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Abstract: One promising method for cartilage regeneration involves combining known methods, such
as the microfracture technique with biomaterials, e.g., scaffolds (membranes). The most important
feature of such implants is their appropriate rate of biodegradation, without the production of toxic
metabolites. This study presents work on two different membranes made of polyester (L-lactide-co-ε-
caprolactone-PLCA) named “PVP and “Z”. The difference between them was the use of different
pore precursors—polyvinylpyrrolidone in the “PVP” scaffold and gelatin in the “Z” scaffold. These
were implemented in the articular cartilage defects of rabbit knee joints (defects were created for the
purpose of the study). After 8, 16, and 24 weeks of observation, and the subsequent termination of the
animals, histopathology and gel permeation chromatography (GPC) examinations were performed.
Statistical analysis proved that the membranes support the regeneration process. GPC testing proved
that the biodegradation process is progressing exponentially, causing the membranes to degrade at
the appropriate time. The surgical technique we used meets all the requirements without causing the
membrane to migrate after implantation. The “PVP” membrane is better due to the fact that after
24 weeks of observation there was a statistical trend for higher histological ratings. It is also better
because it is easier to implant due to its lower fragility then membrane “Z”. We conclude that the
selected membranes seem to support the regeneration of articular cartilage in the rabbit model.

Keywords: scaffolds; regenerative medicine; cartilage tissue engineering; articular cartilage;
poly(L-lactide-co-ε-caprolactone); rabbit; cartilage regeneration

1. Introduction

The articular surfaces of the bones are covered with articular cartilage (AC), which
is made of hyaline cartilage connective tissue. Hyaline cartilage prevents the abrasion
of bones, is resistant to friction, and facilitates movement. So, it is necessary to enable
proper movement [1,2]. The cells of cartilage, chondrocytes, produce an extracellular matrix
(ECM), which is mainly made of collagen II and proteoglycans. Chondrocytes are located
in small spaces in the ECM, called lacunae. These spaces do not allow their migration to
damaged sites. Musculoskeletal ailments caused by cartilage damage are common and
they are also more often recognized. Most cartilage damage occurs as a result of trauma,
an unhealthy lifestyle, or various diseases, such as osteoporosis or autoimmune disorders.
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They can damage the cartilage, causing pain, stiffness, movement limitations, and even
disability. This can be direct trauma to the cartilage—most often a sharp strike to a bone
or repeated microtrauma, the overload causing gradual damage. Repeated damage leads
to the formation of defects on the surface. AC lacks blood supply and the neural system,
so it has limited regenerative capacity. Moreover, the regenerate process becomes less
effective as the human body ages. Leaving defects untreated leads to the development of a
degenerative disease [1–9].

Treatment techniques currently used include microfractures (MF), mosaicplasty, osteo-
chondral allograft transplantation, and autologous chondrocyte implantation. Microfrac-
tures are now the gold standard of treatment. This technique consists in making the defect
within the cartilage damage deep enough to cause the outflow of mesenchymal stem cells
(MSC) from the bone marrow. However, due to the specific structure of cartilage (lack of
blood vessels, layered structure), none of the abovementioned techniques achieves satis-
factory results. The resulting regenerated tissue is often of poor quality: is fibrous-like
cartilage, or does not have an appropriate layered structure; therefore, it has reduced
mechanical resistance. Some techniques are complex and time-consuming, making them
unavailable for many patients. Another problem is the size of the defect. The larger the
defect, the more difficult it is to repair with known techniques. Currently, research is
focused on combining the microfracture technique with the simultaneous use of scaffolds
(3D membranes) to improve the regenerative capacity of cartilage [10–25]. A scaffold is
a spatial structure that takes the form of membranes, hydrogels, or nonwovens. Such an
implant can be colonized by autologous chondrocytes or mesenchymal stem cells (MSCs).
It serves as a temporary matrix that provides a suitable environment for cells that guarantee
success in the cartilage regeneration process [16,26–29]. Such scaffolds have already been
successfully applied in patients [10,26].

The ideal biomaterial should enable the transport of nutrients to chondrocytes and
allow the elimination of metabolites; it should also be completely biodegradable and
biocompatible. The degradation products should be non-toxic, non-inflammatory, and
mechanically neutral (with adequate softness, stiffness, and roughness). These materials
should also be resistant to the conditions in the body, such as pH and body temperature
for a certain period. Membranes should have an appropriate microstructure (porosity,
pore size, pore shape) [28] and allow for the formation of functional gap junctions and
interaction with other cells and the extracellular matrix. The asymmetry of the membrane
structure is extremely important—one surface of the membrane should have numerous and
large pores, while the opposite surface should have as few and as small pores as possible.
This prevents the cells from escaping from the substrate. The size of the pore is properly
defined in the purpose of the research, among other things, as is the kind of cells for which
the membranes are intended. For example, working with chondrocytes requires smaller
pores than working with stem cells for chondrogenesis or with osteoblasts. However, the
most important parameters are: biodegradation time; non-toxic, soft metabolites; and a
safe degradation process without inflammatory reactions [10,13,16,27–39].

Materials for an implant are mainly made of synthetic or natural polymers or a combi-
nation of both (hybrid materials) Currently, commercial scaffolds for cartilage regeneration
are made primarily of collagen. Due to defects in the natural polymers, these scaffolds
do not meet the appropriate requirements (their rapid hydrolysis, low mechanical sta-
bility) that lead to the regenerated tissue being non-valuable fibrocartilage rather than
hyaline cartilage [13,16,26–28,37,40]. Unlike natural materials, polyesters provide good
mechanical properties and can be used to produce a variety of scaffold shapes using many
techniques. They are biocompatible with good mechanical strength that hydrolyze into
harmless components that are metabolized in the body and are easily removed from the
organism [27,37,41–43]. Currently, research is focused on synthetic polymers, such as
polycaprolactone (PCL) and poly (L-lactic acid) (PLLA). Various proportions and com-
binations of these biodegradable polymers can be used to achieve the desirable surface,
mechanical, and structural properties [41,44–47]. Synthetic polyesters, such as poly(L-
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lactide-ε-caprolactone) copolymers, are biocompatible and completely bioresorbable. Their
degradation products are non-toxic to cells and the major route of the first stage of degrada-
tion is hydrolysis. The degradation pathway is through monomers that are elastic and they
do not damage the articular surface. The second stage of degradation is the conversion
of the monomer to carbon dioxide and water. When polylactide membranes are broken
down, lactic acid is formed, which induces inflammation. On the one hand, however, the
use of a lactic acid copolymer reduces the concentration of lactic acid in the decomposition
products; on the other, it allows the glass transition temperature of the copolymer to be
lowered and, ultimately, by disturbing the regularity of the PLA structure, it accelerates the
decomposition process [48,49]. An important advantage of co-polyester PLCA structures
is that they do not lose their strength in the aquatic environment, and their mechanical
and biological durability is significantly greater than that of the collagen substrate. The
fact that caprolactone, which is part of the copolymer, has been used for many years to
coat absorbable surgical sutures, is an argument in favor of the selected membranes [50].
Individual polyesters differ in biodegradation time—the rule is that the longer the carbon
chain, the longer the decomposition time. Due to this mechanism, we can roughly estimate
the time it takes for the entire substrate to convert to water and carbon dioxide [51–53].
Such membranes can be used in medicine where scientists and doctors are still looking for
new scaffolds for the treatment of articular cartilage.

The literature describes many methods for obtaining synthetic and hybrid scaffolds for
tissue engineering. One of the most frequently used membrane preparation techniques is
wet phase inversion. The properly formed polymer solution is immersed in a coagulation
bath containing a non-solvent of the polymer. Due to the solvent and non-solvent exchange,
the phase inversion takes place that gives a membrane. In these techniques, membranes
with different porosities and pore sizes can be obtained. Furthermore, in this method,
the pore precursor can be added to a previously prepared polymer solution or during
membrane formation. It can promote the formation of larger pore sizes and higher porosity.
The pore precursors are eventually removed from the scaffold using a suitable solvent
(porogen leaching) [54–57].

In this article, we report an animal model study using two scaffolds made of polyester
(L-lactide-co-ε-caprolactone) (PLCA). The membranes were prepared by the wet phase
inversion method. The difference between them was the use of different pore precursors. It
has been hypothesized that the stem cells will colonize the membranes; after that, these cells
will differentiate and form hyaline cartilage. The aim was to describe the effect of using the
MF method with novel and promising scaffolds to regenerate hyaline cartilage in a rabbit
model. The study was conducted in three different time frames using the microscopic
examination. Microanalytic studies of origin membranes and extracted residue were carried
out as well in order to find out the rate of the molar mass change of PLCA during in vivo
therapy. We also evaluated the practical aspects of implantation and surgical techniques.

2. Materials and Methods
2.1. Materials
2.1.1. Membranes

Scaffolds were obtained from the Institute of Biocybernetics and Biomedical Engineer-
ing (BBE) of Polish Academy of Sciences. Both scaffolds were made of PLCA by the wet
inversion phase method. The difference was the use of various nonwovens as macroporous
precursors. Membranes were obtained according to the method presented in previous
work [25].

In the first case, the macropore precursor was a nonwoven fabric made of polyvinylpyrroli-
done 1.3 MDa (PVP). We named it “PVP” (Figure 1). It was received as follows: the PLCA
and Pluronic polymers with 4:1 were dissolved in dioxane with constant stirring to obtain
10 wt.% concentration. Next, a polymer mixture was poured onto the glass base and then
the PVP nonwoven layer was laid. Then another portion of polymers was poured on the
nonwoven and again a second slice of nonwoven and third layer of membrane forming
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solution were added. All layers were pressed and the air was removed using a Teflon roller.
The received membrane was gelled in a bath with deionized water with ice (about 4 ◦C).
The prepared membranes were stored in 70% ethanol. It is important to protect the PVP
nonwoven from water to prevent its dissolving.
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Figure 1. The SEM photomicrographs of the “PVP” membrane. 
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Figure 1. The SEM photomicrographs of the “PVP” membrane.

In the second case, the macropore precursor was a nonwoven fabric made of gelatin.
We named it “Z” (Figure 2). It was obtained in a similar way to the previous membrane. The
PLCA and PVP 10 kDa polymers with 4:1 ratio were dissolved in chloroform with constant
stirring to obtain 10 wt.% concentration. The scaffold was made analogous to “PVP”
preparation. The only difference was that the gelation bath contained cooled methanol
at 4 ◦C and the obtained membrane was treated with warm water (50 ◦C) to removed
gelatin nonwoven. Similarly to “PVP” membrane, scaffolds were stored in 70% ethanol.
The gelatin nonwoven needs to be protected from water.

The SEM micrographs of “PVP (Figure 1) and “Z” (Figure 2) scaffolds present an
irregular structure with macropores and a three-dimensional network of interconnected
macropores from 20 to even 500 µm in diameter. Both scaffolds have perforated skin
layers that allow cells to enter them. Furthermore, the addition of extra pore precursors
of polymers Pluronic (“PVP”) and PVP 10 kDa (“Z”) affects the microporous morphology
of the membranes. It ensures access to oxygen, nutritious substances, or allows for the
removal of metabolic products from the interior of scaffolds. The average thickness of both
scaffolds is about 700–1200 µm. According to biomedical applications, the porosity and
pore size of scaffolds are critical factors. In the previous study, the degradation rate and
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porosity of membranes (before and after hydrolysis) were measured [25]. To determine the
degradation rate of scaffolds, PBS and Hank’s balanced salt solution (HBSS) fluids were
used. The hydrolysis time was 5 weeks for “PVP” and 4 weeks for “Z” due to their faster
destructions at 37 ◦C. The loss of weight was observed for both membranes in the range
from 17 to 72 of weight percentage. We have also observed that the decrease in pH was
not rapid—that should not have a negative effect on the body, such as the occurrence of
inflammation. Results showed that both membranes were characterized by high porosity,
about 95%. After degradation, this value increased, especially for “Z” in HBSS.
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Figure 2. The SEM photomicrographs of the “Z” membrane.

2.1.2. Rabbits

We used 27 white New Zealand male rabbits, weighing about 3–4 kg, and aged
about 4 months. Before the start of the study, the animals were habituated to the new
environment and caretakers. During the experiment, the rabbits were weighed weekly.
The animals were kept under standard environmental conditions: air humidity 55 ± 10%,
temperature 21 ◦C ± 2 ◦C, 15 air changes per hour, circadian rhythm (light/ dark)12/12 h.
All activities performed on animals were in accordance with the principles of occupational
health and safety in the laboratory and good laboratory practice. The participants in the
study were properly trained and have many years of experience in this field. We split the
animals into three groups. In all the knee joints of all the animals, we performed grade IV
defects on the articular surface, according to the Outerbridge scale [58]. In group I, defects
were created with the simultaneous implantation of a membrane made of a copolymer
(L-lactide-co-caprolactone) “PVP”. After implantation, we waited for 8 weeks (observing
7 defects), 16 weeks (7 defects), and 24 weeks (7 defects). Then the joint was removed
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and the regenerate was assessed. In group II, defects were created with the simultaneous
implantation of a membrane “Z”. After implantation, we waited for 8 weeks (observing
7 defects), 16 weeks (7 defects), and 24 weeks (7 defects). In group III (control group),
defects were created and no other action was taken. After surgery, we waited for 8 weeks
(observing 4 defects), 16 weeks (4 defects), and 24 weeks (4 defects).

2.2. Methods

We conducted the study, taking into account the International Cartilage Repair Society
(ICRS) recommended guidelines for histological endpoints for cartilage repair studies in
animal models and clinical trials [59].

2.2.1. Implantation

All surgical procedures were performed under aseptic conditions of the operating
room at the Animal Breeding Laboratory of the Medical University of Warsaw. The surgical
operations were performed according to the scheme (Figure 3):

(a) We administered general anesthesia intramuscularly (xylazine and ketamine—dose
calculated according to the animal’s body weight; ketamine—0.4 mg/kg, xylazine
0.5 mg/kg).

(b) We shaved the area to be operated.
(c) We placed the animal on the side opposite the one to be operated, with the limb in

abduction. Skin decontamination with iodine solution. We covered the operating area
with sterile drapes, which were attached to the skin.

(d) We prepared the scaffold (membrane “PVP” or “Z”—depending on group). Under
sterile conditions, we removed the membrane immersed in alcohol in transport
packaging and placed the membrane in sterile petri dishes filled with a 0.9% NaCl
solution. Rinsed the membranes twice at 10-min intervals with a 0.9% NaCl solution
(to get rid of alcohol). For each animal, membranes were prepared in a separate petri
dish. This point was omitted in the control group (where no membrane was used).

(e) Skin incision on the lateral side at the level of the knee joint, then the incision of
subcutaneous tissue and the joint capsule. Dislocation of the kneecap to the medial
side, providing access to the articular surface of the femur. We created 2 defects
located symmetrically at both condyles (each condyle had one defect) of the femur
(load bearing area), using a chisel (Figure 3). Defect (0.1 cm2) of cartilage and bone to
a depth of 3 mm. Confirming a full-depth defect penetrating the bone marrow by the
occurrence of bleeding from the base of the defects.

(f) We rinsed the defects with sterile 0.9% NaCl solution and dried them (to get rid of
any debris). We cut a scaffold to the size of the defect and inserted a scaffold inside
the defect so that the more porous surface of the membrane was in direct contact with
the bone marrow.

(g) After filling the defects with membranes, we applied the tissue glue (TisselLyo) to the
surface of the defects according to the manufacturer’s instructions.

(h) We waited for the adhesive to bond with the surrounding tissues. We moved back
the kneecap into the correct position. We sutured the articular capsule with a Vicryl
3/0 suture, subcutaneous suture—Vicryl 4/0, skin suture—Ethilon 4/0 (to be removed
in 14 days). We covered the postoperative wound with iodoform. Sterile dressing. We
applied soft dressing from the ankle to the groin for 24 h.

(i) Postoperative administration of antibiotics (Enrofloxacin) and analgesics (Metamizole)
for 2 days.

(j) Due to animal welfare reasons, we operated the second knees of the animals after the
previously planned time (8 or 16 weeks, depending on the group).
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Figure 3. Implantation scheme.

2.2.2. Aftercare

The aftercare was provided in an individual supervision room with electronically
controlled temperature, humidity, and exposure time. To ensure maximum comfort and
safety for the animals and to minimize the possibility of mistakes, each rabbit had its own
separate cage. The animals could move freely around the cage throughout the observation
period. Each rabbit had a daily observation card with vital parameters (general and local
condition, temperature, body weight), date of surgery, and date of planned termination.

2.2.3. Termination

After the set time of 8, 16, 24 weeks of observation, the rabbits were terminated.
Termination procedures were performed according to the scheme (Figure 4):

(a) We administered general anesthesia intramuscularly (dose calculated according to
the animal’s body weight—ketamine—0.4 mg/kg, xylazine 0.5 mg/kg).

(b) Euthanasia by intravenous administration of Morbital.
(c) We shaved the knee for surgery; disinfection of shaved areas.
(d) Access to the knee joint (skin and deeper tissues were cut, as in the case of surgery).

Extraction of the distal femur. Marked the place of defects/membrane insertion with
ink. Cut the condyles from the rest of the bone and placed in a sterile transport
container for further examination. Lateral condyle was taken to the histopathology
examination, medial condyle to GPC.

2.2.4. Gel Permeation Chromatography (GPC)

GPC is the analytical technique that allows to detect and characterize qualitatively
polymer chains soluble in eluent used. It provides number and weight average molar
masses and the dispersity index of polymers. The chains of various lengths are separated on
the gel column with respect to their hydrodynamic radii and the time of elution is correlated
with molar masses at the peak of narrow polystyrene standards. The measurement was
carried out with the system by Viscotek composed of GPC max and TDA 305, equipped
with Jordi Lab DVB column (mixed bed) and refractometer. Dichloromethane was used as
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eluent with a flow rate of 1 mL/min at 30 ◦C. Sample concentration was in the range of
2–4 mg/mL and injection volume was 50 or 150 µL.
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Preparation of the material for testing was carried out according to the following scheme:

(a) Scraping and cutting only cavities from previously taken specimens;
(b) Flushing in a physiological saline solution—flushing out physiological fluids;
(c) Rinsing in hexane to extract fats;
(d) Washing in CDCl3 (deuterated chloroform)—deproteinization;
(e) Rinsing in methylene chloride—extraction of membranes (membrane residues);
(f) Filter through a syringe filter with a PTFE membrane, with a porosity of 0.2 µm to get

rid of bits of remaining cartilage (insoluble parts).

The GPC test was performed for 5 samples with “PVP” and 5 samples “Z” membrane
8 weeks after implantation; 3 samples with “PVP” and 3 samples “Z” membrane 16 weeks
after implantation.

2.2.5. Histopathology

The study was carried out according to the following scheme:

(a) Collected condyles were immersed in 10% formalin.
(b) Descaling—while waiting for the descaling, checks were made on the degree of

descaling by trying to puncture the tissue with a needle every few weeks. After
decalcification, the damaged areas were more visible.

(c) The decalcified sections were dehydrated and embedded in paraffin (Paraplast sigma).
(d) The material was cut into pieces with a thickness of 4 µm.
(e) Paraffin sections were stained by the routine hematoxylin–eosin method.
(f) The regenerates were evaluated (ICRS microscopic scoring system) under a light

microscope by two trained and blinded observers. Each observer rated 1 regenerate
3 times at weekly intervals. The final score is the average of 3 measurements [60].
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2.2.6. Statistics

R software with vegan [61], coin [62], and FSA [63] packages was used to answer
the research questions. Kendall’s W coefficient of concordance, Kruskal–Wallis tests with
post-hoc Dunn’s tests, and Holm’s correction for multiple comparisons were performed.
Given the small sample size in the study, Kruskal–Wallis p values were approximately
estimated using 10,000 Monte-Carlo simulations, with bootstrap resampling [64]. Similarly,
for Kendall’s W, 10,000 permutations tests were carried out to estimate null distribution of
χ2 [65]. The significance level was set as α = 0.05, while p values between 0.05 and 0.1 were
treated as tendencies of significance.

3. Results
3.1. Destruction of PLCA Materials in Membranes Analyzed by Means of GPC

The weight average (Mw) and number average (Mn) of molar masses of the initial
PCLA copolymer introduced to the membranes were 138,200 g/mol and 78,100 g/mol,
respectively. We examined the copolymer material extracted after 8 and 16 weeks of
implantation from 16 rabbit joints in total. The average molar masses were measured by
means of GPC and calculated with respect to PS standards for all samples. Each sample
contained several populations of macromolecules present at fractions. Since the molar mass
distributions partially overlapped to facilitate statistical analysis, we decided to calculate
the mean values for Mw and Mn for whole multimodal macromolecular distribution of
all materials from each sample separately (Table 1). Exemplary, selected molar mass
distributions are shown for illustration in Figure 5. Finally, we calculated the mean values
of Mw for each type of membrane and implantation period. The data with standard
deviation bars are presented in Figure 6.

Table 1. Results of the GPC examination.

Kind of Membrane Time of Implantation (Weeks) Sample Nr Mean Mw

PVP 8 1 5155

PVP 8 2 4816

PVP 8 3 4737

PVP 8 4 1896

PVP 1 8 5 24,238

PVP 16 1 2387

PVP 16 2 2176

PVP 16 3 2088

Z 8 1 3678

Z 8 2 3167

Z 8 3 3022

Z 8 4 2490

Z 8 5 1432

Z 16 1 2139

Z 16 2 2127

Z 16 3 1663
1 We reject this sample for statistical reasons—the result of the mean Mw clearly deviates from the other samples.
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We performed the GPC examination on sections collected only from cavities to prove
that the membranes stayed at the primary site of implantation. Because in every sample
we detected fractions of polymers, we concluded that membranes remained in the cavities.
This confirms that the surgical technique developed by us and used in the study meets
the requirements.
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3.2. Histopathology
3.2.1. Differences in Membranes Performance

Kruskal–Wallis tests were performed, for ratings provided by each histologist, in each
time-point (at 8, 16, or 24 weeks), to examine the differences in recovery between the three
groups: a group treated with the membrane PVP (n = 7; the PVP group), a group treated
with the membrane Z (n = 7; the Z group), and the control group (n = 4).

3.2.2. Histologist 1

There were no significant differences between studied groups at the 8-week mark—
H(1) = 2.35, p = 0.310, ε2 = 0.14. However, there was a trend toward a significant difference
of ratings at the 16-week mark—H(1) = 5.53, p = 0.057, ε2 = 0.33, and a significant difference
at the 24-week mark—H(1) = 5.86, p = 0.045, ε2= 0.34. Post-hoc tests at 16 weeks showed a
trend for better ratings in the Z group than in the control group—Z = 2.35, p = 0.056. There
were no differences between the PVP group and the control group—Z = 1.42, p = 0.309,
and no differences between the PVP group and the Z group—Z = 1.08, p = 0.278. At
the 24-week mark, there was a trend for higher ratings in the PVP group than in the
control group—Z = 1.97, p = 0.099. No differences between the Z group and the control
group—Z = 0.16, p = 0.872, or between the Z group and the PVP group, Z = 2.12, p = 0.103,
were observed (Figure 7).
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3.2.3. Histologist 2

For histologist 2, there were no differences at the 8-week mark—H(1) = 1.96, p = 0.150,
ε2 = 0.23 or the 16-week mark—H(1) = 1.04, p = 0.623, ε2 = 0.06. However, the Kruskal–Wallis
test was significant at the 24-week mark—H(1) = 9.46, p = 0.004, ε2 = 0.56. Post-hoc tests for
the 24-week mark revealed that histologist 2 rated the healing stage of the membrane PVP—
Z = 2.48, p = 0.027, and the membrane Z—Z = 2.98, p = 0.009, as superior to the healing
properties without a membrane. At the same time there were no differences between
the healing properties of the membrane PVP and the membrane Z—Z = 0.59, p = 0.552
(Figure 8).

It should be noted that the histologic images improve with time when both membranes
are used (Figure 9). This proves that the tested scaffolds support cartilage regeneration.
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Figure 9. Shows histological samples of the cartilage of the rabbit of the studied groups. The following
observations were made by one histologist. (A) PVP group after 8 weeks of observation—the defect
is easily visible; (1) the surface has irregularities, (2) cells are disorganized, (3) increased remodeling
of subchondral bone. (B) Z group after 8 weeks of observation—the defect is easily visible; (1) the
surface has irregularities, (2) cartilage necrosis, (3) cells are distributed in clusters (4) chondral fracture
reaching the subchondral bone. (C) Control group after 8 weeks of observation—the defect is easily
visible; (1) the surface has irregularities, (2) massive loss of subchondral bone, (3) Bone fractures
with the separation of necrotic fragments. (D) PVP group after 16 weeks of observation; (1) cells are
distributed in clusters, (2) cartilage fracture, the surface has irregularities; (3) porous subchondral
bone in some places, otherwise normal. (E) Z group after 16 weeks of observation—the defect is easily
visible; (1) cells are distributed irregularly, (2) the surface is torn, (3) porous subchondral bone in some
places, otherwise normal. (F) control group after 16 weeks of observation—the defect is easily visible;
(1) the surface is torn, (2) chondral fractures reaching the subchondral bone, (3) cells are distributed
irregularly. (G) PVP group after 24 weeks of observation; (1) the surface is torn/has irregularities,
(2) cartilage fractures, cells are distributed irregularly, (3) increased remodeling of subchondral bone.
(H) Z group after 24 weeks of observation; (1) the surface is torn, (2) necrosis, (3) cells are distributed
in columns. (I) Control group after 24 weeks of observation; (1) the surface has irregularities; (2) full
thickness chondral fracture; (3) cells are distributed irregularly. (J) Histological image of correct
hyaline cartilage in rabbit model—(1) cartilage, (2) subchondral bone.

4. Discussion

In our work, we examined scaffolds that have potential use for cartilage tissue engi-
neering. Our scaffolds are characterized by biocompatibility, degradability, and adequate
structure. They have perforated top layers with pore diameters of more than 20 µm
that allow MSCs to penetrate inside the membrane. The interiors of both membranes
(Figures 1 and 2) shows a network of interconnected macropores with an appropriate pore
diameter larger than 300 µm, necessary for the chondrogenesis of MSCs [16,66–68]. Their
structures provide an appropriate environment for the proliferation, migration, and ad-
hesion of cells. The semipermeable structure assures nutritious, oxygen transport, and
metabolic products. Furthermore, the bottom skin layers of the scaffolds are dense, pre-
venting cells from getting out from scaffolds [28].

During the implantation phase, we noticed that membrane “Z” was more fragile and
disintegrated easier compared to membrane “PVP”. Because of this, it was easier to place
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and hold the “PVP” scaffold at the chosen localization (defect). This feature can be of great
importance during implantation, not with glue but with threads, e.g., in the human knee.

We created (according to the International Cartilage Repair Society (ICRS) recom-
mended guidelines for histological endpoints for cartilage repair studies in animal models
and clinical trials) relatively large (0.1 cm2) and deep (3 mm) defects (Figure 3), which,
especially after the first observation period (8 weeks), could have resulted in the lack of
statistical significance of the cartilage regeneration assessments between groups. However,
the extended observation time showed that the scores of regenerates without the use of
a membrane were worse with each subsequent observation period and the scores of re-
generates with membranes improved over time (Figures 7 and 8). We believe that this is
because the cartilage in the control group is mechanically weak, despite the fact that, in
the histological picture, it was initially similar to the other groups. After some time, it
degenerated and had a worse end result. We suspect the reason for that could be the stem
cells in the control group having settled only superficially around the defect. Due to all of
the above, we believe that the observation times in the rabbit model should be extended to
at least 24 or even 36 weeks.

For rabbit welfare reasons, only one knee joint was operated on under each anesthesia.
This was followed by a scheduled observation period for the group, during which the
animal regained full strength. Only after the observation period was the other knee
operated on. Therefore, different membranes were loaded differently during the various
observation periods. The movements of the rabbits were not the same after surgery on
one limb and again were different after surgery on both limbs. There were also individual
characteristics in pain perception and soft tissue recovery and body weight that affected
joint loading.

We suspect that PLCA copolymer degrades in the body mostly through the hydrolytic
degradation [69]. The resulting lactic and caproic acids, which are naturally occurring
products in the body, are subsequently metabolized into CO2 and H2O and eliminated from
the healthy body. After implantation, the hydrolysis and degradation of polymer starts. In
this study, the two stages of degradation were seen after 8 and 16 weeks. In both periods,
residual PLCA materials were characterized by means of GPC in order to estimate average
values of their molar masses. There was a decrease of mean Mw of both membranes during
time (Figure 6).

Different populations of molecules arose in given samples (Figure 5). We do not
know why this happened. We assume this was due to limitations of in vivo testing. The
decomposition of a polymer molecule begins at its edge and continues deeper into it. What
is more, polymers break down from smallest molecules (dispersion). The number of edges
may be influenced by the implantation technique (too tight or loose filling of the defect
in different individuals). Additionally, the presence of different amount of tissue glue,
which initially isolates the membrane from the intra-articular environment, may have an
influence. Each rabbit had a different enzymatic activity, each moved differently after the
operation of membrane implantation, and each stressed the limb differently. There was
also different body weights of animals and individual regenerative properties. Hence, there
may have been some irregularities in the breakup. The small percentages of molecules
with higher molecular weights than the original were likely contaminants that could not
be removed during the preparation of the chromatography samples. Despite so many
different variables that were difficult to isolate and study separately, a statistical regularity
could be observed with exponential progress in degradation (Figure 6) [70].

One of the PVP 8 samples differed from the others because it only contained two major
populations of molecules and a small mass. During the observation of this individual, we
did not notice any of its properties that could affect such a result. We believe that he was
either individually overactive in enzymes or that we made a laboratory error in preparing
the sample (Table 1).
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The GPC test carried out each time detected the residual membrane, which shows
that, in none of the tested cases, the membrane migrated out of the defect and, thus, the
implantation technique was appropriate (Table 1).

In our study, histopathological evaluations varied among histologists (Figures 7 and 8).
It follows that the histopathological assessment may not be reproducible. It should be
considered whether the ICRS scale requires modifications or corrections. We plan to
subject the histopathological samples to further histopathological examinations using other
scales. The question remains open as to whether, instead of histopathological tests, a
better indicator of cartilage regeneration would be to test the level of glycosaminoglycans
or collagen II concentration. Moreover, magnetic resonance imaging (MRI) should be
considered when assessing articular cartilage. MRI is relatively non-invasive and can be
performed at multiple time points in the same animal, thus enabling long-term follow-
up assessments. MRI can show tissue overgrowth and bone edema, which are common
complications of cell therapy procedures. Current imaging techniques may indirectly
suggest hyaline cartilage formation, but these images are not always directly related to the
histological findings [71,72].

The animal model is different from the clinical situation in humans. Humans are
treated sometime after the defect develops, whereas, in our study, healthy animal joints
were treated immediately after the defect developed. Cartilage regeneration was also
affected by the fact that the animals fully loaded the limb immediately after surgery, which
is the opposite of how humans recover. Hence, the evaluation of regeneration in humans in
the future may be different.

Our work was carried out in accordance with the 3 R-rule (reduction, replacement,
refinement). For this reason, we created two defects in one knee joint—one in the medial
condyle and one in the lateral condyle, symmetrically (Figure 3). In groups I and II, in
each joint, the regenerated defect from the lateral condyle was subjected to a microana-
lytical examination, the regenerated defect from the medial condyle was subjected to a
histopathological examination (Figure 4). In the control group, both defects in each joint
were subjected to histopathological examination. The defects in the control group in the
same joints differed in terms of assessment, as did the defects in the two different joints.
This means that even though the defects were located in the same joint, the regeneration
process was different. For this reason, we treated these regenerates as separate statistically
accountable values. We believe that since the process of regeneration of two defects in one
joint differs, this process is influenced not only by the individual characteristics, the site of
the defect (one defect on one condyle symmetrically), and its size (the same in each joint),
but also by means that have not yet been recognized. The mechanics themselves and the
way rabbits load the joints probably play a major role.

According to the International Cartilage Repair Society (ICRS) recommended guide-
lines for histological endpoints for cartilage repair studies in animal models and clinical
trials, we were looking for any implanted (foreign) material. During preparation of the
samples, we did not find any pieces of membranes; moreover, we found no evident residues
of previously implanted material in any of the histopathological samples. Based on such re-
sults and the GPC examination (Table 1), we assume that this is because the entire polyester
has been degraded into the form of very short polymer chains that will be easily and
completely degraded in a short time period into the products that can be resorbed by
the body.

5. Conclusions

In this work, two types of membranes were tested to demonstrate their effectiveness in
supporting the regeneration of articular cartilage in rabbits. The results of microanalytical
and histological examinations showed that both scaffolds can support cartilage regeneration.
The biodegradation process of the studied membranes is progressing exponentially, causing
the membranes to degrade at the appropriate time. The proposed implantation technique
is fully sufficient to properly place the scaffolds in the place chosen by the operator. The
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“PVP” membrane is better due to the fact that after 24 weeks of observation there was a
statistical trend for higher histological ratings. It is also better because it is easier to implant
due to its lower fragility then membrane “Z”. We can conclude that the selected membranes
seem to support the regeneration of articular cartilage in the rabbit model.
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17. Płończak, M.; Czubak, J. Culture of Human Autologous Chondrocytes on Polysulphonic Membrane—Preliminary Studies.
Biocybern. Biomed. Eng. 2012, 32, 63–67. [CrossRef]

18. Kim, Y.S.; Mikos, A.G. Emerging strategies in reprogramming and enhancing the fate of mesenchymal stem cells for bone and
cartilage tissue engineering. J. Control. Release 2021, 330, 565–574. [CrossRef]

19. Knutsen, G.; Isaksen, V.; Johansen, O.; Engebretsen, L.; Ludvigsen, T.C.; Drogset, J.O.; Grøntvedt, T.; Solheim, E.; Strand, T.;
Roberts, S. Autologous Chondrocyte Implantation Compared with Microfracture in the Knee: A Randomized Trial. J. Bone Jt.
Surg.—Ser. A 2004, 86, 455–464. [CrossRef]

20. Mastrolia, I.; Foppiani, E.M.; Murgia, A.; Candini, O.; Samarelli, A.V.; Grisendi, G.; Veronesi, E.; Horwitz, E.M.; Dominici, M.
Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl. Med. 2019, 8,
1135–1148. [CrossRef]

21. Fahy, N.; Alini, M.; Stoddart, M.J. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.
J. Orthop. Res. 2018, 36, 52–63. [CrossRef] [PubMed]

22. Grässel, S.; Lorenz, J. Tissue-Engineering Strategies to Repair Chondral and Osteochondral Tissue in Osteoarthritis: Use of
Mesenchymal Stem Cells. Curr. Rheumatol. Rep. 2014, 16, 452. [CrossRef] [PubMed]

23. Liu, Y.; Zhou, G.; Cao, Y. Recent Progress in Cartilage Tissue Engineering—Our Experience and Future Directions. Engineering
2017, 3, 28–35. [CrossRef]

24. Wasyłeczko, M.; Sikorska, W.; Chwojnowski, A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering.
Membranes 2020, 10, 348. [CrossRef] [PubMed]

25. Wasyłeczko, M.; Sikorska, W.; Przytulska, M.; Dulnik, J.; Chwojnowski, A. Polyester membranes as 3D scaffolds for cell culture.
Desalination Water Treat. 2021, 214, 181–193. [CrossRef]

26. Kalkan, R.; Nwekwo, C.W.; Adali, T. The Use of Scaffolds in Cartilage Regeneration. Eukaryot. Gene Expr. 2018, 28, 343–348.
[CrossRef]

27. Eltom, A.; Zhong, G.; Muhammad, A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review.
Adv. Mater. Sci. Eng. 2019, 2019, 3429527. [CrossRef]

28. Bironait, D. Scaffolds and cells for tissue regeneration: Different scaffold pore sizes—different cell effects. Cytotechnology 2015, 68,
355–369. [CrossRef]

29. Pina, S.; Ribeiro, V.P.; Marques, C.F.; Maia, F.R.; Silva, T.H.; Reis, R.L.; Oliveira, J.M. Scaffolding Strategies for Tissue Engineering
and Regenerative Medicine Applications. Materials 2019, 12, 1824. [CrossRef]

30. Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue
Eng.—Part B Rev. 2013, 19, 485–502. [CrossRef]

31. Pompe, W.; Worch, H.; Epple, M.; Friess, W.; Gelinsky, M.; Greil, P.; Hempel, U.; Scharnweber, D.; Schulte, K. Functionally graded
materials for biomedical applications. Mater. Sci. Eng. A 2003, 362, 40–60. [CrossRef]

32. Smidsrød, O. Molecular basis for some physical properties of alginates in the gel state. Faraday Discuss. Chem. Soc. 1974, 57, 263.
[CrossRef]

33. Bretcanu, O.; Samaille, C.; Boccaccini, A.R. Simple methods to fabricate Bioglass®-derived glass-ceramic scaffolds exhibiting
porosity gradient. J. Mater. Sci. 2008, 43, 4127–4134. [CrossRef]

34. Van Tienen, T.G.; Heijkants, R.G.J.C.; Buma, P.; De Groot, J.H.; Pennings, A.J.; Veth, R.P.H. Tissue ingrowth and degradation of
two biodegradable porous polymers with different porosities and pore sizes. Biomaterials 2002, 23, 1731–1738. [CrossRef]

35. Harley, B.A.; Hastings, A.Z.; Yannas, I.V.; Sannino, A. Fabricating tubular scaffolds with a radial pore size gradient by a spinning
technique. Biomaterials 2006, 27, 866–874. [CrossRef]

36. Okubo, R.; Asawa, Y.; Watanabe, M.; Nagata, S.; Nio, M. Proliferation medium in three-dimensional culture of auricular
chondrocytes promotes effective cartilage regeneration in vivo. Regen. Ther. 2019, 11, 306–315. [CrossRef]

37. Armiento, A.R.; Stoddart, M.J.; Alini, M.; Eglin, D. Biomaterials for articular cartilage tissue engineering: Learning from biology.
Acta Biomater. 2018, 65, 1–20. [CrossRef]

38. Zhao, P.; Gu, H.; Mi, H.; Rao, C.; Fu, J.; Turng, L. sheng Fabrication of scaffolds in tissue engineering: A review. Front. Mech. Eng.
2018, 13, 107–119. [CrossRef]

39. Koh, Y.G.; Lee, J.A.; Kim, Y.S.; Lee, H.Y.; Kim, H.J.; Kang, K.T. Optimal mechanical properties of a scaffold for cartilage regeneration
using finite element analysis. J. Tissue Eng. 2019, 10, 2041731419832133. [CrossRef]

40. Bistolfi, A.; Ferracini, R.; Galletta, C.; Tosto, F.; Sgarminato, V.; Digo, E.; Vernè, E.; Massè, A. Regeneration of articular cartilage:
Scaffold used in orthopedic surgery. A short handbook of available products for regenerative joints surgery. Clin. Sci. Res. Rep.
2017, 1, 1–7. [CrossRef]

41. Ye, H.; Zhang, K.; Kai, D.; Li, Z.; Loh, X.J. Polyester elastomers for soft tissue engineering. Chem. Soc. Rev. 2018, 47, 4545–4580.
[CrossRef] [PubMed]

42. Urbánek, T.; Jäger, E.; Jäger, A.; Hrubý, M. Selectively biodegradable polyesters: Nature-inspired construction materials for future
biomedical applications. Polymers 2019, 11, 1061. [CrossRef]

43. Jiang, L.; Xu, L.; Ma, B.; Ding, H.; Tang, C. Effect of component and surface structure on poly (L -lactide-co- ε—caprolactone)
(PLCA) -based composite membrane. Compos. Part B 2019, 174, 107031. [CrossRef]

44. Nikolova, M.P.; Chavali, M.S. Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater. 2019, 4, 271–292.
[CrossRef] [PubMed]

http://doi.org/10.1016/S0208-5216(12)70042-6
http://doi.org/10.1016/j.jconrel.2020.12.055
http://doi.org/10.2106/00004623-200403000-00001
http://doi.org/10.1002/sctm.19-0044
http://doi.org/10.1002/jor.23670
http://www.ncbi.nlm.nih.gov/pubmed/28763118
http://doi.org/10.1007/s11926-014-0452-5
http://www.ncbi.nlm.nih.gov/pubmed/25182680
http://doi.org/10.1016/J.ENG.2017.01.010
http://doi.org/10.3390/membranes10110348
http://www.ncbi.nlm.nih.gov/pubmed/33212901
http://doi.org/10.5004/dwt.2021.26658
http://doi.org/10.1615/CritRevEukaryotGeneExpr.2018024574
http://doi.org/10.1155/2019/3429527
http://doi.org/10.1007/s10616-015-9895-4
http://doi.org/10.3390/ma12111824
http://doi.org/10.1089/ten.teb.2012.0437
http://doi.org/10.1016/S0921-5093(03)00580-X
http://doi.org/10.1039/DC9745700263
http://doi.org/10.1007/s10853-008-2536-y
http://doi.org/10.1016/S0142-9612(01)00280-0
http://doi.org/10.1016/j.biomaterials.2005.07.012
http://doi.org/10.1016/j.reth.2019.10.002
http://doi.org/10.1016/j.actbio.2017.11.021
http://doi.org/10.1007/s11465-018-0496-8
http://doi.org/10.1177/2041731419832133
http://doi.org/10.15761/CSRR.1000101
http://doi.org/10.1039/C8CS00161H
http://www.ncbi.nlm.nih.gov/pubmed/29722412
http://doi.org/10.3390/polym11061061
http://doi.org/10.1016/j.compositesb.2019.107031
http://doi.org/10.1016/j.bioactmat.2019.10.005
http://www.ncbi.nlm.nih.gov/pubmed/31709311


Pharmaceutics 2022, 14, 1016 18 of 19

45. Janmohammadi, M.; Nourbakhsh, M.S. International Journal of Polymeric Materials and Electrospun polycaprolactone scaffolds
for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2018, 68, 527–539. [CrossRef]

46. Laurent, P. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical
characterisation. J. Biomater. Appl. 2018, 32, 1276–1288. [CrossRef] [PubMed]

47. Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-roitman, J.; Schroeder, A. Mini Review Biocompatibility,
biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 2018, 340, 9–14.
[CrossRef]

48. Garkhal, K.; Verma, S.; Jonnalagadda, S.; Kumar, N. Fast degradable poly(L-lactide-co-ε-caprolactone) microspheres for tissue
engineering: Synthesis, characterization, and degradation behavior. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 2755–2764.
[CrossRef]

49. Herrera-Kao, W.A.; Loría-Bastarrachea, M.I.; Pérez-Padilla, Y.; Cauich-Rodríguez, J.V.; Vázquez-Torres, H.; Cervantes-Uc, J.M.
Thermal degradation of poly(caprolactone), poly(lactic acid), and poly(hydroxybutyrate) studied by TGA/FTIR and other
analytical techniques. Polym. Bull. 2018, 75, 4191–4205. [CrossRef]

50. Tomihata, K.; Suzuki, M.; Tomita, N. Handling characteristics of poly(L-lactide-co-ε-caprolactone) monofilament suture. Bio-Med.
Mater. Eng. 2005, 15, 381–391.

51. Jung, Y.; Park, M.S.; Lee, J.W.; Kim, Y.H.; Kim, S.H.; Kim, S.H. Cartilage regeneration with highly-elastic three-dimensional
scaffolds prepared from biodegradable poly(l-lactide-co-ε-caprolactone). Biomaterials 2008, 29, 4630–4636. [CrossRef] [PubMed]

52. Morokov, E.S.; Demina, V.A.; Sedush, N.G.; Kalinin, K.T.; Khramtsova, E.A.; Dmitryakov, P.V.; Bakirov, A.V.; Grigoriev, T.E.;
Levin, V.M.; Chvalun, S.N. Noninvasive high-frequency acoustic microscopy for 3D visualization of microstructure and estimation
of elastic properties during hydrolytic degradation of lactide and ε-caprolactone polymers. Acta Biomater. 2020, 109, 61–72.
[CrossRef] [PubMed]

53. Sikorska, W.; Wasyłeczko, M.; Przytulska, M.; Wojciechowski, C.; Rokicki, G.; Chwojnowski, A. Chemical degradation of PSF-PUR
blend hollow fiber membranes-assessment of changes in properties and morphology after hydrolysis. Membranes 2021, 11, 51.
[CrossRef] [PubMed]

54. Chwojnowski, A.; Kruk, A.; Wojciechowski, C. The dependence of the membrane structure on the non-woven forming the
macropores in the 3D scaffolds preparation. Desalination Water Treat. 2017, 64, 11394. [CrossRef]

55. Dutta, R.C.; Dey, M.; Dutta, A.K.; Basu, B. Competent processing techniques for scaffolds in tissue engineering. Biotechnol. Adv.
2017, 35, 240–250. [CrossRef]

56. Prasad, A.; Sankar, M.R.; Katiyar, V. State of Art on Solvent Casting Particulate Leaching Method for Orthopedic ScaffoldsFabrica-
tion. Mater. Today Proc. 2017, 4, 898–907. [CrossRef]

57. Plisko, T.V.; Penkova, A.V.; Burts, K.S.; Bildyukevich, A.V.; Dmitrenko, M.E.; Melnikova, G.B.; Atta, R.R.; Mazur, A.S.;
Zolotarev, A.A.; Missyul, A.B. Effect of Pluronic F127 on porous and dense membrane structure formation via non-solvent
induced and evaporation induced phase separation. J. Membr. Sci. 2019, 580, 336–349. [CrossRef]

58. Caplan, N.; Kader, D.F. The Etiology of Chondromalacia Patellae; Classic Papers in Orthopaedics; Springer: London, UK, 2014; pp.
185–187. [CrossRef]

59. Hurtig, M.B.; Buschmann, M.D.; Fortier, L.A.; Hoemann, C.D.; Hunziker, E.B.; Jurvelin, J.S.; Mainil-Varlet, P.; McIlwraith, C.W.;
Sah, R.L.; Whiteside, R.A. Preclinical studies for cartilage repair: Recommendations from the international cartilage repair society.
Cartilage 2011, 2, 137–152. [CrossRef]

60. Rutgers, M.; van Pelt, M.J.P.; Dhert, W.J.A.; Creemers, L.B.; Saris, D.B.F. Evaluation of histological scoring systems for tissue-
engineered, repaired and osteoarthritic cartilage. Osteoarthr. Cartil. 2010, 18, 12–23. [CrossRef]

61. Oksanen, A.J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Mcglinn, D.; Minchin, P.R.; Hara, R.B.O.; Simpson, G.L.;
Solymos, P.; et al. Vegan. In Encyclopedia of Food and Agricultural Ethics; Springer: Dordrecht, Germany, 2019; pp. 2395–2396.
[CrossRef]

62. Hothorn, T.; Van De Wiel, M.A.; Hornik, K.; Zeileis, A. Implementing a class of permutation tests: The coin package. J. Stat. Softw.
2008, 28, 1–23. [CrossRef]

63. Ogle, D.H.; Doll, J.C.; Wheeler, P.; Dinno, A. FSA: Fisheries Stock Analysis. R Package Version 0.9.1. Available online: https:
//github.com/fishR-Core-Team/FSA (accessed on 1 July 2021).

64. Kemp, A.W.; Manly, B.F.J. Randomization, Bootstrap and Monte Carlo Methods in Biology. Biometrics 1997, 53, 1560. [CrossRef]
65. Legendre, P. Species associations: The Kendall coefficient of concordance revisited. J. Agric. Biol. Environ. Stat. 2005, 10, 226–245.

[CrossRef]
66. Panadero, J.A.; Lanceros-Mendez, S.; Ribelles, J.L.G. Differentiation of mesenchymal stem cells for cartilage tissue engineering:

Individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater. 2016, 33, 1–12.
[CrossRef] [PubMed]

67. Zhao, Y.; Tan, K.; Zhou, Y.; Ye, Z.; Tan, W.S. A combinatorial variation in surface chemistry and pore size of three-dimensional
porous poly(ε-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells. Mater. Sci. Eng. C 2016, 59, 193–202.
[CrossRef]

68. Matsiko, A.; Gleeson, J.P.; O’Brien, F.J. Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation
and matrix deposition. Tissue Eng.—Part A 2015, 21, 486–497. [CrossRef]

http://doi.org/10.1080/00914037.2018.1466139
http://doi.org/10.1177/0885328218757064
http://www.ncbi.nlm.nih.gov/pubmed/29409376
http://doi.org/10.1016/j.cej.2018.01.010
http://doi.org/10.1002/pola.22031
http://doi.org/10.1007/s00289-017-2260-3
http://doi.org/10.1016/j.biomaterials.2008.08.031
http://www.ncbi.nlm.nih.gov/pubmed/18804279
http://doi.org/10.1016/j.actbio.2020.04.011
http://www.ncbi.nlm.nih.gov/pubmed/32294555
http://doi.org/10.3390/membranes11010051
http://www.ncbi.nlm.nih.gov/pubmed/33445806
http://doi.org/10.5004/dwt.2017.11394
http://doi.org/10.1016/j.biotechadv.2017.01.001
http://doi.org/10.1016/j.matpr.2017.01.101
http://doi.org/10.1016/j.memsci.2019.03.028
http://doi.org/10.1007/978-1-4471-5451-8_45
http://doi.org/10.1177/1947603511401905
http://doi.org/10.1016/j.joca.2009.08.009
http://doi.org/10.1007/978-94-024-1179-9_301576
http://doi.org/10.18637/jss.v028.i08
https://github.com/fishR-Core-Team/FSA
https://github.com/fishR-Core-Team/FSA
http://doi.org/10.2307/2533527
http://doi.org/10.1198/108571105X46642
http://doi.org/10.1016/j.actbio.2016.01.037
http://www.ncbi.nlm.nih.gov/pubmed/26826532
http://doi.org/10.1016/j.msec.2015.10.017
http://doi.org/10.1089/ten.tea.2013.0545


Pharmaceutics 2022, 14, 1016 19 of 19

69. Jeong, S.I.; Kim, B.; Lee, Y.M.; Ihn, K.J.; Kim, S.H. Morphology of Elastic Poly (L -lactide-co- E -caprolactone) Copolymers and in
Vitro and in Vivo Degradation Behavior of Their Scaffolds. Biomacromolecules 2004, 5, 1303–1309. [CrossRef]

70. In, S.; Kim, B.; Woong, S.; Hyun, J.; Moo, Y.; Hyun, S.; Ha, Y. In vivo biocompatibilty and degradation behavior of elastic
poly (l -lactide- co—e -caprolactone) scaffolds. Biomaterials 2004, 25, 5939–5946. [CrossRef]

71. Ota, Y.; Kamei, N.; Tamaura, T.; Adachi, N.; Ochi, M. Magnetic resonance imaging evaluation of cartilage repair and iron particle
kinetics after magnetic delivery of stem cells. Tissue Eng.—Part C Methods 2018, 24, 679–687. [CrossRef]

72. Koller, U.; Apprich, S.; Schmitt, B.; Windhager, R.; Trattnig, S. Evaluating the cartilage adjacent to the site of repair surgery with
glycosaminoglycan-specific magnetic resonance imaging. Int. Orthop. 2017, 41, 969–974. [CrossRef]

http://doi.org/10.1021/bm049921i
http://doi.org/10.1016/j.biomaterials.2004.01.057
http://doi.org/10.1089/ten.tec.2018.0263
http://doi.org/10.1007/s00264-017-3434-1

	Introduction 
	Materials and Methods 
	Materials 
	Membranes 
	Rabbits 

	Methods 
	Implantation 
	Aftercare 
	Termination 
	Gel Permeation Chromatography (GPC) 
	Histopathology 
	Statistics 


	Results 
	Destruction of PLCA Materials in Membranes Analyzed by Means of GPC 
	Histopathology 
	Differences in Membranes Performance 
	Histologist 1 
	Histologist 2 


	Discussion 
	Conclusions 
	References

