level analysis of volume change regard-
less of treatment. 

One limitation of the present study was due to the partial volume 
effect in the original brain MRI of the OPERA trials, given the slice 

thickness of 3 mm, while the in-plane resolution was good at 1 × 1 mm2. 
Brain tissues and CSF regions may undergo opposite volume changes in 
the process of neurodegeneration. Specifically, when there is volume 
loss in grey or white matter, it is often accompanied with a volume in-
crease in adjacent CSF. To reduce the impact of this problem, we 
adopted a hierarchical analysis scheme, in which the detection of 
treatment effect was restricted to brain regions that demonstrated either 
significant volume loss or significant volume increase. Nonetheless, the 
voxel-level analysis can be more reliable with use of higher resolution 
brain MRI sequences, especially in the highly folded cerebral and cere-
bellar cortices. This explains that our major findings were in deep grey 
matter regions, where the MRI signal was less affected by partial volume 
effects given the anatomy. 

Another technical challenge of brain atrophy assessment was due to 
the presence of visible lesions in multiple sclerosis (Sastre-Garriga et al., 
2020). In contrast to segmentation-based volume estimation methods (e. 
g., FreeSurfer), the impact of lesions on the DBM analysis is more indi-
rect by compromising the quality of voxel-wise image registration, 
which assumes a voxel-wise correspondence between each individual 
brain image and the reference image (either the SST or the group tem-
plate). This assumption is violated if there are substantially different 
lesion profiles between images. For the longitudinal DBM, the impact of 
lesions would be greater if there are larger changes in lesion profiles 
over time within each patient because the main assessment is done at the 
patient-level. This is often less the case for lesions that are visible in 
unenhanced T1-weighted MRI, which are generally chronic lesions and 
tend to be smaller and the change is slower, comparing to lesions visible 
in T2-weighted MRI or contrast enhanced T1 lesions that indicate active 
neuroinflammation. Although it is a common practice to do artificial 
lesion filling in order to minimize the impact of lesions in brain atrophy 
assessments (Sastre-Garriga et al., 2020), a major concern is that lesion 
masks are often imprecise. Inter-rater agreement of lesion segmentation 
in multiple sclerosis is overall <70% among trained radiologists, and 
this number is even lower for smaller lesions (Egger et al., 2017). In 
addition, intensity sampling used for lesion filling is not trivial given the 
heterogeneity of image intensity in brain MRI, even within a same tissue 
type. To address the potential need for lesion filling, we ran a test with 
the OPERA I data set using a commonly used lesion filling method in FSL 
(Battaglini et al., 2012) but did not find it beneficial in our analysis of 
treatment effects (Fig. S2). For the above reasons, we elected not to do 
lesion filling for the present study. Nonetheless, future decisions may be 
conditional to the nature of specific data and subject to the availability 
of methodological advances in nonlinear image registration which 
minimize the effects of lesions. 

A further complication of interpretation was due to the complex 
nature of brain volume changes with anti-inflammatory treatments. It 
has been long thought that short-term changes in the brain (e.g., water 
loss) during the treatment with anti-inflammatory DMTs in multiple 
sclerosis may cause additional brain volume changes, which is often 
termed as pseudoatrophy because it is not associated with real cell loss 
(Sastre-Garriga et al., 2020; Zivadinov et al. 2008, 2016). Some studies 
suggest that pseudoatrophy may be mainly confined to white matter 
(Vidal-Jordana et al., 2013). Nonetheless, it remains unclear how to 
distinguish pseudoatrophy from true atrophy (De Stefano and Arnold, 
2015; Sastre-Garriga et al., 2020; Zivadinov et al., 2016). The inter-
pretation of our data may be further complicated by the lack of placebo 
group in the OPERA trials because pseudoatrophy might occur not only 
in the OCR arm but also in the comparator arm that was treated with 
IFN, especially in the first few months (Dwyer et al., 2015). A commonly 
accepted guideline, although not completely certain, is to perform a 
rebaselining measurement of brain volume change at 6–12 months after 
initiation of any anti-inflammatory treatments (Sastre-Garriga et al., 
2020). This may not be an optimal solution because some important 
treatment effect may have already occurred in the first several months 
(Zivadinov et al., 2016). Given this complexity, we took a complemen-
tary approach in the present work. We first conducted voxel-wise 
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analysis with all the time points, including the baseline visit. Then we 
analyzed the mean Jacobian data (a measure of volume) of the identified 
regions with and without rebaselining, respectively, in order to under-
stand the differences between these two approaches. Although volume 
change was reduced after rebaselining to Week 24, the main findings of 
treatment effects remained significant after rebaselining. 

In summary, the present work demonstrates that a data-driven lon-
gitudinal DBM method can generate valuable insights on how a DMT 
may modify localized brain atrophy, which may be missed by analyses 
with predefined brain regions. The findings of a therapeutic response in 
multiple brain structures likely reflects a widespread slowdown of brain 
atrophy as a positive response to treatment. Importantly, the percent 
volume loss in the brainstem, as well as the percent volume increase in 
the ventricles, was significantly associated with higher risk of disability 
progression. The present work has a strong implication for developing 
image-based biomarkers to advance future drug development for mul-
tiple sclerosis, where there is an increasing focus on the progressive 
biology. 
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