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In plants, the chloroplast is the organelle that conducts photosynthesis. It has been

known that chloroplast is involved in virus infection of plants for approximate 70 years.

Recently, the subject of chloroplast-virus interplay is getting more and more attention.

In this article we discuss the different aspects of chloroplast-virus interaction into three

sections: the effect of virus infection on the structure and function of chloroplast, the

role of chloroplast in virus infection cycle, and the function of chloroplast in host defense

against viruses. In particular, we focus on the characterization of chloroplast protein-viral

protein interactions that underlie the interplay between chloroplast and virus. It can be

summarized that chloroplast is a common target of plant viruses for viral pathogenesis

or propagation; and conversely, chloroplast and its components also can play active

roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins

(CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus

interaction.

Keywords: chloroplast, plant virus, protein interaction, virus infection, plant defense

INTRODUCTION

Plant viruses, as obligate biotrophic pathogens, attack a broad range of plant species utilizing host
plants’ cellular apparatuses for protein synthesis, genome replication and intercellular and systemic
movement in order to support their propagation and proliferation. Virus infection usually causes
symptoms resulting in morphological and physiological alterations of the infected plant hosts,
which always incurs inferior performance such as the decreased host biomass and crop yield loss.

Abbreviations: AbMV, Abutilon mosaic virus; AltMV, Alternanthera mosaic virus; AMV, Alfalfa mosaic virus; BaMV,
Bamboo mosaic virus; BSMV, Barley stripe mosaic virus; CaMV, Cauliflower mosaic virus; CI protein, Cylindrical inclusion
protein; CMV, Cucumber mosaic virus; CNV, Cucumber necrosis virus; CP, Coat protein, Capsid protein; CPRG/CPRP,
chloroplast photosynthesis-related gene/protein; HC-Pro, Helper component protein proteinase; JA, Jasmonic acid; MDMV,
Maize dwarf mosaic virus; MP, Movement protein; OEC, Oxygen evolving complex; OYDV, Onion yellow dwarf virus; PD,
plasmodesmata; PMTV, Potato mop-top virus; PPV, Plum pox virus; PS II, photosystem II; PVX, Potato virus X; PVY, Potato
virus Y; RCNMV, Red clover necrotic mosaic virus; RdRP, RNA-dependent RNA polymerase; R gene, Resistance gene; ROS,
Reactive oxygen species; RSV, Rice stripe virus; RuBisCO, Ribulose-1,5-bisphosphate carboxylase/oxygenase; RYMV, Rice
yellow mottle virus; SA, Salicylic acid; SCMV, Sugarcane mosaic virus; siRNA, small interfering RNA; SMV, Soybean mosaic
virus; SNARE, soluble NSF attachment protein receptor; SYSV, Shallot yellow stripe virus; TBSV, Tomato bushy stunt virus;
TEV, Tobacco etch virus; TGB proteins, Triple gene block proteins; TMV, Tobaccomosaic virus; TNV, Tobacco necrosis virus;
ToMV, Tomato mosaic virus; TRSV, Tobacco ringspot virus; TuMV, Turnip mosaic virus; TVMV, Tobacco vein-mottling
virus; TYMV, Turnip yellow mosaic virus; VRC, Viral replication complex; WMV, Watermelon mosaic virus.
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The most common viral symptom is leaf chlorosis, reflecting
altered pigmentation and structural change of chloroplasts. Viral
influence on chloroplast structures and functions usually leads
to depleted photosynthetic activity. Since the first half of the
twentieth century, an increasing number of reports on a broad
range of plant-virus combinations have revealed that virus
infection inhibits host photosynthesis, which is usually associated
with viral symptoms (Kupeevicz, 1947; Owen, 1957a,b, 1958;
Hall and Loomis, 1972; Mandahar and Garg, 1972; Reinero
and Beachy, 1989; Balachandran et al., 1994b; Herbers et al.,
2000; Rahoutei et al., 2000; Guo et al., 2005; Christov et al.,
2007; Kyseláková et al., 2011). It is suggested that modification
of photosynthesis is a common and conserved strategy for
virus pathogenesis to facilitate infection and to establish an
optimal niche (Gunasinghe and Berger, 1991). The disturbance
of chloroplast components and functions may be responsible for
the production of chlorosis symptoms that are associated with
virus infection (Manfre et al., 2011).

A series of typical changes followed by chlorotic symptoms
imply the occurrence of chloroplast-virus interactions. These
changes include (1) fluctuation of chlorophyll fluorescence and
reduced chlorophyll pigmentation (Balachandran et al., 1994a),
(2) inhibited photosystem efficiency (Lehto et al., 2003), (3)
imbalanced accumulation of photoassimilates (Lucas et al., 1993;
Olesinski et al., 1995, 1996; Almon et al., 1997), (4) changes in
chloroplast structures and functions (Bhat et al., 2013; Otulak
et al., 2015), and (5) repressed expression of nuclear-encoded
chloroplast and photosynthesis-related genes (CPRGs) (Dardick,
2007; Mochizuki et al., 2014a), (6) direct binding of viral
components with chloroplast factors (Shi et al., 2007; Bhat et al.,
2013; Zhao et al., 2013).

In fact, the chloroplast itself is a chimera of components
of various origins coming from its bacterial ancestors, viruses
and host plants. For example, chloroplast contains the nuclear-
encoded phage T3/T7-like RNA polymerase (Hedtke et al., 1997;
Kobayashi et al., 2001; Filée and Forterre, 2005). It is not
surprising that chloroplast has an important role in plant-virus
interactions. Indeed, more and more chloroplast factors have
been identified to interact with viral components (Table 1). These
factors are involved in virus replication, movement, symptoms
or plant defense, suggesting that viruses have evolved to interact
with chloroplast.

In this review, we focus on the topic of how chloroplast
factors and viral components interact with each other and
how these interactions contribute to viral pathogenesis
and symptom development, especially in virus-susceptible
hosts.

CHLOROPLAST IS INVOLVED IN VIRAL
SYMPTOM PRODUCTION

Although the development of viral symptoms can be traced
back to different causes, the disruption of normal chloroplast
function has been suggested to cause typical photosynthesis-
related symptoms, such as chlorosis and mosaic (Rahoutei et al.,
2000). Chloroplast has been implicated as a common target of

plant viruses for a long time. For instance, the severe chlorosis
on systemic leaves infected by CMV in Nicotiana tabacum cv.
Xanthi nc is associated with size-reduced chloroplasts containing
fewer grana (Roberts and Wood, 1982). A second example
shows that the leaf mosaic pattern caused by virus infection
can be due to the layout of clustered mesophyll cells in which
chloroplasts were damaged to various degrees (Almási et al.,
2001). A third example shows that symptom caused by PVY
infection is often associated with decrease in the number and
size of host plant chloroplasts as well as inhibited photosynthesis
(Pompe-Novak et al., 2001). Based on the current studies,
the ultrastructural alteration of chloroplast and the reduced
abundance of proteins involved in photosynthesis are the two
main causes of virus induced chloroplast symptomatology (see
below).

Effect of Virus Infection on Chloroplast
Structure
Successions of analysis on the ultrastructural organization of
plant cells infected with viruses have been performed with
electron microscopy since the 1940s. There is a stunning
convergence among different host-virus systems where
significant alteration or rearrangement of the chloroplast
ultrastructure is correlated with the symptom development
(Bald, 1948; Arnott et al., 1969; Ushiyama and Matthews, 1970;
Allen, 1972; Liu and Boyle, 1972; Mohamed, 1973; Moline, 1973;
Appiano et al., 1978; Tomlinson and Webb, 1978; Schuchalter-
Eicke and Jeske, 1983; Bassi et al., 1985; Choi, 1996; Mahgoub
et al., 1997; Xu and Feng, 1998; Musetti et al., 2002; Zechmann
et al., 2003; Guo et al., 2004; El Fattah et al., 2005; Schnablová
et al., 2005; Li et al., 2006; Yan et al., 2008; Laliberté and Sanfaçon,
2010; Montasser and Al-Ajmy, 2015; Zarzyńska-Nowak et al.,
2015; Zhao et al., 2016). The chloroplast malformations include
(1) overall decrease of chloroplast numbers and chloroplast
clustering; (2) atypical appearance of chloroplast, such as
swollen or globule chloroplast, chloroplast with membrane-
bound extrusions or amoeboid-shaped chloroplast, generation
of stromule (a type of dynamic tubular extensions from
chloroplast); (3) irregular out-membrane structures such
as peripheral vesicle, cytoplasmic invagination, membrane
proliferations and broken envelope; (4) changes of content
inside the chloroplast such as small vesicles or vacuoles in
stroma, large inter-membranous sac, numerous, and/or enlarged
starch grains, increase in the number and size of electron-dense
granules/plastoglobules/bodies; (5) unusual photosynthetic
structures such as disappearance of grana stacks, distorted,
loosen, or dilated thylakoid and the disappearance of stroma;
and (6) completely destroyed chloroplasts and disorganized
grana scattering into the cytoplasm. In these studies, the viruses
are from 12 families and have either sense ssRNA, antisense
ssRNA or ssDNA genomes, covering the majority of genera and
including those responsible for devastating disease. This implies
that chloroplast abnormality is a common event across diverse
plant-virus interactions. The types of chloroplast abnormalities
caused by virus infection are summarized in Table 2 and
schemed in Figure 1.
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TABLE 1 | Chloroplast factors interacting with virus nucleic acids or proteins.

Plant Virus* Virus components Chloroplast

factors

Subcellular

localization

Biological process References

ssRNA POSITIVE-STRAND VIRUSES

Potexvirus/Alphaflexiviridae

Alternanthera mosaic virus

(AltMV)

TGB3 Chloroplast

membrane

Chloroplast Cell-to-cell movement,

long-distance movement,

symptom

Lim et al., 2010

PsbO Surrounding chloroplast Symptom Jang et al., 2013

Bamboo mosaic virus (BaMV) RNA 3′ UTR cPGK Chloroplast Cytoplasm, Replication Cheng et al., 2013

Potato virus X (PVX) CP Plastocyanin Chloroplast Symptom Qiao et al., 2009

Alfamovirus/Bromoviridae

Alfalfa mosaic virus (AMV) CP PsbP Cytoplasm Replication Balasubramaniam et al.,

2014

Cucumovirus/Bromoviridae

Cucumber mosaic virus (CMV) 1a, 2a Tsip1 Cytoplasm Replication Huh et al., 2011

Cucumber mosaic virus Y strain

satellite RNA (CMV-Y-sat)

22-nt vsiRNA** ChlI mRNA Cytoplasm Symptom Shimura et al., 2011;

Smith et al., 2011

Potyvirus/Potyviridae

Potato virus Y (PVY) CP RbCL – Symptom Feki et al., 2005

HC-Pro MinD Cytoplasm Symptom Jin et al., 2007

CF1β Chloroplast Symptom

Onion yellow dwarf virus (OYDV) P3 RbCL, RbCS – – Lin et al., 2011

Plum pox virus (PPV) CI PsaK – Host defense Jimenez et al., 2006

Sugarcane mosaic virus (SCMV) HC-Pro Fd V Cytoplasm Symptom Cheng et al., 2008

Soybean mosaic virus (SMV) P1 Rieske Fe/S – Symptom Shi et al., 2007

P3 RbCL, RbCS – – Lin et al., 2011

Shallot yellow stripe virus (SYSV) P3 RbCL, RbCS – – Lin et al., 2011

Turnip mosaic virus (TuMV) CP 37-kD protein – – McClintock et al., 1998

P3 RbCL, RbCS – – Lin et al., 2011

Tobacco vein-mottling virus

(TVMV)

CI PsaK – Host defense Jimenez et al., 2006

Dianthovirus/Tombusviridae

Red clover necrotic mosaic virus

(RCNMV)

MP GAPDH-A Chloroplast,

Endoplasmic reticulum

Cell-to-cell movement Kaido et al., 2014

Pomovirus/Virgaviridae

Potato mop-top virus (PMTV) TGB2 Chloroplast lipid Chloroplast Replication Cowan et al., 2012

Tobamovirus/Virgaviridae

Tobacco mosaic virus (TMV) 126K replicase PsbO – Host defense Abbink et al., 2002

NRIP Cytoplasm, Nucleus Host defense Caplan et al., 2008

126 K/183K replicase AtpC VRCs Host defense Bhat et al., 2013

RCA VRCs Host defense

MP RbCS Cytoplasm Cell-to-cell movement Zhao et al., 2013

Tomato mosaic virus (ToMV) CP Fd I Cytoplasm Symptom Sun et al., 2013; Ma

et al., 2008

IP-L Thylakoid membrane Long distance movement Li et al., 2005; Zhang

et al., 2008

MP RbCS Cytoplasm Cell-to-cell movement Zhao et al., 2013

ssRNA NEGATIVE SENSE VIRUSES

Tenuivirus/Unassigned

Rice stripe virus (RSV) SP PsbP Cytoplasm Symptom Kong et al., 2014

(Continued)
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TABLE 1 | Continued

Plant Virus* Virus components Chloroplast

factors

Subcellular

localization

Biological process References

ssDNA VIRUSES

Begomovirus/Geminiviridae

Abutilon mosaic virus (AbMV) MP cpHSC70-1 Cell periphery,

Chloroplast

Cell-to-cell movement Krenz et al., 2010, 2012

dsDNA VIRUSES

Caulimovirus/Caulimoviridae

Cauliflower mosaic virus (CaMV) P6 CHUP1 VRCs Cell-to-cell movement Angel et al., 2013

*Virus taxonomy is in format of Genus/Family. **Virus-derived small interfering RNA. –Not addressed. ssRNA, single-stranded RNA; ssDNA, single-stranded DNA.

Viral Effectors Are Related to the
Chloroplast Structural Changes
Recent reports have revealed that viral factors, especially coat
proteins (CPs), affect chloroplast ultrastructure and symptom
development (see below).

Viral coat proteins (CPs) have been demonstrated as
determinants of symptom phenotypes for a much long period
(Heaton et al., 1991; Neeleman et al., 1991). The earlier
research showed that virion-like particles or virus inclusion
in chloroplast are positively related to the development of
mosaic symptom caused by TMV (Bald, 1948; Shalla, 1964). The
more virion-like particles accumulated in chloroplast, the more
severe morphological defects of chloroplast structure occurred
(Matsushita, 1965; Shalla, 1968; Granett and Shalla, 1970; Betto
et al., 1972). Later researches indicate that virion-like particles in
chloroplast are pseudovirions, in which chloroplast transcripts
are encapsidated by TMV CPs (Shalla et al., 1975; Rochon
and Siegel, 1984; Atreya and Siegel, 1989), highlighting the
involvement of CPs in the alteration of chloroplast ultrastructure.
TMV CP does not possess a classical chloroplast transit peptide
(TP) but can be imported into chloroplast effectively in a
ATP-independent mode (Banerjee and Zaitlin, 1992). The
majority of TMV CPs in chloroplasts are associated with the
thylakoid membranes in systemically invaded N. tabacum leaves
(Reinero and Beachy, 1986; Hodgson et al., 1989). Various
natural TMV mutants, whose CPs excessively accumulate in
chloroplast, always inducemore severe symptoms and aggravated
inhibition of the PS II activity (Regenmortel and Fraenkel-
Conrat, 1986; Reinero and Beachy, 1986, 1989; Banerjee
et al., 1995; Lehto et al., 2003), suggesting that chloroplast-
targeted CPs act as the inducer of chloroplast ultrastructure
rearrangements (Figure 1, Table 2). Tobamovirus CP can bind
tobacco chloroplast Ferredoxin I (Fd I) (Sun et al., 2013,
Table 1), while TMV infection reduces the protein level of
Fd I in tobacco leaves (Ma et al., 2008). Silencing of Fd1
in tobacco plants leads to symptomatic chlorosis phenotype
and enhances CP accumulation in chloroplast as well as
virus multiplication, suggesting that the CP-Fd I interaction
may contribute to the development of chlorosis and mosaic
symptoms.

PVX CP and viral particles can also be detected in chloroplast
of the infected plants, causing structural alteration of chloroplast

membranes and grana stacks (Kozar and Sheludko, 1969;
Qiao et al., 2009). PVX CP interacts with the chloroplast
TP of plastocyanin (Table 1), and silencing of plastocyanin in
N. benthamiana reduces viral symptom severity. In plastocyanin
silenced plants, the accumulation of CP in chloroplasts was also
reduced although total CP amount in infected cells did not
change (Qiao et al., 2009), suggesting that the CP-plastocyanin
interaction positively contributes to viral symptom-associated
chloroplast abnormality (Figure 1, Table 2).

PVY CP is preferentially associated with the thylakoid
membranes (Gunasinghe and Berger, 1991). PVY CP interacts
with the large subunits of RuBisCO (RbCL) (Table 1) and
this interaction may be involved in the production of mosaic
and chlorosis symptoms (Feki et al., 2005). Further research
indicates that chloroplast-targeted, but not cytosol-localized
CP induces virus-like symptom (Naderi and Berger, 1997a,b).
These observations suggest an intimate relationship between
chloroplasts and PVY CP during the process of inhibiting PS II
in viral pathogenesis.

CMV infection causes symptoms associated with chloroplast
ultrastructure changes (Roberts and Wood, 1982; Shintaku et al.,
1992; Mazidah et al., 2012). CMV CP can be transported into
intact chloroplast promptly in a ATP-independent mode and the
amount of CP into chloroplast correlated with the severity of
mosaic symptoms (Liang et al., 1998). The single amino acid
substitution at residue 129 in CP of CMV pepo strain is found to
induce chloroplast abnormalities (Figure 1, Table 2) associated
with the alteration of chlorosis severity (Shintaku et al., 1992;
Suzuki et al., 1995; Mochizuki and Ohki, 2011; Mochizuki et al.,
2014b), suggesting that CMV CP alone possess the virulence to
induce chlorosis and chloroplast abnormalities in CMV-infected
tobacco plants (Mochizuki and Ohki, 2011; Mochizuki et al.,
2014b).

Viral CPs could also impose virulent effects from outside
of the chloroplasts. A series of CP deletion mutants of TMV
(Lindbeck et al., 1991) and ToMV spontaneous mutant ToMV-
L11Y (Ohnishi et al., 2009) causes severe chlorosis associated
with severe deformation and disruption of chloroplasts and the
mutant CPs are shown to contribute to this severe chlorosis
(Lindbeck et al., 1991; Ohnishi et al., 2009). Because the
mutant CPs aggregate outside of chloroplasts, they may subvert
the chloroplast development and cause the degradation of
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TABLE 2 | Structural changes of chloroplasts induced by virus infection.

Plant Virus* Chloroplast Abnormality Plant Host Virus Factor References

ssRNA POSITIVE-STRAND VIRUSES

Potexvirus/Alphaflexiviridae

Potato virus X (PVX) Invaginations of cytoplasm into chloroplast Datura stramonium,

Solanum tuberosum

Virus particle,

Virus inclusion

Kozar and Sheludko,

1969

Dilated granal lamella, enlarged stromal

areas, thylakoid vesicles

Nicotiana

benthamiana

CP Qiao et al., 2009

Alternanthera mosaic virus

(AltMV)

Vesicular invaginations Nicotiana

benthamiana

Viral RNA, TGB3 Lim et al., 2010

Carlavirus/Betaflexiviridae

Potato virus S (PVS) Cytoplasm invagination Chenopodium

quinoa

Virion Garg and Hegde, 2000

Cucumovirus/Bromoviridae

Cucumber mosaic virus isolate

16 (CMV-16)

Reduction in chloroplast number and size,

completely destroyed chloroplasts and

disorganized grana scattering into the

cytoplasm

Lycopersicon

esculentum

– Montasser and Al-Ajmy,

2015

CMV P6 strain (CMV-P6) Tiny chloroplast with fewer grana, myelin-like

chloroplast-related structures

Nicotiana tabacum – Roberts and Wood, 1982

CMV Malaysian isolate Disorganized thylakoid system, crystallization

of phytoferritin macro molecules and, large

starch grains

Catharanthus roseus – Mazidah et al., 2012

CMV pepo strain with CP129
substitutions

Few thylakoid membranes, no granum

stacks, abnormal-shaped and

hyper-accumulated starch grains

Nicotiana tabacum – Mochizuki and Ohki,

2011

CMV pepo strain VSR deficient

mutant with CP129 substitutions

Fewer thylakoid membranes and granum

stacks

Nicotiana tabacum – Mochizuki et al., 2014b

Polerovirus/Luteoviridae

Beet western yellows virus

(BWYV)

Disappearance of grana stacks, stroma

lamellae, large starch grains, osmiophilic

granules

Lactuca sativa,

Claytonia perfoliata

– Tomlinson and Webb,

1978

Sugarcane Yellow Leaf Virus

(ScYLV)

Swollen chloroplast, rectangular grana

stacks, more plastoglobules

Saccharum spec. – Yan et al., 2008

Potyvirus/Potyviridae

Bean yellow mosaic virus (BYMV) Increased stromal area, swollen chloroplast,

loss of envelopes, dilated thylakoids,

decreased chloroplast number

Vicia faba – Radwan et al., 2008

Maize dwarf mosaic virus strain

A (MDMV-A)

Small vesicles, deformation of membranes,

reduction in grana stack height,

disappearance of osmiophilic globules,

degeneration of structures

Sorghum bicolor – Choi, 1996

MDMV Shandong isolate

(MDMV-SD)

Thylakoid swelling, envelope broking Zea mays – Guo et al., 2004

Plum pox virus (PPV) Dilated thylakoid, increase in the number and

size of plastoglobuli, decreased amount of

starch in chloroplasts from palisade

parenchyma

Prunus persica L. – Hernández et al., 2006

Dilated thylakoids, increased number of

plastoglobuli, peculiar membrane

configurations

Pisum sativum – Díaz-Vivancos et al.,

2008

Lower amount of starch granules,

disorganized grana structure

Prunus persica L. – Clemente-Moreno et al.,

2013

Potato virus Y (PVY) Reduced chloroplast number, smaller

chloroplasts with exvaginations

Solarium tuberosum – Pompe-Novak et al.,

2001

Decrease of volume density of starch,

increase of volume density of plastoglobuli

Nicotiana tabacum – Schnablová et al., 2005

(Continued)
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TABLE 2 | Continued

Plant Virus* Chloroplast Abnormality Plant Host Virus Factor References

Sugarcane mosaic virus (SCMV) Swollen chloroplast, increased number of

plastoglobuli

Sorghum bicolor – El Fattah et al., 2005

Turnip mosaic Virus (TuMV) Chloroplast aggregation, irregular shaped

chloroplast, large osmiophilic granules, poorly

developed lamellar system, few or no starch

grains,

Chenopodium

quinoa

Virus particle Kitajima and Costa, 1973

Zucchini yellow mosaic virus

(ZYMV)

Decrease of chloroplasts amount, decreased

thylakoids, increased plasto-globule and

starch grain in chloroplast

Cucurbita pepo – Zechmann et al., 2003

Fijivirus/Reoviridae

Maize rough dwarf virus (MRDV) Membrane disappearance, swollen grana

discs, periphery vesicles

Zea mays Virus particle Gerola and Bassi, 1966

Distorted grana and paired membranes. Chenopodium

quinoa

Virus particle Martelli and Russo, 1973

Fabavirus/Secoviridae

Broad bean wilt virus 2 (BBWV-2)

isolate B935

Inhibited lamellar development, membrane

vesiculation

Vicia faba – Li et al., 2006

BBWV-2 isolate PV131 Chloroplast with swollen or disintegrated

membrane

Vicia faba –

Tombusvirus/Tombusviridae

Artichoke mottled crinkle virus

(AMCV)

Distorted grana and paired membranes. Chenopodium

quinoa

Virus particle Martelli and Russo, 1973

Tomato bushy stunt virus (TBSV) Large plastidial vacuole, disorganized lamellar

system, multivesicular bodies originate from

chloroplasts, chloroplasts clustered around a

group of multivesicular bodies

Gomphrena globosa Virus particle Appiano et al., 1978

Large inter-membranous sac, rearrangement

of the thylakoids

Datura stramonium – Bassi et al., 1985

Unassigned/Tombusviridae

Maize necrotic streak virus

(MNeSV)

Chloroplast swollen, out membrane

invagination

Zea mays – De Stradis et al., 2005

Tymovirus/Tymoviridae

Melon rugose mosaic virus

(MRMV)

Peripheral vesicles, tendency to aggregate Cucumis melo – Mahgoub et al., 1997

Turnip yellow mosaic virus

(TYMV)

Peripheral vesicles, reduction of grana

number, chlorophyll content; increases in

amounts of phytoferritin and numbers of

osmiophilic globules

Brassica rapa Viron, Viral RNA Ushiyama and Matthews,

1970; Hatta and

Matthews, 1974

Belladonna mottle virus physalis

mottle strain (BeMV-PMV)

Vesicles develop in chloroplasts,

vesiculations of the outer membranes

Datura stramonium Viron Moline, 1973

Wild cucumber mosaic virus

(WCMV)

Double membrane vesicles in chloroplasts,

single membrane vesicles surrounding

chloroplasts

Marah oreganus Virus particle Allen, 1972

Hordeivirus/Virgaviridae

Barley stripe mosaic virus

(BSMV)

Surrounded chloroplasts, cytoplasmic

invaginations into chloroplasts, aggregated

chloroplasts, rearrangement of the thylakoids,

electron transparent vacuoles in stroma

Hordeum vulgare Viron Carroll, 1970;

Zarzyńska-Nowak et al.,

2015

Peripheral vesicles; Type1: elongated grana

or anastomosed lamellae, composed of

pellucid stroma, twisted or convoluted

membranes forming tubular networks; Type2:

swollen and contained disarranged internal

membranes; Type3: electron dense stroma,

cytoplasmic invaginations.

Datura stramonium Genomic ssRNA McMullen et al., 1978

(Continued)
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TABLE 2 | Continued

Plant Virus* Chloroplast Abnormality Plant Host Virus Factor References

Rounded and clustered chloroplasts,

cytoplasmic invaginations and inclusions at

the periphery

Nicotiana

benthamiana

TGB2, CP, γb,

virus-like particle

Torrance et al., 2006

Pomovirus/Virgaviridae

Potato mop-top virus (PMTV) Large starch grains, large cytoplasmic

inclusion, terminal extension,

Nicotianabenthamiana Genomic RNA,

CP, TGB2

Cowan et al., 2012

Tobamovirus/Virgaviridae

Ribgrass mosaic virus (RMV) Disappearance of stroma, decrease in grana

lamella, Large starch grains, osmiophilic

granules

Nicotiana tabacum – Xu and Feng, 1998

Tobacco mosaic virus (TMV) Aggregates and vecuoles in chloroplast Lycopersicon

esculentum

Shalla, 1964

Enlarged plastids, supergranal thylakoids,

large accumulations of osmiophilic bodies

Lycopersicon

esculentum

– Arnott et al., 1969

Disappearance of stroma, decrease in grana

lamella, large starch grains, osmiophilic

granules

Nicotiana tabacum CP Xu and Feng, 1998

Swelling, more osmophilic plastoglobuli,

loosened thylakoid structure

Capsicuum anuum – Mel’nichuk et al., 2002

TMV U5 strain Peripheral vesicles Nicotiana tabacum Virus particle Betto et al., 1972

TMV yellow strain Filled with osmiophilic globules, rearranged,

swollen or eliminated lamellar system,

extensive chloroplast degradation

Solanum tuberosum – Liu and Boyle, 1972

TMV flavum strain (TMV-Flavum) Swollen or globular chloroplast, distorted

thylakoid membranes, grana depletion,

unidentified granular matter

Nicotiana tabacum MP, CP Lehto et al., 2003

Tomato mosaic Virus (ToMV) Slightly swollen and distorted cholroplast,

large starch grains

Nicotiana tabacum Virus particle Ohnishi et al., 2009

ToMV L11Y strain (ToMV-L11Y) Flaccid chloroplast, reduced thylakoid stacks

and enlarged spaces between the stacks,

cytoplasm penetrates into chloroplast,

tubular complexes

Nicotiana tabacum – Ohnishi et al., 2009

ssRNA NEGATIVE STRAND VIRUSES

Tospovirus/Bunyaviridae

Tomato spotted wilt virus (TSWV) Peripheral vesicles Nicotiana tabacum – Mohamed, 1973

Tenuivirus/Unassigned

Rice stripe virus (RSV) Reduced sheets of grana stacks, increased

amount and size of starch granules

Oryza Sativa Virus particle Zhao et al., 2016

Membrane proliferations Nicotiana

benthamiana

NSvc4

ssDNA VIRUSES

Begomovirus/Geminiviridae

Abutilon Mosaic Virus (AbMV) Disorganization of thylakoid system,

grana-stroma elimination

Abutilon spec – Schuchalter-Eicke and

Jeske, 1983

Degenerated thylakoids, more plastoglobuli,

less starch, and accumulation of amorphous

electron-dense material

Abutilon selovianum Genomic DNA Gröning et al., 1987

Generation of stromules Nicotiana

benthamiana

MP Krenz et al., 2012

*Virus taxonomy is in format of Genus/Family. –Not addressed. ssRNA, single-stranded RNA; ssDNA, single-stranded DNA.

chloroplasts by interfering with the synthesis and transport of
CPRPs (Lindbeck et al., 1991, 1992; Ohnishi et al., 2009).

Besides CPs, other viral components are also able
to cause chloroplast malformation and contribute to
symptom. For example, transgenic expression of CaMV

transactivator/viroplasmin (Tav) protein in tobacco plants
results in a virus-like chlorosis symptom associated with
the abnormal thylakoid stacks (Figure 1, Table 2) and
reduces expression of CPRGs (Waliullah et al., 2014). The
potexvirus AltMV TGB3, different from its counterpart
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FIGURE 1 | Changes in the Ultrastructure of Chloroplasts Induced by Virus Infection. (A) Normal chloroplast. (B) Aggregated chloroplasts (surrounded with

dotted line). (C) Swollen chloroplast. (D) Chloroplast with membrane-bound extrusions. Arrow heads indicate membrane extrusions. (E) Amoeboid-shaped

chloroplast, arrow head indicates chloroplast membrane extrusions. (F) Chloroplast with stromule, arrow head indicates the stromule. (G) Chloroplast with irregular

out-membrane structures such as peripheral vesicle, cytoplasmic invagination, membrane proliferations and broken envelope. Arrow heads indicates cytoplasmic

invaginations, arrow indicates broken envelope of chloroplast. (H) Chloroplast with abnormal content changes such as small vesicles, membrane proliferations (arrow

head) and inter-membranous sac (IS), large starch grain (LS) and exaggeration of plastoglobules. (I) Disorganized grana scattering into the cytoplasm. (J) Chloroplast

with unusual photosynthetic structures such as dilated thylakoid (arrow) and globular grana (arrow head) and vascular structures.
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PVX TGB3, has a chloroplast-targeting signal and
preferentially accumulates around the chloroplast membrane
(Lim et al., 2010). Overexpression of AltMV TGB3 causes
vesiculation at the chloroplast membrane (Figure 1, Table 2)
and veinal necrosis symptom (Lim et al., 2010; Jang et al.,
2013). AltMV TGB3 strongly interacts with PS II oxygen-
evolving complex protein PsbO and this interaction is believed
to have a crucial role in viral symptom development and
chloroplast disruption (Jang et al., 2013). In PVY-infected cells,
viral multifunctional protein HC-Pro may contribute to the
change in the number and size of chloroplast by interfering
with the normal activity of the chloroplast division-related
factor MinD through direct protein interaction (Jin et al.,
2007, Table 1). The tenuivirus RSV NSvc4 protein functions as
an intercellular movement protein and is localized to PD as
well as chloroplast in infected cells. Over-expression of NSvc4
exacerbatedmalformations of chloroplast (Figure 1,Table 2) and
disease symptoms. Interestingly, the chloroplast localization of
NSvc4 is dispensable for the symptom determination while the
NSvc4 transmembrane domain probably affects the chloroplast
from outside (Xu and Zhou, 2012).

Effect of Virus Infection on Expression of
Chloroplast-Targeted Proteins
Studies on the effect of virus infection on expression of
chloroplast proteins at the transcriptomic and proteomic levels
provide insights into the molecular events during symptom
expression. In the susceptible plant response to virus infection,
the majority of significantly changed proteins are identified
to be located in chloroplasts or associated with chloroplast
membranes. Most of them are down-regulated and correlate with
the severity of chlorosis (Dardick, 2007; Shimizu et al., 2007; Lu
et al., 2012; Rodríguez et al., 2012; Kundu et al., 2013; Wu et al.,
2013; Mochizuki et al., 2014a). During virus infection, CPRPs
represent the most common viral targets. Among them, the light
harvesting antenna complex (Naidu et al., 1984a,b, 1986; Liu
et al., 2014) and the oxygen evolving complex (OEC) (Takahashi
et al., 1991; Takahashi and Ehara, 1992; Pérez-Bueno et al., 2004;
Sui et al., 2006; Wang et al., 2015) of PS II are in thylakoid,
while RbCS and RubisCO activase (RCA, an AAA-ATPase family
protein) are in chloroplast stroma (Díaz-Vivancos et al., 2008;
Pineda et al., 2010; Moshe et al., 2012; Kundu et al., 2013).

As the biosynthesis of CPRPs is a complicated process with
a series of steps (Seidler, 1996), plant virus can affect CPRPs
at varied levels including transcription, post-transcription,
translation, transportation into the chloroplast, assembly
and degradation in chloroplast, to contribute to symptom
development (Lehto et al., 2003; Pérez-Bueno et al., 2004).

Several plant viruses perturb CPRPs expression at
transcription level either in chloroplast or via retrograde
signaling into nucleus. Infection of TMV flavum strain leads
to a total depletion of PS II core complex and OEC, including
chloroplast-encoded CPRP PsbA and nuclear-encoded CPRPs
LhcB1, LhcB2 (light-harvesting chlorophyll a/b-binding protein
B1, B2) and PsbO. However, the PsbA mRNA accumulated to
a higher level in the infected leaves (Lehto et al., 2003). Thus,

TMV flavum may block PsbA translation via reducing the level
of chloroplast ribosomal RNA (Fraser, 1969) and inhibit the
transcription of nuclear-encoded CPRGs through feed-back
signaling (Lehto et al., 2003). Similarly, in the case of CMV
pepo strain and its CP129 mutant isolates, the down-regulation
patterns of transcription levels of different CPRGs correlated
with the amino acid substitution in the CP protein of the relative
isolates, where CMV CP probably repress the transcription
of CPRGs via the retrograde signaling from chloroplast into
nucleus (Mochizuki et al., 2014a).

It is interesting that plant virus can also exploit host RNA
silencing machinery to manipulate CPRGs at post-transcription
level. The enlightening evidence is illustrated by CMV-Y satellite
(CMV-Y-sat) RNA which can disturb chloroplast function and
induce disease symptoms (Shimura et al., 2011; Smith et al.,
2011). A 22-nt siRNA derived from CMV-Y-sat RNA targets
the magnesium protoporphyrin chelatase subunit I (ChlI) gene
transcripts and down-regulates its expression by RNA silencing
(Table 1), which leads to a more sever symptom characterized
as bright yellow mosaic (Takanami, 1981; Shimura et al., 2011;
Smith et al., 2011). In addition, infection by viroids (small non-
protein-coding RNAs) results in the production of viroid-derived
small RNAs (vd-sRNAs) (Papaefthimiou et al., 2001; Martínez de
Alba et al., 2002). Peach latent mosaic viroid (PLMVd) belongs
to family Avsunviroidae whose members replicate in chloroplast,
and may elicit an albino-variegated phenotype (peach calico,
PC) with blocked chloroplast development and depletion of
chloroplast-encoded proteins (Rodio et al., 2007). The PLMVd
variants associated with PC contain an insertion of 12–14 nt
that folds into a hairpin with a U-rich tetraloop, the sequence
of which is critical for inciting the albino phenotype.. Actually,
vd-sRNAs from the hairpin insertion induce cleavage of the
mRNA encoding the CPRP chloroplastic heat-shock protein 90
(cHSP90) as predicted by RNA silencing, eventually resulting in
PC symptoms (Navarro et al., 2012).

In addition to the virus-derived small RNAs, plant viruses
may also modify host microRNA (miRNA) pathway for targeting
CPRGs transcripts. The tenuivirus RSV, causing a devastating
disease in East Asia countries, hijacks CPRP during infection
and perturbs photosynthesis (Satoh et al., 2010; Shi et al., 2016).
The perturbation of photosynthesis by RSV is probably caused
by up-regulating a special miRNA that targets key genes in
chloroplast zeaxanthin cycle, which impairs chloroplast structure
and function (Yang et al., 2016).

Viral factors may reduce the level of CPRPs by direct
association with target proteins. Tobamoviruses CPs particularly
associate with the PS II complex and reduce the levels of PsbP and
PsbQ (Hodgson et al., 1989; Pérez-Bueno et al., 2004; Sui et al.,
2006). PVY HC-Pro can reduce the amount of ATP synthase
complex by interaction with the NtCF1β-subunit in both the
PVY-infected (Table 1) and the HC-Pro transgenic tobacco
plants, leading to a decreased photosynthetic rate (Tu et al.,
2015). Potyviruses TuMV, SMV, SYSV, and OYDV may hijack
RbCS and/or RbCL via the interaction with P3 or P3N-PIPO
during infection to perturb photosynthetic activity (Lin et al.,
2011). Potyvirus SCMV infection significantly down-regulates
mRNA level of photosynthetic Fd V rather than that of the other
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isoproteins (Fd I and Fd II) in maize, while SCMV HC-Pro
specifically interacts with the chloroplast precursor of FdV via TP
in cytoplasm outside the chloroplasts (Table 1), suggesting that
SCMV HC-Pro perturbs the importing of Fd V into chloroplasts
and leads to structure and function disturbance of chloroplast
(Cheng et al., 2008). Potyvirus SMV P1 (a serine protease)
strongly interacts with host plant-derived, but only weakly with
non-hostArabidopsis-derived, Rieske Fe/S protein of cytochrome
b6/f complex, an indispensable component of the photosynthetic
electron transport chain in chloroplasts (Table 1), suggesting that
SMV P1-Rieske Fe/S protein interaction is involved in symptom
development (Shi et al., 2007). RSV disease specific protein (SP) is
a symptom determinant protein and its overexpression enhances
RSV symptom (Kong et al., 2014). During RSV infection,
accumulation of SP is associated with alteration in structure and
function of chloroplast. SP interacts with 23-kD OEC PsbP, and
relocates PsbP from chloroplast into cytoplasm (Table 1), while
silencing of PsbP enhances disease symptom severity and virus
accumulation (Kong et al., 2014).

CHLOROPLAST IS INVOLVED IN THE
PROCESS OF THE PLANT VIRUS LIFE
CYCLE

Increasing studies have unraveled that chloroplast constituents
participate in different stages during virus infection. For example,
chloroplast is reported to be associated with viral uncoating, an
important step of replication (Xiang et al., 2006). Tombusvirus
CNV CP harbors an arm region of 38 amino acids that functions
as a chloroplast TP to direct CP import to the chloroplast stroma,
which is critical for viral disassembly. CNV CP mutant deficient
in exposure of the arm region is inefficient to establish infection,
highlighting the crucial role of chloroplast targeting in CNV
uncoating (Xiang et al., 2006).

Chloroplast and Its Factors Participate in
Virus Replication
Chloroplast affords compartment and membrane contents for
the replication of plant viruses and probably helps them to
evade the RNA-mediated defense response (Ahlquist et al., 2003;
Dreher, 2004; Torrance et al., 2006). Plant viruses propagate
via RNA-protein complex named viral replication complexes
(VRCs), which are the factory for producing progeny viruses
(Más and Beachy, 1998, 2000; Asurmendi et al., 2004). During
replication of RNA viruses, double-strand RNA (dsRNA) is
generated as an intermediate product. As a response against virus
infection, the dsRNA replication intermediates can be detected
by the host RNA silencing machinery (Angell and Baulcombe,
1997; Baulcombe, 1999). Correspondingly, plant viruses have
evolved some mechanisms by encoding viral suppressor of RNA
silencing or by associating replication with host membranes
(Ahlquist, 2002; Ahlquist et al., 2003). For a large group of
viruses, VRCs are associated with the chloroplast envelope,
particularly the peripheral vesicles and cytoplasmic invaginations
in chloroplast (Figure 1, Table 2), including alfamovirus AMV
(de Graaff et al., 1993), hordeivirus BSMV (Carroll, 1970;

Torrance et al., 2006), potyviruses MDMV (Mayhew and Ford,
1974), PPV (Martin et al., 1995), TEV (Gadh and Hari, 1986),
TuMV (Kitajima and Costa, 1973), and tymovirus TYMV
(Lafleche et al., 1972; Bové and Bové, 1985; Garnier et al.,
1986; Lesemann, 1991; Dreher, 2004). The chloroplast membrane
associated organization probably helps to shield viral RNAs from
recognition by host RNA silencing machinery (Dreher, 2004).

Viral factors, either viral genomic RNAs or proteins, can
mediate the chloroplast targeting of VRCs for replication
and subsequent virion assembly (Prod’homme et al., 2003;
Jakubiec et al., 2004; Torrance et al., 2006). BSMV replicative
dsRNA intermediates exist in the chloroplast peripheral vesicles
during infection (McMullen et al., 1978; Lin and Langenberg,
1984, 1985; Torrance et al., 2006); in the presence of the
viral genome RNA, both TGB2 and γb can be recruited to
chloroplasts for virus replication (Torrance et al., 2006). The
low pH condition of chloroplast vesicles where TYMV RNA is
synthesized is required for the interaction between viral RNA
and CP to process virion assembly (Rohozinski and Hancock,
1996). The TYMV VRC-associated membrane vesicles localize
at the chloroplast envelope (Prod’homme et al., 2001). TYMV
N-terminal replication protein (140 K) is a key organizer of
TYMV VRCs assembly and a major determinant for chloroplast
localization of TYMV for replication. The 140K protein can
localize to the chloroplast envelope autonomously and interacts
with the C-terminal replication protein (66K) to mediate the
targeting of 66K to the chloroplast envelope (Prod’homme
et al., 2003; Jakubiec et al., 2004). TuMV 6K protein (6 K or
6 K2) can autonomously allocate to chloroplast membrane and
promote the adhesion of the adjacent chloroplasts via actomyosin
motility system in infected host cells. During the infection,
TuMV 6K induces the formation of 6 K-containingmembranous
vesicles at endoplasmic reticulum exit sites and sequentially
traffic to chloroplast, while the chloroplast-bounded 6 K-vesicles
are recruited to VRCs containing viral dsRNA (Wei et al.,
2010), supporting the idea that the chloroplast-bound 6K vesicles
are the cellular compartment for TuMV replication. Blocking
the fusion of virus-induced vesicles with chloroplasts by the
inhibition of SNARE protein Syp71 significantly reduced the viral
infection (Wei et al., 2013).

Special chloroplast components are involved in the targeting
of VRCs to chloroplast. The lipid in chloroplast membrane
can associate with pomovirus PMTV TGB2 (Table 1) and
facilitate the viral RNA to localize to chloroplast membranes
for replication (Cowan et al., 2012). Furthermore, chloroplast
factors also participate in the formation of VRCs. Proteomic
analysis suggests that sobemovirus RYMV recruits CPRPs
such as Ferredoxin-NADP reductase (FNR), RbCS, RCA, and
chaperonin 60 to its VRCs during all the infectious stages
including replication, long-distance trafficking and symptoms
development (Brizard et al., 2006). The 43 kD CPRP chloroplast
phosphoglycerate kinase (cPGK) specifically interacts with 3′-
UTR of the potexvirus BaMV genomic RNA (Lin et al., 2007,
Table 1). Silencing of Nb-cPGK or mislocalization of cPGK
protein reduced BaMV accumulation, suggesting that cPGKmay
mediate BaMV RNA targeting to chloroplast for replication
(Cheng et al., 2013). Interestingly, in Arabidopsis genotype Cvi-0
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the natural recessive resistance gene rwm1 against potyvirus
WMV encodes a mutated version of cPGK (Ouibrahim et al.,
2014), illuminating that the conserved CPRP cPGK may be
required for successful replication and infection of a range of
plant viruses (Lin et al., 2007; Ouibrahim et al., 2014).

Chloroplast Factors Participate in Viral
Movement
The intercellular trafficking and systemic spreading of plant
virus need movement proteins (MPs) to fulfill the transport via
symplastic routes within plant hosts (Wolf et al., 1989; Ding
et al., 1992; Imlau et al., 1999; Lazarowitz and Beachy, 1999). To
facilitate virus movement, varied MPs possess common features
such as nucleic acid binding activity (Citovsky et al., 1990),
specific plasmodesmata (PD) localization (Ding et al., 1992;
Fujiwara et al., 1993) and the ability to increase the size exclusion
limit of PD (Wolf et al., 1989).

Chloroplast and its factors also participate in virus movement.
AltMV TGB3 has a chloroplast-targeted signal and accumulates
preferentially in mesophyll cells, which is essential for virus
movement. Mutation of the chloroplast-targeted signal in
AltMV TGB3 impairs virus movement from epidermal into
the mesophyll cells as well as viral long-distance traffic (Lim
et al., 2010). Geminivirus AbMV MP interacts with chloroplast-
targeted 70-kD heat shock protein (cpHSC70-1) and co-
localized to chloroplasts (Table 1). Silencing of cpHSC70-1 affects
chloroplast stability and causes a substantial reduction of AbMV
movement but has no effect on viral DNA accumulation (Krenz
et al., 2010, 2012). AbMV can replicate in chloroplast (Gröning
et al., 1987, 1990) and induce the biogenesis of stromule network
(Figure 1, Table 2). AbMV may use cpHSC70-1 for trafficking
along chloroplast stromules into a neighboring cell or from
plastids into the nucleus (Krenz et al., 2012).

Viral factors can interact with and hijack chloroplast factors
from their normal function and to help viral movement. The
CaMV multifunctional P6 protein is the most abundant present
in VRCs (Hohn et al., 1997) and associates with PD (Rodriguez
et al., 2014). Interestingly, CaMV P6 also interacts with the
chloroplast unusual positioning protein1 (CHUP1) (Table 1) that
is a thylakoid membrane-associated protein for mediating the
routine movement of chloroplast on microfilaments in response
to light intensity (Oikawa et al., 2003, 2008). Silencing of CHUP1
slows the formation rate of CaMV local lesion (Angel et al.,
2013). Thus, the CaMV P6 protein may mediate the intracellular
movement of VRCs to the PD by binding to CHUP1 (Angel
et al., 2013). Tobamoviruses ToMV and TMV MPs bind RbCS
(Table 1) and the interaction occurs at PD (Zhao et al., 2013).
Silencing of RbCS reduced intercellular movement and systemic
trafficking of TMV and ToMV (Zhao et al., 2013). Thus, it may be
a common strategy for tobamoviruses to hijack RbCS for efficient
movement. In addition to MPs, tobamoviruses need their CPs
for efficient long distance movement (Wisniewski et al., 1990;
Reimann-Philipp and Beachy, 1993; Ryabov et al., 1999). ToMV
CP-interacting protein-L (IP-L) is a chloroplast protein (Table 1)
and is positively induced by ToMV infection (Zhang et al.,
2008). Depletion of IP-L delayed ToMV systemic movement

and symptoms (Li et al., 2005). Dianthovirus RCNMV MP
interacts with chloroplast protein glyceraldehyde 3-phosphate
dehydrogenase subunit A (GAPDH-A) (Table 1), while silencing
of GAPDH-A inhibits viral MP localization to the cortical
VRCs and reduces RCNMV multiplication in the inoculated
leaves (Kaido et al., 2014). Therefore, GAPDH-A is relocated
from chloroplast to cortical VRCs to facilitate viral cell-to-cell
movement during RCNMV infection.

Based on the current studies, it is clear that plant viruses have
evolved to utilize abundant chloroplast proteins to regulate their
movement.

CHLOROPLASTS AFFECT PLANT
DEFENSE AGAINST VIRUSES

Several hormones regulate plant defense to viruses (Alazem and
Lin, 2015). Two of them are salicylic acid (SA) and jasmonic acid
(JA). Chloroplast is the crucial site for the biosynthesis of SA
(Boatwright and Pajerowska-Mukhtar, 2013; Seyfferth and Tsuda,
2014) and JA (Wasternack, 2007; Schaller and Stintzi, 2009;
Wasternack and Hause, 2013). Moreover, chloroplast factors are
also involved in the regulation of antagonistic interactions of SA-
JA synthesis and signaling (Kunkel and Brooks, 2002; Xiao et al.,
2012; Zheng et al., 2012; Lemos et al., 2016). The chloroplast-
related regulation of SA and JA biosynthesis is schemed in
Figure 2.

SA is a small phenolic compound that plays central roles
in plant defense against biotrophic pathogens and is essential
for the establishment of local and systemic acquired resistance.
The majority of pathogen-induced SA is synthesized via
the isochorismate pathway in chloroplasts (Boatwright and
Pajerowska-Mukhtar, 2013; Seyfferth and Tsuda, 2014). As
a key activator of plant defense response, SA biosynthesis
and signaling are activated during incompatible plant-virus
interaction (Wildermuth et al., 2001; Garcion et al., 2008).
Disruption of SA pathway compromises plant resistance against
viruses (Alazem and Lin, 2015). In contrast, the application
of SA or its analogs often delays the onset of viral infection
and disease establishment by improving plant basal immunity
(Radwan et al., 2006, 2007, 2008; Falcioni et al., 2014). A
chloroplast-localized protein, named calcium-sensing receptor, is
found to act upstream of SA accumulation to link chloroplasts to
cytoplasmic-nuclear immune responses (Nomura et al., 2012).

JA is an oxylipin, or oxygenated fatty acid and is synthesized
from linolenic acid by the octadecanoid pathway, whose
biosynthesis starts with the conversion of linolenic acid to 12-
oxo-phytodienoic acid (OPDA) in the chloroplast membranes
(Turner et al., 2002). JA is thought to play a positive defense
role in compatible plant-virus interactions (Alazem and Lin,
2015). For example, silencing of Coronatine insensitive 1 (COI1),
a gene involved in the JA signaling pathway, accelerates the
development of symptoms caused by co-infection of PVX and
PVY, and accumulation of viral titers at early stages of infection
(García-Marcos et al., 2013).

The chloroplasts are major sites of the production of
reactive oxygen species (ROS), and the photosynthetic electron
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FIGURE 2 | Regulation of SA and JA Biosynthesis is Associated with Chloroplast. SA biosynthesis is predominantly accomplished by nucleus-encoded

chloroplast-located isochorismate synthase (ICS1). In chloroplasts, ICS catalyzes the conversion of chorismate into isochorismate, which is further converted to SA by

undetermined isochorismate pyruvate lyase (IPL). The MATE-transporter ENHANCED DISEASE SUSCEPTIBILITY 5 (EDS5) is responsible for SA transportation from

chloroplast into cytosol. Defense-elicited ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN DEFICIENT 4 (PAD4) complex works in a positive

feedback loop to control SA synthesis, which is regulated by SA. While in a negative feedback loop, accumulation of ICS1-produced SA results in the

deoligomerization of NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which is then translocated into nucleus where it suppresses the ICS1

expression (modified from Boatwright and Pajerowska-Mukhtar, 2013; Seyfferth and Tsuda, 2014). JA biosynthesis originates from polyunsaturated fatty acids

released from chloroplast membranes. Firstly, α-linolenic acid (18:3) (α-LeA) is catalyzed by lipoxygenase (LOX) to yield the 13-hydroperoxy derivative

13(S)-hydroperoxy-octadecatrienoic acid (13-HPOT). The dehydration of 13-HPOT by allene oxide synthase (AOS) results in the formation of unstable 12,

13(S)-epoxy-octadecatrienoic acid (12,13-EOT), which is the committed step of JA biosynthesis. Then the 12,13-EOT is converted to 12-oxophytodienoic acid

(OPDA) by allene oxide cyclase (AOC) through cyclization and concludes the chloroplast-localized part of JA biosynthesis. Subsequently, OPDA is released from

chloroplasts and taken up into peroxisomes by transporter COMATOSE (CTS3). The remaining steps are located in peroxisomes and JA is generated through

reduction of the cyclopentenone by OPDA reductase 3 (OPR3) and subsequent three cycles of β-oxidation for side-chain shortening. The JA co-receptor complex of

(Continued)

Frontiers in Microbiology | www.frontiersin.org 12 October 2016 | Volume 7 | Article 1565

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Zhao et al. Chloroplast in Plant-Virus Interaction

FIGURE 2 | Continued

CORONATINE INSENSITIVE1 (COI1) and the negative regulator JAZMONATE ZIM DOMAIN (JAZ) proteins regulates the positive feedback loop of JA biosynthesis.

Formation of JA subjects JAZ to proteasomal degradation, which allows MYC2 to activate the JA biosynthesis genes such as AOS, AOC, and LOX (modified from

Wasternack, 2007; Schaller and Stintzi, 2009; Wasternack and Hause, 2013). NPR1 is the central transcriptional regulator of SA-mediated defense responses and

directly regulates PATHOGENESIS-RELATED 1 (PR1) expression (Wang et al., 2006). By wounding or JA treatment, COI1–JAZ co-receptor promotes the degradation

of JAZ and release the positively acting transcription factors that binds to JA-responsive promoters to initiate the transcription of JA-responsive genes, such as PLANT

DEFENSIN1.2 (PDF1.2) (Chini et al., 2007; Thines et al., 2007; Yan et al., 2009). During the antagonistic interplay between SA and JA, NPR1 suppresses COI1-JAZ

mediated induction of JA-responsive genes via WRKY transcription factors, while JA also represses WRKY in COI1-dependent pathway (Li et al., 2004; Gao et al.,

2011). On the other hand, the JA signaling proteins, such as chloroplast factor SUPPRESSOR OF SA INSENSITIVITY 2 (SSI2), negatively regulate SA-mediated

NPR1-dependent defense responses (Kunkel and Brooks, 2002). Further, the phytotoxin coronatine (COR), a molecular mimic of JA, activates NAC transcription

factors via COI1-JAZ and MYC2, which eventually inhibits SA accumulation through repressing ICS1 expression (Zheng et al., 2012). In addition, the stress-induced

methylerythritol cyclodiphosphate (MEcPP) acts as a plastid-to-nucleus retrograde signal to increase the transcription level of ICS1 (Xiao et al., 2012). Meanwhile,

MEcPP increase the level of JA precursor OPDA and induce JA-responsive genes via a COI1-dependent manner in the presence of high SA (Lemos et al., 2016).

Solid lines with arrow head represent activation or promotion, dotted lines with bar head to represent deactivation or inhibition.

transport chain is responsible for ROS generation (Asada,
2006; Muhlenbock et al., 2008). Superoxide anion (O−

2 ) is
the primary reduced product of O2 photoreduction and its
disproportionation produces H2O2 in chloroplast thylakoids
(Asada, 2006; Muhlenbock et al., 2008). The burst of intracellular
ROS can be detected during virus infection in both incompatible
and compatible interactions (Allan et al., 2001; Hakmaoui et al.,
2012). Chloroplast-sourced ROS are essential for hypersensitive
response (HR) induced by incompatible defensive response
(Torres et al., 2006; Zurbriggen et al., 2010).

The stromules could function to facilitate the magnification
and transport of defensive signals into the nucleus. Interestingly,
the stromules can be induced duringN-mediated TMV resistance
response. Further, a number of stromules surround nuclei
during plant defense response, which is correlated with the
accumulation of chloroplast-localized defense protein NRIP1
and H2O2 in the nucleus. In the absence of virus infection,
suppression of chloroplast CHUP1 induces stromules and
enhances programmed cell death constitutively (Caplan et al.,
2015; Gu and Dong, 2015). In addition, the ultrastructural
changes in chloroplast can also be a part of resistant response.
For examples, during the hypersensitive reaction of N-mediated
TMV resistance, the chloroplasts swelled and the membrane
burst before tonoplast ruptured (da Graça and Martin, 1975).
During the course of lesion development caused by the nepovirus
TRSV, the changes in chloroplast ultrastructure (rounding of
chloroplasts) enlighten that chloroplast disturbance could reflect
plant-virus incompatible responses (White and Sehgal, 1993).
The ultrastructure aberrations of chloroplast represent the
intensity of apoptotic processes in PVYNTN infection (Pompe-
Novak et al., 2001). Thus, the malformation of chloroplast
may also indicate a defense response in compatible host-virus
interaction.

Removal of the lower epidermis from cowpea and tobacco
leaves inoculated with TMV or TNV resulted in reduction
of local lesion numbers, indicating that the chloroplast-free
epidermal cells possess an active role in virus infection
(Wieringabrants, 1981). Further, chloroplast may also have a role
in host defense against virus during the compatible plant-virus
interaction. Previous studies found that light could influence
host susceptibility to virus infection. Despite there is a report
that a short burst of light after dark treatment enhances plant

susceptibility to TMV infection (Helms and McIntyre, 1967), in
most cases, low light and dark treatment is beneficial for viruses
to establish infection and increase host’s susceptibility compared
to light treatment (Bawden and Roberts, 1947; Matthews, 1953;
Wiltshire, 1956; Helms, 1965; Helms and McIntyre, 1967; Cheo,
1971; Manfre et al., 2011). The negative correlation between
light and infectivity suggest that the robust photosynthesis and
chloroplast function play a positive role in defense response
during plant-virus interactions.

In compatible plant-virus interactions, some chloroplast
factors are sequestrated by virus to block antiviral defense
and fuel virus infection. For examples, AMV CP is essential
for virus replication and encapsidation, and interacts with the
chloroplast protein PsbP in the cytosol (Table 1), while mutations
that prevent the dimerization of CP abolish this interaction
(Balasubramaniam et al., 2014). Interestingly, overexpression
of PsbP markedly reduced AMV replication in infected leaves,
suggesting that there is a potential PsbP-mediated antiviral
mechanism which was sequestered by CP-PsbP interaction
(Balasubramaniam et al., 2014).

TMV 126-kD replicase associates with several CPRPs
(Table 1) such as PsbO (Abbink et al., 2002), RCA and ATP-
synthase γ-subunit (AtpC) (Bhat et al., 2013). Silencing of PsbO
results in leaf chlorosis and elevated replication of several viruses
including TMV, AMV, and PVX (Abbink et al., 2002). Similarly,
suppression of AtpC and RCA enhances the accumulation of
TMV and TVCV (Bhat et al., 2013). In addition, TMV infection
specifically decreased the expression levels of AtpC, RCA, and
PsbO (Abbink et al., 2002; Bhat et al., 2013). Further, silencing
of RbCS enhances host susceptibility to ToMV and TMV, which
is be accompanied by the reduced expression of pathogen related
gene PR-1a (Zhao et al., 2013). These findings suggest that these
CPRPs (RbCS, AtpC, RCA, and PsbO) play roles in plant defense
against TMV, and TMV has evolved a strategy to suppress the
defense of host plants for optimizing their own propagation.

The cylindrical inclusion (CI) protein of potyviruses is
required for virus replication and cell-to-cell movement. CI
protein fromPPV and TVMV interacts with photosystem I PSI-K
protein (Table 1), the product of the gene psaK in yeast (Jimenez
et al., 2006). Overexpression of PPV CI reduces protein level
of PSI-K while silencing or knockout of psaK enhances PPV
accumulation inN. benthamiana andArabidopsis, suggesting that
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chloroplast-localized PSI-K protein could have an antiviral role
(Jimenez et al., 2006).

AltMV TGB1 can bind several chloroplast factors (Table 1),
such as light harvesting chlorophyll-protein complex I subunit
A4 (LhcA4), chlorophyll a/b binding protein 1 (LHB1B2),
chloroplast-localized IscA-like protein (CPISCA) and chloroplast
β-ATPase (CF1β) (Seo et al., 2014). Among those chloroplast
proteins, CF1β selectively binds the wild type TGB1L88 with high
RNAi suppressor activity (Table 1) but not the natural variant
TGB1P88 with reduced silencing suppressor activity (Seo et al.,
2014). During infection with wild type AltMV, silencing of CF1β
specifically causes severe necrosis without a significant change
of viral RNAs, suggesting a direct role of CF1β responding to
TGB1L88 to induce defense responses (Seo et al., 2014). Taken
together, the above reports indicate that the chloroplast plays an
important defense role during virus invasion.

During incompatible plant-virus interactions, some
chloroplast factors also participate in plant defense against
viruses. For examples, in TMV resistance gene N containing
tobacco, N receptor interacting protein 1 (NRIP1), a rhodanese
sulfurtransferase which is destined to chloroplast under normal
conditions, associates with both the tobacco N receptor and
126K replicase during TMV infection; its relocation from
chloroplast to cytoplasm and nucleus is required for N-mediated
resistance to TMV (Caplan et al., 2008). Moreover, depletion of
RbCS compromises Tm-22 mediated extreme resistance against
ToMV and TMV (Zhao et al., 2013). In addition, chloroplast-
localized calcium-sensing receptor is found to be involved in
stromal Ca2+ transients and responsible for both basal resistance
and R gene-mediated defense (Nomura et al., 2012). These
observations are consistent with the idea that chloroplasts have a
critical role in plant immunity as a major site for the production
for ROS, SA, and JA, important mediators of plant immunity.

Taken together, chloroplast factors participate in both basal
defense and R gene mediated immunity against viruses.

CONCLUSIONS AND FUTURE
PERSPECTIVES

The disturbance of chloroplast structure or components is
often involved in symptom development and some chloroplast

proteins help viruses to fulfill their infection cycle in plants. On

the other hand, chloroplast factors seem to play active roles in
plant defense against viruses. This is consistent with the idea that
ROS, SA, and JA are produced in chloroplast (Heiber et al., 2014).

So far, some chloroplast factors involved in virus
symptomology, infection cycle or antiviral defense have
been identified, and their roles in virus infection have been
characterized. Some findings can explain phenomena observed
in early reports. However, our understanding about chloroplast-
virus interaction is still quite poor. In the future, we need to
identify more chloroplast factors that take part in virus infection
and plant defense against viruses, to unravel their precise role
and functional mechanism during plant-virus interactions,
to investigate how viruses modulate expression of CPRGs
and chloroplast-derived signaling to affect plant response to
viruses, and how viral factors or defense signals traffic between
chloroplast and other cellular compartments. Further progress
in understanding of chloroplast-virus interactions will open new
possibilities in controlling virus infection by regulating host
factor’s expression level.
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