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Abstract: The structure and dynamic properties of polymer chains in a confined environment were
studied by means of the Monte Carlo method. The studied chains were represented by coarse-grained
models and embedded into a simple 3D cubic lattice. The chains stood for two-block linear copolymers
of different energy of bead–bead interactions. Their behavior was studied in a nanotube formed by
four impenetrable surfaces. The long-time unidirectional motion of the chain in the tight nanopore
was found to be correlated with the orientation of both parts of the copolymer along the length
of the nanopore. A possible mechanism of the anomalous diffusion was proposed on the basis
of thermodynamics of the system, more precisely on the free energy barrier of the swapping of
positions of both parts of the chain and the impulse of temporary forces induced by variation of the
chain conformation. The mean bead and the mass center autocorrelation functions were examined.
While the former function behaves classically, the latter indicates the period of time of superdiffusive
motion similar to the ballistic motion with the autocorrelation function scaling with the exponent t5/3.
A distribution of periods of time of chain diffusion between swapping events was found and discussed.
The influence of the nanotube width and the chain length on the polymer diffusivity was studied.

Keywords: diffusion; lattice model; Monte Carlo method

1. Introduction

In most cases, the self-diffusion process can be described as a relation between the mean square
displacement (MSD) and time, expressed as a scaling law with the exponent equal to 1. However,
in some systems, this simple relationship should be formulated in a more general way, as follows [1]:〈

r(t)2
〉
∼ tv (1)

Depending on the value of the anomalous diffusion exponent, v, a subdiffusion (0 < v < 1) or
superdiffusion (v > 1) can be distinguished [2–4]. The origin of the discrepancy between the properties
of the system, and the scaling law with the exponent 1 is that its derivation requires that the Brownian
particle should move in an infinite structureless medium. This assumption is generally incorrect when
the Brownian motion takes place in a complex medium or when the diffusively migrating objects
should be treated as structured species whose structural elements’ motions are only partly independent,
but mutually correlated in general. Moreover, Equation (1) describes self-diffusion in a long period of
time only.

The subdiffusion deviations from the simple scaling exponent v = 1 have been predicted even
for simple stochastic chains. According to the Rouse theory [5,6], the MSD of the beads forming the
polymer chain increases with time in three time regimes: in the first and the last regime, the MSD
scales with v = 1 (but with two different diffusion coefficients), whereas, between these two diffusional
asymptotes, the MSD increases as the power of t1/2. The diffusion of the theta chain (Zimm model [6,7])
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behaves similarly: The short, intermediate, and longtime MSD vs. time dependencies are power laws
with exponents v = 1, 2/3, and 1, respectively. The deviations of v values predicted by the reptation
theory are similar.

At very short time of self-diffusion, Brownian motion occurs in three basic regimes:
(i) a ballistic-like motion before any molecular collisions [8]; (ii) a motion affected by hydrodynamic
forces of the fluid [9], which begins when the moving object interacts with fluid molecules; and (iii) the
actual random Brownian motion fractal in nature. The motion in the last regime—the random Brownian
motion—causes the MSD values to increase linearly with time. The motion in the first regime—the
free unidirectional ballistic motion scaling with t2—cannot last for long and occurs at timescales once
deemed immeasurably small by Einstein [10].

The ballistic motion can be met not only in the transport of electrons in conductors, phonons in
solids, and photons in opaque media but also in disordered liquids, colloids, bubbles, grains, and so
forth that are on the verge of jamming [11]. This particular motion was observed for extended periods
of time for particles in the air as a result of low viscosity of dispersion medium [5,12] and in short times
in liquid water as a higher-density medium [10].

The transition between ballistic and diffusive motion is highly dependent on the properties
and structure of a particular liquid [13]. Unusually long ballistic motions have been reported by
research groups studying particles in polymer melts [14–16], polymer-grafted gold nanoparticles [17],
polymer rings [18], DNA [19], enzymes [20], and even bacteria [21].

Dissolved polymer molecules located in the confined environment show unique behavior different
from those of free macromolecules in the bulk phase [22]. The nanoconfinement alters not only the
statics [23,24] but also the Brownian dynamics of a polymer chain [25,26]. The specific behavior
of macromolecules results from a decrease in conformational entropy of macromolecules due to
the excluded volume effects [27]. The constraints of conformation can induce the entropy-driven
processes such as segregation of macromolecules [28,29], translocation through narrow pores [30,31]
and translocation through connected chamber-pore system [32], prestretching before threading
through a nanopore [33,34], etc. Investigation of Brownian polymer motions in nanoconfinement
permitted development of methods for sequencing, manipulations, sorting, and separation of DNA
molecules [35,36]. The shift of the ballistic/diffusive transition point towards longer times can be
induced by the introduction of some geometrical constraints to space in which diffusion takes place
such as slits, nanochannels, or by the limitation of diffusion to two-dimensional square lattice [37].

Anomalous diffusion has been repeatedly observed in the systems containing branched
polymers [38,39]. As reported by Romiszowski and Sikorski, the longitudinal unidirectional motion of
the star-branched chains can be observed in a very narrow nanochannel [40]. This motion happens
when one arm points towards a particular direction, while the other two arms are left behind the
branching point. The authors of References [40] have postulated a mechanism of the ballistic motion
based on the fact that the two arms, located opposite to the direction of motion push the whole structure
towards the direction of motion. As observed, since the nanochannel is still large enough to enable the
arm’s ends to change their position passing from one side of the molecule to the other, the direction of
the longitudinal motion of the chain changes chaotically. A similar anomalous diffusion governed by
the active noise amplitude has been observed by Saito et al. [41].

The explanation of the longitudinal unidirectional motion of star macromolecules in tight
confinement suggests that similar behavior of a wider class of asymmetric chains can be expected, e.g.,
even in the simple case of chains built of two parts of different properties. Therefore, the aim of this
study is the examination of diffusion of a simple asymmetric chain—a block copolymer—composed of
two parts of the same number of beads but of different energies of interaction between the segments.
The energies were chosen so that one half of the chain could be treated as immersed in the athermal
solution, and the other one was characterized by a set of interactions preferring bead–bead interaction
(at the Flory coefficient χ = 2). The difference in the energies produces differences in the local
conformational entropies and radii of gyration of both parts of the chain. This asymmetric structure is
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supposed to be subjected to the Brownian motion that is disturbed by a longitudinal ballistic motion
similar to that described in References [40], since the reversal of the chain parts in a nanochannel
is unlikely.

The paper also focuses on investigation of the effect of the width of the nanochannel and the
length of the chain on its diffusive properties.

The paper is organized as follows: In Section 2, the details of the simulation technique applied to
the model representation of the polymer chain and geometry of the systems are presented. The results
of a single simulation and the analysis of the evolution of geometric and thermodynamic properties
of the migrating chain are gathered in Sections 3.1 and 3.2, respectively. Sections 3.3 and 3.4 contain
the analysis of the bead and the chain mass center autocorrelation functions. The distribution of the
periods between position swapping of chain parts is analyzed in Section 3.5. The geometrical aspects
and thermodynamics of a single swapping event in very short time steps are presented in Section 3.6.
Then, Section 3.7 presents a hypothetical explanation of the long-lasting asymmetric diffusion of the
studied copolymers. A summary of the results is given in Section 3.8.

2. Model and Simulation Method

The study was performed by employing the simple and relatively fast Metropolis Monte Carlo
(MC) method [42], chosen because of the ease of its implementation. As a result of the model
assumptions, the studied system represents a damping dynamic model, holding only the activation
aspect of diffusion and neglecting the inertia effects [43].

The simulations were performed on the three-dimensional cubic lattice of the lattice constant b.
The confined space was a rectangular nanochannel. The length of the nanochannel was 600b and the
width D was varied from 3b to 8b (depending on the simulation, in most simulations D = 3b). At both
ends of the channel, the periodic boundary conditions were applied.

The polymer chains are represented by SAWs (self-avoiding walks) embedded in the lattice.
Each monomer is identified by the site on the lattice (B bead), so each chain is a sequence of N consecutive
sites occupied by B beads. The beads succeeding along the chain are located in adjacent lattice sites
at the distance b. The interaction energies of the type bead—bead and bead—solvent molecule and
solvent molecule—solvent molecule were incorporated into the system as εPP, εPS, and εSS, respectively.
For simplicity, εPS and εSS were assumed to be equal to zero, whereas εPP was dependent on the
assumed type of bead. Two different types of beads were considered: one characterized by εPP = 0
(i.e., immersed in the athermal solution) and the other with εPP not equal to zero. In most cases,
εPP was assumed as -kBT corresponding to the solution of the Flory coefficient χ = 2 [6]. The study
neglects all other intermolecular interactions, as well as interaction with nanochannel walls, except
for the excluded volume effect. The studied chain consisted of N beads built of two equal parts:
the half-chain P1 of bead type εPP/kBT = 0 and the half-chain P2 of type εPP/kBT = −1. P1 and P2
half-chains can be interpreted as immersed in the poor and good solvent with the tendency to form
globules and loose conformation, respectively [6].

Fluctuations in the conformational entropy of the chains were examined by using the modified
SCM (statistical counting method) [44] from the following equation:

S
kB

=
N−1∑
i=1

ln(ωi) (2)

where N denotes the number of beads in the chain, kB is the Boltzmann constant, and ωi is the effective
coordination number of each succeeding bead in the chain, which is equal to the number of lattice
sites occupied by the solvent molecules. The modification consists in the application of the “phantom
chain”: Initially, the whole chain was removed from the simulation space, and then—following the
chain path—the ωi value was calculated in a step-by-step manner. After each step, one succeeding
bead was put back to the chain structure.



Polymers 2020, 12, 2931 4 of 19

The temporary internal energy of the system was calculated as the sum of interaction energies of
all current bead pairs m occupying the adjacent lattice sites εPP , 0

U
kBT

=
m∑

i=1

εPP (3)

The Helmholtz free energy, A [45], of the system was calculated as the sum of i/energetic
contributions, U, and ii/entropic contributions, S, associated with the chain:

A = U − TS (4)

The chain translocation was studied by means of the Metropolis MC method [46]. The elementary
micromodification applied in the simulation consisted of (i) random selection of the bead to be moved;
(ii) a shift of the bead to a new position (using elementary Verdier–Stockmayer algorithms which
include the kink-jump, crankshaft (two segments), reptation, or end movements [47]; (iii) checking
whether the new position does not violate the topological constraints or excluded volume condition;
and, finally, (iv) the Metropolis criterion. The applied reptation algorithm includes a simultaneous
removal of a monomer from one end of the chain, addition of a monomer to the other end, and shift of
all monomers along the chain to ensure continuity of the parts P1 and P2.

The system energy defined by Equation (2) was used to calculate the Boltzmann factor in the
standard Metropolis algorithm at a constant reduced temperature T = 1. All types of elementary
micromodifications were employed with the frequency proportional to the number of objects to which
they can be applied, because such a procedure provided the correct timescale of the simulation [43,48].

The number of beads in the chains tested was N = 20 ÷ 200 (in most simulations N = 100).
Each single simulation was a result up to 108/N MC steps (one MC step corresponds to the number of
shifts needed to give each of the beads the possibility to move once, i.e., 100 elementary macromolecule
micromodifications of a macromolecule of N = 100). The unit of the corresponding time period, t,
was defined as one MC cycle. Part of the results was presented as functions of elementary time tE = t/N.
Each simulation started with 105 steps of the equilibration of conformation, using the annealing with a
hyperbolic cooling schedule [49].

The data collected from the simulation contain positions of mass centers of the whole coil and
its parts P1 and P2 and all components of free energy of the system, including internal energy and
conformational entropy of the macromolecule. Moreover, on the basis of the coordinates of all beads,
as well as those of the center of the coil, the autocorrelation function of the whole chain, g, is defined
as follows:

g(∆t) =
〈
(x(t) − x(t + ∆t))2

〉
(5)

and the mean autocorrelation function of beads belonging to part P1 or P2, gB, is defined as follows:

gB(∆t) =
2
N

N/2∑
i=1

〈
(xB,i(t) − xB,i(t + ∆t))2

〉
(6)

where x is the position of the center of mass and xB,i is the position of bead i taken from the simulation
trajectory, respectively. Hence, the autocorrelation function was calculated as an average of values
obtained for the whole directory and all assumed time steps, ∆t, which is the actual parameter of the
function. The gB function was additionally averaged over the positions of the monomers belonging to
part P1 or P2.
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In the course of simulations, the mutual position of parts P1 and P2 with respect to the chain mass
center (the mutual orientation parameter) was detected and stored in the variable M. The parameter M
was defined as follows:

M =


1 if |rP1| − |rP2| > δ/2
−1 if |rP1| − |rP2| < −δ/2
0 if ||rP1| − |rP2|| < δ/2

(7)

where rP1 and rP2 are vectors identifying the Cartesian coordinates of mass centers of P1 and P2 relative
to the mass center of the whole chain, respectively, and δ = 0.01b. This definition is equivalent to the
following expression applicable for the chain in a tight nanopore:

M =


1 if xP1 − xP2 > δ
−1 if xP1 − xP2 < −δ
0 if |xP1 − xP2| < δ

(8)

The M parameter took a value equal to +1 when the center of mass of P1 part was to the right of
the mass center of P2 (its x coordinate was higher than that of P2), −1 in the opposite situation, and 0
when the difference in positions was small. In the bulk phase, the parameter behaved similarly, but the
criterion of its value was based on the distance of the mass centers of parts P1 and P2 from the mass
center of the whole chain. The parameter was introduced to check if the direction of chain motion was
correlated with the mutual positions of parts P1 and P2.

Forces exerted by parts of the chain, resulting from changes in their free energy, were calculated
as partial derivatives:

F =

(
∂A
∂x

)
T,V

(9)

where T and V denote the temperature and the volume of the system, respectively, whereas their
averaged impulses in the time period ∆t = tE were computed as the force integrals over the time of
movement: acting on P1, P2, and at the whole chain.

I =
1
t

t+∆t∫
t

Fdt =
1
t

t+∆t∫
t

(
∂A
∂x

)
T,V

dt (10)

The averaged impulses were computed for forces acting on part P1, part P2, and on the whole chain.

3. Results

3.1. The Chain in a Tight Nanopore

Visualization of most often observed configurations of the studied chain in the course of evolution
in the nanopore is schematically shown in Figure 1. In the course of the simulation, both parts of
the chain (P1 and P2) occupied different positions along the nanopore, except during short periods
when they overlapped each other during swapping of their mutual locations. The probability of both
orientations of the chain parts was the same. The conformation of P1 was usually more compact than
that of P2 as a result of the assumed stronger bead-to-bead interactions.
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Figure 1. The visualization of the conformation of the macromolecule in the nanochannel. The self-
attracting part of macromolecule P1 is marked in blue, whereas the athermal part P2 in red (N = 200, 
εPP/kBT = −1 and 0 for P1 and P2, respectively, D = 4b). Arrows indicate the direction of movement of 
the whole chain. 

Figure 1. The visualization of the conformation of the macromolecule in the nanochannel.
The self-attracting part of macromolecule P1 is marked in blue, whereas the athermal part P2 in
red (N = 200, εPP/kBT = −1 and 0 for P1 and P2, respectively, D = 4b). Arrows indicate the direction of
movement of the whole chain.

3.2. Long-Time Trajectories

As result from the analysis of the chain trajectory recorded for a relatively long time (107tE),
the studied chain showed a chaotic diffusive motion that generally was not spatially oriented. However,
for shorter time periods (105tE, Figure 2), the situation changed and the observed movements proved
to be directed toward one or the other end of the nanopore over relatively long times. Figure 2 shows
the position of the mass center of the whole chain along the nanopore and the mutual orientation
parameter, M, as a function of t. As seen, the direction of the temporary unidirectional motion was
correlated with the mutual positions of P1 and P2
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Figure 2. The dependence of the position of the center of mass of copolymer along the nanopore on the
number of MC steps (N = 100, εPP/kBT = −1 and 0 for P1 and P2, respectively, D = 3b, the coordinate
x = 0 was assumed as a starting point of the fragment of trajectory shown in the Figure). The mutual
orientation, M, along the x-axis is marked in green. The chart is based on the data recorded in periods
of tE = 103 elementary steps.

The swapping of P1 and P2 positions (illustrated by the change in the sign of parameter M)
forced the change in the direction of motion in such a way that the leading part of the chain was
P1, whereas athermal P2 was the following one. The results presented in Figure 2 well illustrate the
unusual behavior of the chain in the nanopore. However, the results do not explain all detailed chain
motions and are rather smoothed, since they are collected for long periods. In consequence, one cannot
expect a direct correlation of the chain motion with its thermodynamic properties. Indeed, the values
of conformational entropy, as well as internal energy change vs. the diffusion time, shown in Figure 2,
seem to be completely chaotic (see Figure 3).
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The dependence of the force, F, calculated from Equation (9), acting on the whole chain on the
motion time calculated for the same data, is also chaotic (see Figure 4), and the correlation between the
force and the mutual orientation parameter is elusive.

Polymers 2020, 12, x FOR PEER REVIEW 7 of 19 

Figure 3. The dependence of the entropy, internal energy, and Helmholtz free energy of the chain on 
the number of MC steps (N = 100, εPP/kBT = −1 and 0 for P1 and P2, respectively, D = 3b). The time 
changes in the mutual orientation parameter, M, along the x direction are marked in green. The chart 
is based on the data recorded in periods of tE = 103 elementary steps. 

The dependence of the force, F, calculated from Equation (9), acting on the whole chain on the 
motion time calculated for the same data, is also chaotic (see Figure 4), and the correlation between 
the force and the mutual orientation parameter is elusive.  

 
Figure 4. The dependence of the net force acting of the chain on the number of MC steps (fragment of 
the trajectory from Figure 2, N = 100, εPP/kBT = −1 and 0 for P1 and P2, respectively, D = 3b). The mutual 
orientation parameter, M, along the x direction is marked in green. The chart is based on the data 
recorded in periods of tE = 103 elementary steps. 

3.3. Bead Autocorrelation Function 

The results gathered above point to a distinct deviation of the copolymer motion from the 
expectations based on the simple diffusion behavior. However, they do not provide a quantitative 
characterization of motion. Therefore, for a deeper analysis of the asymmetrical chain diffusion in the 
nanopore, the autocorrelation function for individual beads and the whole chain was recorded. The 
autocorrelation functions for beads located in P1 and P2 parts of the chain, gB, are shown in Figure 5. 
The functions were recorded for a large range of steps starting at Δt = tE. The bead autocorrelation 
functions obtained are in line with expectations, when compared to the autocorrelation functions 
predicted by the Rouse and Zimm models [5–7]. The plot has three distinct regions: for a short and 
long time, the motion dynamics is diffusional (the gB function scales with Δt1). In the intermediate 
time, gB increases to the power of 2/3. This exponent corresponding to the subdiffusion region agrees 
exactly with the value obtained from the Zimm model for both theta and athermal solvents [6,7] and 
is similar to the exponents predicted for the theta solvent in the Rouse model (v = 1/2) or the one-
dimensional reptation dynamics (v = 1/4 and 1/2) [5,6].  

Figure 4. The dependence of the net force acting of the chain on the number of MC steps (fragment
of the trajectory from Figure 2, N = 100, εPP/kBT = −1 and 0 for P1 and P2, respectively, D = 3b).
The mutual orientation parameter, M, along the x direction is marked in green. The chart is based on
the data recorded in periods of tE = 103 elementary steps.

3.3. Bead Autocorrelation Function

The results gathered above point to a distinct deviation of the copolymer motion from the
expectations based on the simple diffusion behavior. However, they do not provide a quantitative
characterization of motion. Therefore, for a deeper analysis of the asymmetrical chain diffusion in
the nanopore, the autocorrelation function for individual beads and the whole chain was recorded.
The autocorrelation functions for beads located in P1 and P2 parts of the chain, gB, are shown in Figure 5.
The functions were recorded for a large range of steps starting at ∆t = tE. The bead autocorrelation
functions obtained are in line with expectations, when compared to the autocorrelation functions
predicted by the Rouse and Zimm models [5–7]. The plot has three distinct regions: for a short and
long time, the motion dynamics is diffusional (the gB function scales with ∆t1). In the intermediate time,
gB increases to the power of 2/3. This exponent corresponding to the subdiffusion region agrees exactly
with the value obtained from the Zimm model for both theta and athermal solvents [6,7] and is similar
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to the exponents predicted for the theta solvent in the Rouse model (v = 1/2) or the one-dimensional
reptation dynamics (v = 1/4 and 1/2) [5,6].
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Figure 5. The log–log plot of the bead autocorrelation function, gB, and the chain autocorrelation
function, g, in the nanochannel (D = 3b, N = 100, εPP/kBT = 0, and −1 for P1 and P2, respectively).
The slopes of diffusion, subdiffusion, and quasi-ballistic modes (equal 1, 2/3, and 5/3) are marked
in gray.

The part of the whole chain autocorrelation function, g, for large ∆t overlaps the bead chain
autocorrelation function gB. In the region of short times, the whole chain dynamics (represented by g)
shows also asymptotically diffusional behavior, but, as expected, with a smaller value of the diffusion
coefficient. In the range of intermediate times, the whole chain undergoes superdiffusion with a
g vs. ∆t relationship scaling with the exponent 5/3. Such an unexpected result seems to be caused by
the asymmetry of the chain and its long-time quasi-ballistic motion in tight confinement, impeding the
inversion of chain parts. The observed effect is similar to the “ballistic motion” observed in a system of
three-arm star chains in the narrow nanochannel of D = 3b [40]. However, the exponent observed here
was smaller than v = 2 corresponding to the Newtonian uniform motion.

3.4. The Mass Center Autocorrelation Function

The results collected in Figures 6–8 show the whole chain autocorrelation function, g, obtained for
different chain lengths and nanopore widths. The calculated autocorrelation functions based on the
shift of the chain mass center in three dimensions and along the x coordinate parallel to the nanopore
axis, are identical with the accuracy of the standard deviation of presented results. Therefore, only the
results obtained for 3D shifts are presented below.

As shown in Figure 6, all chain motions in short and long times are diffusive with the g vs. ∆t
relationship described by scaling exponent 1. In the intermediate time, the slope of the log–log plot
decreases with increasing width of the nanopore and goes down starting from 5/3 for D/b = 3 to almost
1 for the chain located in 3D space without any geometrical constraints (denoted as D = inf).

The slope of the g vs. ∆t dependence equal to 5/3 for D = 3b practically does not depend on the
chain length (evident in the range N = 100–200). However, the range of the intermediate superdiffusive
part of the curve shifts with the chain length increasing towards higher ∆t values.

To check whether the observed phenomenon is not an artificial effect of the assumed method or
model, some additional simulations for the symmetric chain wholly immersed in the athermal solvent
(εPP/kBT = 0 for P1 and P2) were performed. The results collected in Figure 8 show practically no
superdiffusive bias in the g vs. ∆t dependence.
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εPP/kBT = 0 for P1 and P2—athermal solution). The slopes of diffusion and quasi-ballistic modes (equal
1 and 5/3) are marked in gray.

Results presented in Figure 7 indicate that there are three scaling time regions of the mean
autocorrelation function. The first and the third regions are similar to the monomer autocorrelation
function: in the initial region where ν = 1 and the diffusion coefficient is smaller than for the monomer,
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and in the final region where ν is still equal to 1, but the diffusion coefficient takes the same value
as for the monomers, because all monomers move with the same velocity as the whole chain. In the
intermediate region, as a result of the collective motion caused by the asymmetry of the monomers in
both parts of the chain, which forces the temporary unidirectional motion of the chain mass center,
the g = f(∆t) dependence scales with higher exponent than ν = 1. The g = f(∆t) relationship for the
intermediate region significantly depends on the nanopore width—the narrower the nanopore the
higher the scaling exponent tending to ν = 5/3. The anomalous diffusion practically vanishes in the
bulk phase. The increase in the monomer number in the chain influences the analyzed dependence
only through the increase in the initial ordinate but at the same total diffusion coefficient.

3.5. Time Periods between Swaps

Probability density functions in the time periods between the swapping of P1 and P2 positions,
resulting in the inversion of the direction of chain movement, are presented in Figures 9–11 in the
logarithmic scale. As seen, the functions are very wide and behave as the three-modal log-normal
distributions. Three maxima are evident in the case of diffusion in the narrow nanochannel. The first
maximum can be interpreted as a result of the small fluctuations of P1 and P2 centers’ positions over the
center of the whole chain when both parts practically overlap each other in the course of the swapping
event at M = 0 (see Figure 2). The other two maxima seem to be produced by the mutual migration of
a number of segments causing the movements of parts of the chain and of the whole chain.
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Figure 11. The probability density functions of time periods, ∆t, between swapping of P1 and P2 mass
centers in the nanochannel and in the 3D space in the logarithmic scale at different nanopore width
(N = 100, εPP/kBT = 0 for P1 and P2).

The second maximum is practically independent of the chain length (Figure 9) but slightly depends
on the nanopore width (Figure 10). Since the longitudinal chain extension is larger than D and D > b,
the chain can be represented by the de Gennes blob model, e.g., a string of self–avoiding compression
blobs of diameter, D [25,50–53]. However, in contrast to Reference [25], reporting the relaxation time
decreasing with D to the power −1.3, the time between swaps decreases with the nanopore width to a
power of about −0.2 ± 0.2.

The third maximum depends on the nanopore width in the way similar to that of the second one,
while its position and height strongly vary with the chain length. The smaller the chain length,
the higher the probability of the swap of P1 and P2 positions, which results in a smaller time between
swappings and the higher number of swap events. The increase in ∆t caused by increasing N remains
in a quantitative agreement with the Zimm model [6].

In summary, the three successive modes of distribution are associated with the swapping of larger
and larger elements of the chain starting with the swapping caused by the move of a single monomer
(the relaxation time is independent of both N and D), by the fragment of the chain of the size of blob
(the relaxation time depends on D) and both relatively large parts P1 and P2 (the relaxation time
depends on N).

The distributions collected in Figure 11 show that swapping of identical parts of the chain described
by the third maximum is a slightly rarer event, as compared to the swapping of parts of different
interaction energies (Figure 10), but the maximum still remains. However, since the symmetry of the
chain does not force the directed motion, the autocorrelation function does not detect any anomalous
diffusion behavior of the chain with identical P1 and P2 parts (see Figure 8).

3.6. A Single Swapping Episode

Since the prolonged movement of the chain in one direction seems to be related to the difficulty
encountered by the swapping process, the trajectory, conformation, and thermodynamics of the chain
were examined in the immediate surroundings of the swapping point.

The details of the trajectory of P1 and P2 in the course of a single swap episode are shown
in Figure 12. The data collected here were recorded with the time step 105 (1000N) times smaller than
that of the data shown in Figure 2. In the course of diffusive motion, after quick approach of centers
of P2 to P1 (P2 is more mobile), both parts overlap each other and irregularly fluctuate around the
common center of mass. Finally, P1 and P2 segregate and relax. The direction of motion of the mass
center of the whole chain occurring in the same time is determined by the mutual orientation parameter
M: Initially, the chain moves to the right, then fluctuates around a certain x coordinate, and finally
returns back, since the swapping positions causes the inversion of direction of motion.
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The evolution of thermodynamic properties of both chain parts (see Figure 14) is disturbed by 
the random noise similar to the large scale dependence shown in Figure 3. However, one can notice 

Figure 12. Short parts of trajectories of s P1 and P2 and their radii of gyration (N = 100, εPP/kBT = −1 and
0 for P1 and P2, respectively, D = 3b). The chart is based on the data recorded at each elementary step, tE.

The swapping of P1 and P2 positions is accompanied by the change in conformation of both parts
of the chain. As seen, the size variations concern mainly P2. The approach of the centers of both parts
to each other results in a decrease in Rg of P2, whereas the overcoming of P2 through P1 increases
its Rg. At the end of the translocation, all beads of P2 gather in a compact coil at one end of P1 (both
parts collapse). Finally, P2 expands tending to the free conformation unperturbed by the other part of
the chain.

Figure 13 describes the chain conformation at a swapping event in terms of two parameters:
the distance between mass centers of P1 and P2 and the sum of their radii of gyration. As shown,
initially the conformation is relatively expanded—the distance between mass centers of P1 and P2
|xP1-xP2| is larger than the sum of their radii. Just before swapping, the conformation becomes more
compact (decrease in RgP1 + RgP2). Then, two parts of the chain move in anti-parallel directions—during
swapping, the sum of their radii of gyration slightly increases as a result of P1 and P2 elongation along
the nanochannel. When the swapping ends, the sum of Rg values evidently decreases as a result of
formation of compact dense coils located close to each other. Finally, both parts relax, owing to the
entropic elasticity.
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Figure 13. The distance between mass centers of P1 and P2 and the sum of their radii of gyration for
the fragment of trajectory from Figure 12 (N = 100, εPP/kBT = −1 and 0 for P1 and P2, respectively,
D = 3b). The chart is based on the data recorded at each elementary step.

The evolution of thermodynamic properties of both chain parts (see Figure 14) is disturbed by the
random noise similar to the large scale dependence shown in Figure 3. However, one can notice a
small positive fluctuation of the Helmholtz energy accompanying the start of the swapping process.
The mechanism of the appearance of this small Helmholtz energy barrier is entropic in nature.
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each elementary step. 

The mechanical asymmetry of the properties of both parts of the chain is clearly illustrated by 
the impulses of forces [54] exerted by both parts of the chain. The force impulse, as an integral of the 
force over time, gives the information about the force cumulative contribution to the variation of the 
chain momentum, exerted by a certain part of the chain. The results are only qualitative, since the 
force impulse is not equivalent to the momentum of diffusion transfer as the system under 
consideration is not Newtonian.  

Figure 14. The dependence of entropy, internal energy, and Helmholtz energy of the chain on the
number of elementary steps, tE, for the fragment of trajectory from Figure 12 (N = 100, εPP/kBT = −1 and
0 for P1 and P2, respectively, D = 3b). The chart is based on the data recorded at each elementary step.

The relationship A = f(x) (not presented here, but shown for a shorter part of trajectory in Figure 17
in Section 3.7) allows the calculation of force caused by the free energy fluctuations. The resulting
plot shown in Figure 15 is still highly irregular, but it shows a statistically significant trend: Initially,
the force takes positive values; at the moment just before the first swapping (when coils P1 and P2
start to overlap), the force is negligibly small, whereas the releasing chain produces a force highly
fluctuating but of significantly negative values. Since the force is calculated as the partial derivative
of the Helmholtz energy (Equation (9)), its positive values mean providing energy to the coil and its
compression, whereas the negative forces correspond to the chain stretching.
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Figure 15. The net force caused by changes in the free energy exerted by both parts of the chain (N = 100,
εPP/kBT = −1 and 0 for P1 and P2, respectively, D = 3b). The chart is based on the data recorded at each
elementary step.

The mechanical asymmetry of the properties of both parts of the chain is clearly illustrated by the
impulses of forces [54] exerted by both parts of the chain. The force impulse, as an integral of the force
over time, gives the information about the force cumulative contribution to the variation of the chain
momentum, exerted by a certain part of the chain. The results are only qualitative, since the force
impulse is not equivalent to the momentum of diffusion transfer as the system under consideration is
not Newtonian.

Figure 16 shows the impulses exerted by both parts of the chain vs. time of motion. The forces were
calculated on the basis of fluctuation of the Helmholtz energy of P1 and P2 separately (Equation (9))
and then integrated (Equation (10)) starting at a certain time before swapping. As shown, except for
the initial steps in which the mass centers of both parts of the chain approach each other, P2 pushes P1
all the time.
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Figure 16. Impulses of forces caused by changes in the free energy exerted by both part P1 and P2 of
the chain (N = 100, εPP/kBT = −1 and 0 for P1 and P2, respectively, D = 3b). The chart is based on the
data recorded at each elementary step.

3.7. Mechanism of Unidirectional Motion

The results presented above allow the following description of the phenomena occurring in
the studied system. The chaotic and stochastically symmetrical diffusion of beads constituting the
asymmetrical chain is a collective property which produces temporal unidirectional motion of the
asymmetrical chain located in a tight confinement, hindering the swapping of chain parts. The motion
violates the second law of thermodynamics [45] but only for a relatively short period of time.

The phenomenon of the longitudinal motion of the asymmetrical chain represented by two
sub-chains of different Flory interaction coefficients should be related to higher conformational entropy
and higher diffusional mobility of the weaker interacting sub-chain P2. The P1 fragment of the chain
is less mobile, as compared to P2, since instead of quasi-free bead motions in P2 limited only by the
requirement of the chain continuity, its beads form aggregates which can move only in a collective
way or their motion is associated with breaking of attractive interaction with one bead and creating
a new one with another one. Changes in the radius of gyration of P2, as well as changes in entropy,
are asymmetric in time: The decrease in both parameters is faster than their increase because some
lattice nodes are blocked by P1 beads which release them relatively slowly. As a result, the fast
movement is inhibited more strongly than the slow one as in the scallop effect [55]. There is no inertia
effect incorporated in the model, but there are some geometrical constraints instead. In consequence,
the P2 sub-chain exerts a pushing pressure on all objects around it, among others on the stopper in
the nanochannel formed by the more compact and stronger interacting sub-chain P1. As a result,
it produces the net force whose fluctuations averaged over a relatively long period of time are directed
towards P1. Swapping is a rare event and requires overcoming of the entropic barrier.

The trajectory mapping of the free energy changes along the diffusion trajectory, for a very small
part of trajectory where only unidirectional motion occurs (M = 1), is shown in Figure 17. The figure
demonstrates changes in entropy, internal energy, and finally free Helmholtz energy in the course of
chain diffusion. As is clearly visible, the changes in the Helmholtz free energy are caused mainly by
entropic effects. The Figure demonstrates that the energy vs. position of migrating species shows
asymmetry of the Helmholtz free energy versus the position of the chain. The energy profile shown
here reminds the figure of energy profile characteristic of behavior of the systems in which the ratchet
mechanism of motion takes place [56].
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Figure 17. The entropy, S, internal energy, U, and Helmholtz free energy, A, profiles obtained from the
simulation (N = 100, εPP/kBT = −1 and 0 for P1 and P2, respectively, D = 3b). The chart is based on the
data recorded at each elementary step, tE.

The necessary condition of the ratchet mechanism of asymmetric diffusion is the asymmetric
dependence of energy on position of migrating species, as schematically shown in Figure 18. Such a
profile induces asymmetry of the driving force. In consequence, the slow motion caused by a relatively
small but long-lasting force is more effective than the fast one. The effect is similar to the slow-open,
fast-close actuation mechanism of the scallop motion, the molecular motors-driven internal sliding of
polymeric filaments in singly flagellated eukaryotes [57,58]; however, instead of the inertia or viscous
effects being the cause of scallop or eukaryote motion, the motion of the analyzed copolymer is due to
its energetic asymmetry.
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Figure 18. Schematic presentation of the energy and the force dependence on the position of an object
moving as a result of the ratchet mechanism.

The forces exerted by part P2 on P1 of the chain computed as partial derivatives of the free Helmholtz
energy (Figure 17) and averaged for positions of the chain mass center are collected in Figure 19.

Although this force fluctuates, it is generally directed towards increasing values of the x-coordinate,
that is, in the current direction of the chain motion. This seems to support the hypothesis of a collapsing
mechanism of the chain diffusion that occurs between swapping moments.
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Figure 19. The average force, F, exerted by part P2 on P1 of the chain observed for a very short time
period vs. the x coordinate of the chain mass center (N = 100, εPP/kBT = −1 and 0 for P1 and P2,
respectively, D = 3b). The chart is based on the data recorded at each elementary step, tE.

3.8. Conclusions

In solutions of the two-block copolymers, whose monomer properties differ in the interaction
energies with the solvent molecules, placed in the constrained environment, namely in a tight nanopore,
the anomalous diffusion of polymer is observed. The surprising behavior of the system consists in the
unexpected longitudinal diffusion of molecule along the nanopore. The mechanism of the specific
diffusion behavior involves two phenomena:

1. The unidirectional motion of the chain between swapping episodes. The mechanism of the
unidirectional motion relies on the overcoming the asymmetric landscape of the Helmholtz free
energy versus the actual chain position. This asymmetry produces the temporal impulse of
force acting between active P2 and passive P1 subchains. Changes in the force impulse produce
asymmetrical changes in the momentum of the chain and finally the temporal asymmetric motion
of the chain.

2. The change in the direction of the diffusion motion requires overcoming of the Helmholtz
free energy barrier accompanying the exchange of positions of both chain parts in confined
environments. Such events are rather rare.

The anomalous diffusion of two-block copolymers depends strongly on the width of the nanopore
and on the chain length. The observed abnormal diffusion is well illustrated by the anomalous behavior
of the autocorrelation function of motion of the mass center of the whole chain. This particular behavior
deals with the specific diffusion of the chain in the intermediate range of the autocorrelation function,
where the scaling exponent takes values tending to 5/3 for very tight confinement. The probability
density function of time required to swap parts of the chain is three-modal and consists of the swapping
caused by the move of a single monomer, a fragment of the chain of the size of a blob, and by both
parts of the two-block copolymer.

The observed dependencies can be explained, in detail, on the basis of the blob theory.
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