
����������
�������

Citation: Vyatkina, K. Validation of

De Novo Peptide Sequences with

Bottom-Up Tag Convolution.

Proteomes 2022, 10, 1. https://

doi.org/10.3390/proteomes10010001

Academic Editor: Jens R. Coorssen

Received: 9 November 2021

Accepted: 23 December 2021

Published: 29 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

proteomes

Article

Validation of De Novo Peptide Sequences with Bottom-Up
Tag Convolution

Kira Vyatkina 1,2,3

1 Laboratory of Bioinformatics and Mathematical Biology, Alferov University, 194021 St. Petersburg, Russia;
vyatkina@spbau.ru

2 Laboratory of Neuroscience and Molecular Pharmacology, Institute of Translational Biomedicine,
Saint Petersburg State University, 199034 St. Petersburg, Russia

3 Department of Software Engineering and Computer Applications, Faculty of Computer Science and
Technology, Saint Petersburg Electrotechnical University “LETI”, 197022 St. Petersburg, Russia

Abstract: De novo sequencing is indispensable for the analysis of proteins from organisms with
unknown genomes, novel splice variants, and antibodies. However, despite a variety of methods
developed to this end, distinguishing between the correct interpretation of a mass spectrum and
a number of incorrect alternatives often remains a challenge. Tag convolution is computed for a
set of peptide sequence tags of a fixed length k generated from the input tandem mass spectra
and can be viewed as a generalization of the well-known spectral convolution. We demonstrate its
utility for validating de novo peptide sequences by using a set of those generated by the algorithm
PepNovo+ from high-resolution bottom-up data sets for carbonic anhydrase 2 and the Fab region of
alemtuzumab and indicate its further potential applications.

Keywords: tandem mass spectrometry; de novo sequencing; tag convolution

1. Introduction

Tandem mass spectrometry (MS/MS) has established itself as the dominant technique
in proteomics. First recognized as such was the more elaborated bottom-up technology,
which analyzes peptides resulting from protein enzymatic digestion; however, the re-
cently emerged top-down approach that analyzes intact proteins is nowadays rapidly
gaining popularity.

Analysis of MS/MS spectra acquired from peptides or proteins often amounts to a
consideration of pairwise differences of peak masses rather than those masses on their
own. For instance, pairs of peaks separated by the amino acid masses give rise to edges
in a spectrum graph [1,2], and ladders of such peaks define peptide sequence tags [3],
which have become the basis of several methods for peptide and protein identification
from database search [3–18] and also proved to be useful for limiting the number of de
novo sequence possibilities [19,20]. The key step that precedes deisotoping and charge
state deconvolution of MS/MS spectra is the detection of (candidate) isotopomer en-
velopes, the theoretical counterparts of which are represented by groups of equally spaced
peaks [21–27]. A more sophisticated example is given by spectral convolution [28], which
examines pairwise differences between the masses of peaks picked up from two distinct
spectra, along with their multiplicities (i.e., the number of times they are observed) in order
to estimate similarity between the latter. The key observation behind is that the multiplicity
of zero equals the number of peaks the two spectra have in common, or shared peaks count
for those, and presence of a few non-zero values with high multiplicities likely indicates
that the spectra were acquired from two peptides that are a few mutations apart.

In [29], we introduced the notion of tag convolution for a top-down LC-MS/MS dataset,
which may be viewed as generalization of spectral convolution, and it is computed across
the entire set of input spectra—or, more precisely, over a set of sequence tags generated

Proteomes 2022, 10, 1. https://doi.org/10.3390/proteomes10010001 https://www.mdpi.com/journal/proteomes

https://doi.org/10.3390/proteomes10010001
https://doi.org/10.3390/proteomes10010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/proteomes
https://www.mdpi.com
https://orcid.org/0000-0001-7356-1616
https://doi.org/10.3390/proteomes10010001
https://www.mdpi.com/journal/proteomes
https://www.mdpi.com/article/10.3390/proteomes10010001?type=check_update&version=2


Proteomes 2022, 10, 1 2 of 13

from those spectra. We demonstrated that tag convolution can be efficiently used for com-
bining together protein sequence fragments generated by the Twister de novo sequencing
algorithm from top-down MS/MS data; as a result, we obtained so-called gapped strings,
in which the missing portions of the sequence were substituted by their masses. We also
mentioned that the concept of tag convolution could be adapted to the bottom-up case and
applied for validating de novo peptide sequences. However, to this end, it is essential to
take into account that the number of tags derived from a typical bottom-up data set will
be a few orders of magnitude larger than in the top-down case and that the pairs of tags
matching the same peptide will have relatively close mass offsets.

Recall that for a spectrum S, a peptide sequence tag of length k, or k-tag, is defined by
k + 1 peaks of S separated by the amino acid masses; the respective amino acids spell out
the tag string, and the mass of the leftmost peak determines the mass offset, or simply offset,
assigned to the resulting tag. Given a set T of k-tags extracted from a set of input MS/MS
spectra and two k-mers w1 and w2, tag convolution computes offset differences for the
pairs of tags from T labeled with w2 and w1, respectively, and along with each encountered
value, it reports its multiplicity equal to the number of pairs of tags that contributed to
it. The intuition behind is that if w1 precedes w2 in the sequence s of a protein or peptide
subject to analysis, then the mass of the subsequence of s starting at the beginning of w1
and ending right before w2 will, thus, become registered with high multiplicity.

For this approach to work as expected, it is crucial that most of the tags compos-
ing T be correct. In order to ensure this holds, we employ the tag generation strategy
introduced in [30] for the case of top-down MS/MS spectra and apply it to bottom-up
MS/MS spectra collected at a high resolution [31]. It first deconvolutes the input spectra
with MS-Deconv [27] and subsequently generates k-tags applying ultra-low constant mass
tolerance of 4 mDa, thus profiting from the fact that while an absolute error in a peak mass
(especially a large one) can be accordingly large, the difference in those corresponding to
consecutive fragment ions tends to be substantially smaller.

In what follows, we provide a formal definition of bottom-up tag convolution, describe
a procedure that uses it for validating de novo amino acid sequences, and illustrate its
performance on bottom-up datasets for carbonic anhydrase 2 (CAH2) and alemtuzumab.
We conclude by indicating future methods for developing this concept.

2. Materials and Methods
2.1. Generation of k-Tags

The input MS/MS spectra acquired at a high resolution are first deconvoluted, to
which end we use MS-Deconv [27]. Let S denote the resulting set of deconvoluted spectra.

Subsequently, we extract from each spectrum S ∈ S a number of high-quality k-tags
for a fixed length k. This is accomplished by means of the method first proposed in [30] for
top-down MS/MS spectra and later successfully applied to bottom-up data [31]. First, a
spectrum graph GS is constructed for S. Its vertices correspond to the peaks from S and
are scored with underlying peak intensities; a directed edge uv is introduced between
two vertices u and v if Mass(v) > Mass(u), and Mass(v)−Mass(u) equals the mass of
some amino acid a up to a predefined tolerance, where Mass(u) and Mass(v) denote the
masses of the peaks from S that gave rise to u and v, respectively. Thereby we rely upon the
observation that peaks with nearby masses typically bear a similar error in those; therefore,
the relative mass difference for two peaks corresponding to consecutive fragment ions
should be highly accurate. Thus, for a small ε denoting the allowable deviation from the
“anticipated” peak mass (which we expect to differ from the theoretical one by a certain
value depending on the absolute mass), we check whether Mass(v)−Mass(u) < 2ε, and,
if so, create an edge uv and label it with a. Based on automated and manual analysis of a
few datasets, we set ε to 4 mDa and kept this value throughout all our experiments.

Next, an optimal path (with respect to the vertex scores) is computed for each con-
nected component of GS, and all the possible k-tags are derived from it; note that two
tags with a same amino acid string and offset originating from distinct spectra are consid-



Proteomes 2022, 10, 1 3 of 13

ered different. In this manner, we obtain a set T = T (S) of k-tags, based on which tag
convolution is further computed.

2.2. Bottom-Up Tag Convolution

When describing computation of bottom-up tag convolution, we will generally follow
the scheme from [29]. However, the masses potentially separating pairs of tags under
consideration will be analyzed and processed in a distinct manner as compared to the
top-down case due to the following reasons:

• The number of tags originating from the same peptide is typically quite large;
• The mass offsets of tags matching the same peptide are usually close; thus, their

differences are accurate;
• Unlike in the top-down case, ±1 Da deconvolution errors are rarely observed in the

bottom-up MS/MS spectra.

For a tag t ∈ T , let s(t) and o(t) denote its amino acid string and offset, respectively.
Moreover, let K = K(T ) denote the set of tag strings induced by T :

K = {w | ∃t ∈ T : s(t) = w}.

For two k-mers w1, w2 ∈ K, tag convolution τ(w1, w2) examines each pair (t1, t2) of
tags from T labeled with w1 and w2, respectively, and computes difference o(t2)− o(t1) of
their associated offsets. Its output represents the set of observed values di, each endowed
with the multiplicity mi being equal to the number of pairs of tags that produced it (up
to a predefined tolerance): τ(w1, w2) = {(di, mi) | 1 ≤ i ≤ h}, where h is the number of
offset differences encountered. If either w1, or w2, or both do not belong to K, the output of
τ(w1, w2) is an empty set. A toy example illustrating this concept is provided in Figure 1.

S S S1 2 3

ACD (300) ACD (300)

EFG (800)

ACD (100)

500
500

700

800 - 300 800 - 100

Figure 1. For a toy input set S = {S1, S2, S3}, spectra S1, S2, and S3 contain one, two, and one 3-tag(s),
respectively. Here, τ(ACD, EFG) = {(500, 2), (700, 1)}.

Observe that spectral convolution [28] of two spectra S1 and S2 constitutes a special
case of tag convolution for S = {S1, S2} and all the possible 0-tags—i.e., peaks from S1
and S2—upon a convention that each 0-tag derived from S1 and S2, respectively, has been
assigned an artificial label z∗1 and z∗2 , respectively, where z∗1 and z∗2 are distinct.

Intuitively, it should be expected that if the k-mers w1 = ai . . . ai+k−1 and
w2 = aj . . . aj+k−1 represent two substrings of the sequence s = a1 . . . an of a target peptide
P, where 1 ≤ i < j ≤ n− k + 1, and are unique with respect to the sequences of all the
peptides subject to analysis (up to reversal), then the offset difference approximately equal
to Mass(ai . . . aj−1) will appear in the output of τ(w1, w2) with high multiplicity, while
the other observed differences will have substantially lower multiplicities. This mass
represents, in particular, the difference between the offsets of the tags labeled with w1
and w2, respectively, defined by the peaks from the theoretical spectrum of P that corre-
spond to the ladders of N-terminal ions of the same type. Thereby, we implicitly assume
that fragmentation does produce ladders of ions leading to the tags labeled with w1 and
w2, respectively.

An important point is that even the spectra with very few peaks or an incorrect
precursor mass, which could be neither interpreted de novo nor identified by means of
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a database search (should an appropriate database be available), may give rise to tags
that will contribute to the “correct” offset difference (Figure 2a,b). In addition, such a
pair of tags can originate from two distinct spectra, which potentially may be acquired
from different—although starting at a same residue of the underlying sequence—peptides
(Figure 2c). Thus, tag convolution makes a remarkably extensive use of the information
encapsulated in the input dataset, capturing the details commonly missed by existing tools
for analyzing MS/MS data.

A V T D P V L S G N A T S M P G S T

T S G P M S T A N G S L V P D T V A

271 386 483 582 1125 1212 1343 14400 1705

D
P

V S M P

m(DPVLSGNAT)

a)

285 372 473 544 915 1014 1113 12280 1428

S
T A V

P
D

m(STANGSL)

b)

315 412 511 6240 901

P V L
c)

953 1054 1141 12720 1634

T
S M

m(PVLSGNA)

Figure 2. Four spectra acquired from a toy protein with the amino acid sequence AVTDPVLSG-
NATSMPGST. Tag convolution is being computed for the strings TDPVL and ATSMP. Two tags
composing a pair that contributes the “correct” (i.e., equal to m(SGN)) value can be derived from the
following: (a) a spectrum acquired from the entire protein; (b) a spectrum acquired from a fragment
of the underlying protein; (c) two distinct spectra acquired from possibly different protein fragments
starting at a same amino acid residue.

However, in practice, w1 and/or w2 may happen not to be unique with respect to
the protein sequence(s) contained in a sample, and, if so, pairs of tags corresponding to
their non-correlated occurrences may produce an irrelevant offset difference endowed
with a convincingly high multiplicity. A straightforward method for preventing such
appearances of such fraud values comprises an appropriate selection of tag length k, which
should then be large enough to ensure that a k-mer is unlikely to occur more than once in
the sequence(s) being analyzed (note that an occurrence of its reversed copy would also
count). Nevertheless, usage of short tags is often beneficial, despite the fact that they can
be duplicated: for instance, 3-tags turn out to be particularly handy in analyzing poorly
covered regions of the underlying sequence(s). On the other hand, it is often clear from the
context which offset differences are more likely correct, and then incorrect values can be
safely ignored regardless of their associated multiplicities. For example, if seeking to decide
whether a sequence s represents a correct de novo interpretation of an input spectrum (see
also Sections 2.3 and 3.2), for two k-mers w1 and w2 defined as above, we would expect
Mass(ai . . . aj−1) to show up with high multiplicity. If this is the case, but some other values
occur with comparably high, or even higher, multiplicities, their presence can be attributed
to the fact that at least one of w1 and w2 occurred at least once more (possibly in a reversed
form) in the sequences of the peptides contained the sample.
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Another issue to be taken into account is that even for a highest-quality dataset, there
is little hope to encounter a tag for every k-mer in the protein sequence(s). In order to
overcome potential complications caused by the absence of some tags, we extend the
concept of tag convolution from k-mers to longer strings, and the procedures outlined
below capitalize on this generalization.

In order to define tag convolution for strings, we need to introduce two auxiliary
operations that apply to tag convolution for k-mers. The first one is a shift by a value of δ,
which transforms τ(w1, w2) into the set

τδ(w1, w2) = {(d + δ, m) | (d, m) ∈ τ(w1, w2)}.

The second operation is a merge of the outputs of tag convolution for two pairs of
k-mers; typically, at least one of those will be appropriately shifted so that the two sets of
offset differences would presumably match each other. For example, merging the outputs of
τ(w1, w2) and τδ(u1, u2) comprises merging the respective two sets of offset differences; for
a difference that occurs in both sets, its multiplicity in the resulting set τ(w1, w2) ◦ τδ(u1, u2)
is calculated as the sum of those in the original sets, while a difference contained in precisely
one set simply inherits its corresponding multiplicity.

For two amino acid strings s1 = a1 . . . ap and s2 = b1 . . . bq, each of length at least
k, bottom-up tag convolution T(s1, s2) is computed as follows. First, for each pair of
k-mers w1 = ai . . . ai+k−1 and w2 = bj . . . bj+k−1 from s1 and s2, respectively, where 1 ≤
i ≤ p− k + 1 and 1 ≤ j ≤ q− k + 1, we let δ = −Mass(ai . . . ap)−Mass(b1 . . . bj−1) and
compute τδ(w1, w2). Then, τ(s1, s2) is formed by merging all obtained sets. Subsequently,
we consider the reversed copies s1 and s2 of s1 and s2, respectively, and compute τ(s2, s1)
in a similar manner. Finally, we let T(s1, s2) = τ(s1, s2) ◦ τ(s2, s1). It follows from the
definition that T(s1, s2) = T(s2, s1).

Assuming that s1 and s2 are substrings of s and s1 precedes s2 in s, let s∗ denote the
substring of s separating s1 and s2. Then, τδ(w1, w2) essentially provides us with a set of
weighted estimates of the mass Mass(s∗) of s∗ computed from w1 and w2, and T(s1, s2)
combines them all together, thus providing such set of estimates obtained from the entire
strings s1 and s2 and their reversed copies s1 and s2. Suppose we trust correctness of s1 and
s2 but doubt that of s∗. Then, the presence of Mass(s∗) in T(s1, s2) with a high multiplicity
would serve as an argument that s∗ is correct, while its absence from T(s1, s2) or occurrence
in T(s1, s2) with a low multiplicity would be a “warning alarm.” This simple idea underlies
the sequence validation procedures outlined in the next section.

Observe that the above-mentioned drawback of using short tags is significantly re-
duced for tag convolution applied to long enough amino acid strings s1 and s2. Indeed,
even though for a pair of k-mers w1 and w2 cut out from s1 and s2, or s2 and s1, respectively,
an incorrect offset difference may dominate in τ(w1, w2), it is unlikely that the same value
will also appear with a high multiplicity in the output of tag convolution for other pairs of
k-mers contributing to T(s1, s2). On the contrary, the correct value should be produced with
a relatively high multiplicity for each pair of k-mers from s1 and s2, or s2 and s1, respectively,
that both belong to K; consequently, they are expected to dominate in T(s1, s2).

2.3. Sequence Validation

It is not uncommon that the amino acid strings generated by a de novo sequencing
algorithm contain erroneous amino acids or even are entirely wrong. We propose the
following method for validating de novo strings using bottom-up tag convolution.

Let s = a1 . . . an be an amino acid string subject to validation. With each amino acid ag
of s except for the first and last k ones, we associate its tag score θ(ag), where k < g ≤ n− k.
With each amino acid ah of s, we associate its k-mer score κ(ah), where 1 ≤ h ≤ n.

The tag score θ(ag) equals the multiplicity of Mass(ag) in the tag convolution T(sl , sr)
of the two substrings sl and sr of s located immediately to the left and right of ag, respec-
tively. It should be noted, however, that the farther the two k-mers, w1 and w2, are from
each other within s, the less accurate the output of τ(w1, w2) might be, and consequently,
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the contribution of the pair (w1,w2) to T(sl , sr) results. In order to prevent potential errors
introduced by such pairs of tags, we impose an upper bound L on the length of sl and sr,
thus permitting sl = amax{0,g−L} . . . ag−1 and sr = ag+1 . . . amin{n,g+L}.

The k-mer score of an amino acid of s can be either 0 or 1. Initially, all of those are
set to zero. Now, suppose that at time of calculation of θ(ag), a pair w1 = ai . . . ai+k−1
and w2 = aj . . . aj+k−1 of k-mers from sl and sr, respectively, contributed the value of
Mass(ag) to T(w1, w2), where 0 ≤ i ≤ g− k and g < j ≤ n − k + 1. On one hand, this
boosts confidence in ag; on the other hand, this also favours the amino acids composing w1
and w2. To recognize this fact, the k-mer score of each of ai, . . . , ai+k−1, aj, . . . aj+k−1, if still
zero, is risen to 1.

As an example, consider a toy protein with the amino acid sequence
s = AVTDPVLSGNATSMPGST from which four spectra were acquired (see Figure 3).
The red and blue peaks correspond to b-ions and y-ions, respectively. In total, there are
are six 3-tags, out of which three are based on b-ions (those labeled with DPV, SMP, and
PVL, respectively) and the other three are based on y-ions (those labeled with STA, VPD,
and GSL, respectively). For each amino acid of s, the tag and 3-mer score calculated from
those 3-tags are listed in Table 1. In particular, the amino acid score of N-10 is obtained
as the multiplicity of its mass 114 in the output of T(AVTDPVLSG, ATSMPGST). Since
114 occurs precisely once in the output of the following:

• τ−Mass(DPVLSG)−Mass(AT)(DPV, SMP);
• τ−Mass(PVLSG)−Mass(AT)(PVL, SMP);
• τ−Mass(STA)−Mass(GSL)(STA, VPD);
• τ−Mass(STA)(STA, GSL).

The amino acid score on N-10 equals 4 (see Figures 3 and 4). Furthermore, the tag
score of N-10 is 0: This can be deduced immediately since it is not covered by any 3-tag.
On the contrary, the tag score of each amino acid covered by some tag that together with
another one contributed to the amino score of N-10 (namely, D-4, P-5, V-6, L-7, S-8, G-9,
A-11, T-12, S-13, M-14, and P-15) can be immediately set to 1.

A V T D P V L S G N A T S M P G S T

T S G P M S T A N G S L V P D T V A

271 386 483 582 1125 1212 1343 14400 1705

D

P
V S M P

(1)

285 372 473 544 915 1014 1113 12280 1428

S
T A V

P
D

(2)

386 483 582 6950 972

P
V

L
(3)

658 715 802 9150 1246

G
S L

(4)

Figure 3. Four spectra acquired from a toy protein with the amino acid sequence s = AVTDPVLSG-
NATSMPGST together give rise to five 3-tags. The pairs of tags labeled with DPV and SMP, PVL and
SMP, STA and VPD, and STA and GSL, respectively, contribute to the tag and 3-mer scores of certain
amino acids of s.
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Table 1. The tag and 3-mer score for each amino acid of the protein sequence from the toy example
provided in Figure 3.

A V T D P V L S G N A T S M P G S T

tag score - - - 0 0 0 2 3 3 4 2 2 0 0 0 - - -
3-mer score 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0

A V T D P V L S G N A T S M P G S T

a)

A V T D P V L S G A T S M P G S T

s s1 2

b)

A V T D P V L S G A T S M P G S T

c)

D P V

w1

S M P

w2

Figure 4. Contribution of a pair of 3-mers to T(AVTDPLSG, ATSMPGST) computed at the time of
validating the amino acid N-10 of the toy protein from Figure 2. (a) The protein sequence. (b) To
validate N-10, we consider the prefix s1 and suffix s2 of the entire sequence immediately preceding
and following N-10, respectively, and examine all the pairs of 3-mers from s1 and s2, respectively,
and from s2 and s1, respectively. (c) Processing of the pair of 3-mers w1 = DPV and w2 = SMP from
s1 and s2, respectively. To either 3-mer, precisely one 3-tag from the set T depicted in Figure 3
corresponds. Both tags are defined by b-ions and properly align against the sequence. Thus, the
difference between their offsets, which contributes to τ(w1, w2), equals Mass(DPVLSGNAT). When
shifting this value by δ = −Mass(DPVLSG) − Mass(AT), we obtain the mass of N equal to 114.
Consequently, the pair (DPV,SMP) of 3-mers contributes to T(AVTDPLSG, ATSMPGST) with a value
of 114 with multiplicity 1.

For a small enough tag length k, the introduced scores of the amino acids composing a
correct string s usually are all positive, except for the k-mer score of the middle amino acid
ak+1 of a string s of length 2k + 1, which is necessarily zero (while in this case, ak+1 is the
only amino acid of s, for which the tag score is defined). Should a few similar interpretations
have been proposed, e.g., for some spectrum, incorrect interpretations occasionally may
also possess this property; however, the correct one will typically have a larger sum of the
tags scores of its amino acids.

3. Results
3.1. Datasets

We benchmarked our algorithms on bottom-up datasets acquired from carbonic anhy-
drase 2 (CAH2) and alemtuzumab [32]; brief details are provided below.

CAH2 solution was reduced with dithiothreitol (DTT), alkylated with iodoacetamide,
digested overnight with trypsin, GluC or Lys-C, and analyzed using a nanoLC system
coupled to a Thermo Q-Exactive mass spectrometer. MS and MS/MS spectra were collected
at a resolution of 70,000 and 17,500, respectively. In total, 177,741 HCD MS/MS spectra
were acquired (trypsin: 91,747 spectra; GluC: 43,026 spectra; Lys-C: 42,968 spectra).

Alemtuzumab solution was reduced with DTT, alkylated with iodoacetamide, di-
gested overnight with trypsin, proteinase K or pepsin, and analyzed by a nanoLC system
coupled with a Thermo LTQ Orbitrap XL mass spectrometer. MS spectra were collected
at a resolution of 15,000. For every precursor, both HCD and a CAD iontrap spectra were
recorded; HCD MS/MS spectra were collected at a resolution of 7500. In total, 3695 pairs
of HCD and CAD MS/MS spectra were collected (trypsin: 1358 spectra; proteinase; K:
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1052 spectra; pepsin: 1285 spectra). Only HCD MS/MS spectra were used to compute tag
convolution and perform de novo sequence validation.

3.2. Sequence Validation

The input spectra were deconvoluted with MS-Deconv [27] using the default parame-
ters and preprocessed; the latter amounted to reflecting peaks and merging nearby ones, as
described in [30]. Subsequently, we applied the Twister approach [30], initially developed
for the top-down case, to generate from them a set of de novo strings, and through searching
those with BLAST against the non-redundant database, again following [30], detected and
identified 32 and 2 contaminants in the CAH2 and alemtuzumab sample, respectively. The
lists of contaminants are provided in Appendices A and B.

Subsequently, we ran PepNovo+ [33–35] on either dataset, with the fragment and
precursor mass tolerance of 0.01 and 0.05 Da, respectively, and a fixed post-translational
modification C+57. For CAH2 and alemtuzumab, 55,156 and 2471 spectra were thereby
interpreted, respectively, in up to 20 ways each. A total of 806,934 and 38,936 de novo
sequences of length at least seven were generated for CAH2 and alemtuzumab, respectively,
among which 90,891 and 1765 were correct, respectively (i.e., represented a sequence
fragment of either a target protein or contaminant).

Furthermore, we generated from either dataset a set of 3-tags as described in Section 2.1
using the mass tolerance of ε = 4 mDa. The obtained 419,136 and 7945 3-tags for CAH2
and alemtuzumab, respectively, were then used by the sequence validation procedure to
evaluate de novo strings. When comparing the values output by tag convolution with the
corresponding amino acid masses, we used an error tolerance of 0.02 Da.

When validating the de novo strings, we first restricted our attention to those with
associated scores that are all positive. Next, for each spectrum, we sorted such strings (if
any) by decreasing sum of the tag scores of their amino acids and iteratively eliminated for
each string s all the subsequent strings s′ such that the following is the case:

• Length(s′) ≤ Length(s) + 1;
• The best alignment of s′ against s resulted in the Hamming distance of at most 2 between

the matched fragments for all the alignments satisfying the following conditions:

(a) If Length(s′) ≤ Length(s), s′ must be matched against a substring of s with length
Length(s′);

(b) Otherwise (i.e., if Length(s′) = Length(s) + 1), s must be matched against either
the prefix or suffix of s′ with length Length(s);

(c) Thereby, neither insertions nor deletions were allowed.

Here, Length(s) and Length(s′) denotes the length of the string s and s′, respectively.
As a final step, all the strings of length 7 with the middle tag score less than h were
eliminated. For CAH2, the threshold h was set to 300, implying that approximately 37.67%
of the sequences having length 7 were retained. However, for alemtuzumab, since the
number of 3-tags was pretty small, we set h to 1 so that all the strings of length 7 still under
consideration actually were retained.

In this manner, we were left with 104,211 and 1559 sequences for CAH2 and alem-
tuzumab, respectively, among which 79,451 and 1323 were correct, respectively. Thus,
approximately 87.41% and 74.96% of the correct sequences were retained for CAH2 and
alemtuzumab, respectively, while the fraction of those (in a corresponding set) increased
from 11.26% and 4.53% to 76.24% and 84.86%, respectively.

The detailed statistics on the de novo strings generated from either dataset are pro-
vided in Table 2.
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Table 2. Statistics on the de novo strings for CAH2 and alemtuzumab. During validation, first the
strings with associated scores all that were positive (necessarily of length above 7) were selected and
made subject to filtration based on the alignment procedure described in the main text. Furthermore,
the strings of length 7 were handled separately, and those with the middle tag score at least h were
selected. The strings with length above and precisely 7 were retained upon alignment-based and
middle tag score-based filtration, respectively, and they composed the set of strings that passed
the validation procedure. The threshold h on the middle tag score was set to 300 and 1 for CAH2
and alemtuzumab, respectively. The details on the strings selected at some stage of the validation
procedure are highlighted in bold. The percentage of the correct strings is given with respect to the
total number of strings available upon completion of the respective stage.

CAH2 Alemtuzumab

de novo strings of length ≥ 7 total 806,934 38,936
correct 90,891 (11.26%) 1765 (4.53%)

with the associated scores all positive (necessarily of length > 7) total 69,205 685
correct 46,738 (67.54%) 592 (86.42%)

with the associated scores all zeros total 523,382 36,569
correct 3258 (0.62%) 285 (0.78%)

upon filtration

retained total 58,084 656
correct 46,382 (79.85%) 582 (88.72%)

eliminated total 11,121 29
correct 356 (3.20%) 10 (34.48%)

de novo strings of length 7

with the middle tag score ≥ h total 46,127 903
correct 33,069 (71.69%) 741 (82.06%)

with the middle tag score < h total 76,330 0
correct 5673 (7.43%) 0

final results

de novo strings of length ≥ 7 that passed the validation procedure total 104,211 1559
correct 79,451 (76.24%) 1323 (84.86%)

3.3. The TagConvolution Software Tool

The proposed approach was implemented in a Java tool TagConvolution, which
is freely available at http://bioinf.spbau.ru/en/twister/tag-convolution accessed on 8
November 2021, along with the sample input and output files.

The program takes as input two directories: one storing the file(s) containing the
deconvoluted with MS-Deconv tandem mass spectra, which will be used by the validation
procedure for tag generation, and the other—the file(s) with the amino acid sequences to be
validated. The sequence files are either generated as output by PepNovo+ [34] or contain
lists of candidate interpretations of the input spectra in a very simple format illustrated in
the sample file TagConvolutionSampleInput.txt.

The tag generation strategy is the same as those used within the Twister de novo
sequencing approachs [30,36]. Consequently, the TagConvolution tool inherits the following
input parameters of Twister: the tag length k, the mass tolerance applied when retrieving
tags, and two flags indicating whether peak reflection and water-loss peak elimination
should be performed. Further details can be found in [30].

Moreover, the mass tolerance used by the sequence validation procedure when match-
ing tag convolution values to the respective amino acid masses and the threshold on the
minimum tag score of the middle amino acid in a string of length (2k + 1) are specified.

For each input file InputFileName.txt, two output files InputFileName.valid.txt
and InputFileName.scores.txt are produced. For each MS/MS spectrum, at least one
interpretation of which was classified as valid, all such candidate sequences are listed in
the former file, and their associated tag and k-mer scores are provided in the latter.

http://bioinf.spbau.ru/en/twister/tag-convolution
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The TagConvolution tool performs quite fast: in particular, on a modern laptop, the
entire CAH2 dataset was processed in approximately 90 s.

4. Discussion

We have introduced the concept of tag convolution and demonstrated its utility
in validating candidate tryptic peptide sequences based on a set of bottom-up MS/MS
spectra collected at a high resolution. In practice, enzymes of any specificity can be used
for digesting the target protein. Neither the protein size nor the peptide amino acid
composition matters after digestion. The developed method can process sets of CID/CAD,
ETD/ECD, or HCD MS/MS spectra acquired from the peptides subject to analysis.

In particular, this approach represents an elegant method for verifying de novo se-
quencing results using the same data, from which they were derived, yet it differs in
processing. The proposed procedure can be easily adapted for localizing and identifying
post-translational modifications (PTMs) in proteins or peptides: If for two disjoint sequence
fragments, the value with the highest multiplicity output by tag convolution is not con-
sistent with the sum of masses of the amino acid residues in-between, this likely points
to one or a few PTMs that occurred on (some of) those, and the difference between the
theoretically expected and observed value can be used to characterize the putative PTMs.

Additionally, bottom-up tag convolution can be applied for appropriately gluing
together overlapping aggregated strings—protein sequence fragments derived from top-
down spectra as described in [30,36]—assuming that bottom-up data were collected as well.
We will benefit from that to further extend the Twister algorithm for de novo sequencing
of proteins.

We implemented the sequence validation procedure in a standalone computer pro-
gram freely available at http://bioinf.spbau.ru/en/twister/tag-convolution accessed on 8
November 2021, along with the sample input and output for the computational experiments
described in this paper (however, the underlying tag generation strategy is the same as
used within Twister [30,36]). Another direction for future work can be development of
a more sophisticated software system for validating and possibly correcting amino acid
sequences subject to examination.

Finally, we note that top-down deconvolution tools, including MS-Deconv, may not
recognize some “good” isotopic envelopes in bottom-up MS/MS spectra because they
differ in shape from those in top-down spectra. Consequently, several tags present in the
original spectra may become lost at time of deconvolution. Therefore, it would be beneficial
to adapt the scoring function employed by MS-Deconv for evaluating candidate isotopic
envelopes in the case of high-resolution bottom-up mass spectrometry data so as to further
enhance reliability of the proposed approach.
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Federation (project 0791-2020-0011).
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Appendix A. Contaminants in the CAH2 Data Set

1. sp|P62992|1-76 Ubiquitin-40S ribosomal protein S27a [Bos taurus]
2. sp|P13696|PEBP1_BOVIN Phosphatidylethanolamine-binding protein 1 OS = Bos

taurus GN = PEBP1 PE = 1 SV = 2
3. gi|27806297|ref|NP_776676.1| flavin reductase (NADPH) [Bos taurus]
4. gi|157830773|pdb|1CYO|A Chain A, Bovine Cytochrome B(5)
5. gi|6006423|emb|CAB56828.1| hemoglobin alpha chain [Bos taurus]
6. gi|77735367|ref|NP_001029380.1| ribonuclease UK114 [Bos taurus]
7. gi|27807109|ref|NP_777040.1| superoxide dismutase [Cu-Zn] [Bos taurus]
8. gi|296480569|tpg|DAA22684.1| TPA: thymosin, beta 4-like [Bos taurus]
9. gi|149642641|ref|NP_001092620.1| D-dopachrome decarboxylase [Bos taurus]
10. gi|28189771|dbj|BAC56500.1| similar to peptidylprolyl isomerase A (cyclophilin A),

partial [Bos taurus]
11. gi|29135329|ref|NP_803482.1| glutathione S-transferase P [Bos taurus]
12. gi|114051361|ref|NP_001039513.1| selenium-binding protein 1 [Bos taurus]
13. gi|59858077|gb|AAX08873.1| aspartate aminotransferase 1 [Bos taurus]
14. gi|61888856|ref|NP_001013607.1| triosephosphate isomerase [Bos taurus]
15. gi|27806591|ref|NP_776501.1| glutathione peroxidase 1 [Bos taurus]
16. gi|75057676|sp|Q58DC0.1|CPPED_BOVIN RecName: Full = Serine/threonine-protein

phosphatase CPPED1; AltName: Full = Calcineurin-like phosphoesterase domain-
containing protein 1

17. gi|134085635|ref|NP_001076965.1| lactoylglutathione lyase [Bos taurus]
18. gi|62751849|ref|NP_001015572.1| protein DJ-1 [Bos taurus]
19. gi|27819608|ref|NP_776342.1| hemoglobin subunit beta [Bos taurus]
20. gi|114051487|ref|NP_001039526.1| cytochrome c [Bos taurus]
21. gi|229552|prf||754920A albumin [Bos taurus]
22. gi|77736203|ref|NP_001029800.1|malate dehydrogenase, cytoplasmic [Bos taurus]
23. gi|58760467|gb|AAW82141.1| NDP kinase NBR-A [Bos taurus]
24. gi|77735583|ref|NP_001029487.1| adenosylhomocysteinase [Bos taurus]
25. gi|94966811|ref|NP_001035592.1| alpha-1-acid glycoprotein precursor [Bos taurus]
26. gi|78365305|ref|NP_001030533.1| peptidyl-prolyl cis-trans isomerase FKBP1A [Bos

taurus]
27. gi|27807167|ref|NP_777068.1| peroxiredoxin-6 [Bos taurus]
28. gi|48428343|sp|Q7M135.1|LYSC_LYSEN RecName: Full = Lysyl endopeptidase; Alt-

Name: Full=Lys-C
29. gi|136429|sp|P00761.1|TRYP_PIG RecName: Full=Trypsin; Flags: Precursor
30. gi|914833|gb|AAB60696.1| keratin type II, partial [Homo sapiens]
31. gi|386854|gb|AAA36153.1| type II keratin subunit protein, partial [Homo sapiens]
32. gi|623409|gb|AAA60544.1| keratin 10 [Homo sapiens]

Appendix B. Contaminants in the Alemtuzumab Data Set

1. gi|224977|prf||1205229A proteinase K
2. gi|136429|sp|P00761.1|TRYP_PIG RecName: Full = Trypsin; Flags: Precursor
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