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Realization of Plasmonic 
Microcavity with Full Transverse 
and Longitudinal Mode Selection
Ju Liu1,*, Yue-Gang Chen2,*, Lin Gan1,*, Ting-Hui Xiao1 & Zhi-Yuan Li1

Surface plasmon polaritons (SPPs) manipulation is of vital importance to construct ultracompact 
integrated micro/nano-optical devices and systems. Here we report the design, fabrication, and 
characterization of a SPP microcavity with full transverse and longitudinal mode selection and control 
on the surface of gold film. The designed microcavity supports the fundamental and first-order 
transverse modes of Gaussian mode beam with controllable longitudinal modes, respectively. The 
transverse mode is determined by two holographic mirrors made from deliberately designed groove 
patterns via the surface electromagnetic wave holography methodology, while the longitudinal mode is 
determined by the length of cavity. Both numerical simulations and leaky-wave SPP mode observations 
confirm the realization of full mode selection in the fabricated cavity. Our work opens up a powerful way 
to fully explore longitudinal and transverse mode control in SPP microcavities, which will be beneficial 
for light-matter interaction enhancement, construction of novel SPP nanolaser and microlaser, optical 
sensing, and optical information processing.

Surface plasmon polaritons (SPPs), which are electromagnetic waves confined to the interface between metal and 
dielectric1,2, have many unique properties and a broad range of potential applications3–7. Recently, there has been 
a surge of fascinating theoretical and technological research interest in the manipulation of SPPs on metal surface 
as it is of vital importance to construct ultracompact integrated micro/nano-optical devices and systems8–10. The 
simplest scheme for SPPs manipulation is to build a confined channel for SPPs. For example, Bozhevolnyi et al. 
firstly realized channel plasmon-polariton propagation along a subwavelength metal V-shaped groove in 200511. 
Many other subwavelength plasmonic waveguides have been proposed such as the metal-insulator-metal wave-
guide12 and slot waveguide13, which have numerous applications in waveguide bends, splitters, interferometers, 
and logic devices14,15.

A more flexible scheme aims to manipulate the wavefront of plasmonic waves relies on the diffraction and 
interference of surface waves evolving within planar metal regions surrounded by purposely distributed scat-
terers. The work of Alberto et al. is a representative example of this idea, in which an array of holes, creating a 
so-called “near-field optical phase antenna”, refocus the source of the SPPs16. Fang demonstrated that SPPs can 
be focused by using Ag-column arrays and the plasmon focus size, shape, and strength can be manipulated by 
symmetry broken nanocorrals under linearly polarized illumination17,18. Patterning metallic surfaces to utilize 
the scattering of SPPs has attracted much attention19–22 since Lezec showed that by creating a periodic texture on 
the exit side of a single aperture in a metal film, the transmitted light can emerge as a beam with a small angular 
divergence19. The advantage is that these structured components have a subwavelength scale and the total struc-
ture can be fabricated in a small area on a flat metallic surface23. The realization of general functionalities of wave-
front shaping can be fulfilled by complicated holographic groove patterns, which can be directly determined and 
designed by using the surface electromagnetic wave holography (SWH) methodology invented by us24. The SWH 
methodology has been successfully used in single-point focusing, single-direction beam collimation, two-points 
focusing, complex-pattern formation in free space, and plasmonic lenses24–28. In this paper we will use this meth-
odology to deal with SPP resonance microcavity with unique mode characteristics.

Plasmonic micro/nano-cavity is critical for realizing plasmon nanolasers that allows confinement and 
enhancement of optical wave radiated from gain materials into deep-subwavelength nanoscale space29,30. Many 
plasmonic cavities of different geometric configurations have been reported29–36. Lights are confined in the optical 
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cavity through back and forth reflection, and form resonance for special discrete frequencies37–39. This resonance 
leads to high photon density in cavities for strong stimulated emission. The discrete resonant frequencies corre-
spond to different longitudinal modes and transverse modes, depending on the longitudinal length of the cavity 
and transverse shape of mirrors, respectively. In above SPP cavities, the cavity mode is dominated by the overall 
geometric configuration of the cavity, which can support single or multiple plasmonic resonance modes depend-
ing on the size of the cavity. Once the geometry of plasmonic cavities is given, the resonance SPP modes will be 
determined either through numerical simulation or experiment observation. Yet, it is not easy to fully manipulate 
the modal profile, including both the longitudinal mode and the transverse mode, of SPP cavity modes, to satisfy 
highly diversified and flexible demands. A more challenging problem arises: Can one manage the microscale/
nanoscale cavity mode in a way as powerful as the classical macroscopic laser cavity does to laser light to ful-
fill some predesignated desire? And, can one go around the great obstacle of this seemingly standard optical 
inverse-problem and find a simple and straightforward way to solve this challenge?

In this paper, we report successful design and fabrication of a novel type of SPP microcavity where the longi-
tudinal mode and the transverse mode are decided by the cavity length and the shape of the mirrors, respectively. 
In particular, we realize SPP microcavities supporting the fundamental Gaussian mode and first-order Gaussian 
mode, respectively. The uniqueness and aslo the secrecy of mode selection lie in the construction of special mir-
rors of cavity by using the SWH methodology. The mirror can shape as desire the reflection amplitude and phase 
of SPPs from the mirror and their wavefront of transport on metal surface, forming a specific transverse mode as 
designated within the cavity.

Materials and Methods
According to Boyd and Gordon, a classical Gaussian laser beam is produced through reflecting wave back and 
forth in a confocal cavity consisting of two appropriately designed reflection mirrors37–39. The question is whether 
this concept works equally well to SPPs and how to form a confocal cavity for SPPs on metal surface. The key 
is to design and construct an appropriate reflection mirror for SPPs to shape as desire the reflection amplitude 
and phase and their wavefront of transport on metal surface. We find that such a mirror can be built from a 
holographic groove pattern etched into metal surface, and its morphology can be determined easily by using the 
methodology of surface wave holography (SWH)24–28. Each holographic groove pattern will reflect the SPP wave 
with desired wavefront, and two well-designed groove-pattern holographic mirrors are combined to reflect SPP 
waves back and forth similar to mirrors in the Fabry-Perot cavity of conventional lasers. The SPP wave with a 
special wavefront is self-consistent in its wavefront evolution during the multiple reflections and can be confined 
in the cavity by the two holographic mirrors as depicted in Fig. 1. This special wavefront corresponds to the 
desired transverse mode of the SPP microcavity. Guided by theoretical evaluation, we realize the designed holo-
graphic mirror SPP microcavity on a gold thin film using the focused-ion beam (FIB) lithography. The gold film 
is deposited on SiO2 substrates by magnetron sputtering. A normally incident 1064-nm laser light illuminates the 
holographic mirrors and excites the SPP cavity mode with designated transverse and longitudinal modal profiles.

Results and Discussion
SPP microcavity supporting fundamental Gaussian mode. We first consider a SPP microcavity that 
supports a fundamental Gaussian SPP beam as the transverse mode at the wavelength of 1064 nm to illustrate the 
design scenario. Following the idea of confocal cavity, we take as the key to construct a mirror that can couple the 
free space illumination light into a SPP focusing spot on the metal surface. The SWH methodology is used to 
determine the groove-pattern morphology of the holographic mirror. According to this methodology24–28, the 
holographic pattern is directly connected with the interference pattern on the metal surface between the object 
wave UO, which is the SPP wave focusing inwardly to the designated spot, and the reference wave UW, which is 
simply the normally incident plane wave. Mathematically, UO is a cylindrical wave with the complex amplitude 

ϕ= − − +
−
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A

SPr r 0 0
O

0

. It carries the object information, transports on the metal surface  

(xy plane with z =  0), and focuses at the position = =x yr ( 0)0 0 0 . Here kSP is the wave vector of SPPs on metal 
surface with =k n kSP eff 0, where neff  is the effective refractive index of SPPs, k0 is the wave vector in vacuum and 
Ao is the amplitude of the object wave. The reference wave is a plane wave with UW =  AW exp[− ik0z], where Aw is 
the amplitude. The wave propagates along the z axis and the polarization direction is along the y axis. At the con-
sidered wavelength λ0  = 1.064 μ m, the dielectric constant of gold is εm =  −48.75 +  3.6i, and kSP can be easily 
calculated.

The object wave interferes with the reference wave in a broad area on metal surface. Yet, we confine the 
groove-pattern holographic mirror within a finite space of −10 μ m < x < 10 μ m and 8 μ m <  y <  28 μ m, which is 8 μ m  
in distance from the object point. The hologram is made from a series of 0.24 μ m wide and 0.3 μ m deep grooves 
etched into gold film at the positions of the interference pattern maximum. In practice, we divide the hologram 
into a number of 40 ×  40 nm2 pixels (corresponding to a 501 ×  501 matrix). We first find all the pixels with local 
maximums, then etch 6 pixels into the gold film around each of these pixels along the y-axis, forming a series of 
240 nm wide groove centered around the local maximum curves of the interference pattern. This is the final SWH 
pattern written via physical etching into the gold film.

When a reconstruction wave same to the reference wave illuminates on this holographic mirror, a focus of SPP 
should be expected24–28. To confirm this experimentally, we transfer the designed groove patterns, approximately 
70nm in depth to a gold film with a thickness of 90 nm. The scanning electron microscopy (SEM) image of the 
fabricated holographic mirror is illustrated in Fig. 2(a), where the groove pattern resembles a set of concentric 
rings. We then use the leaky mode observation technology as depicted in Fig. 1(c) to monitor the field distribu-
tion of the fabricated samples. A leaky mode is a mode with its electric field decaying monotonically for a finite 
distance in the transverse direction but substantially maintaining its shape as it decays40,41. A 100×  Olympus oil 
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lens is used to search the gold-film sample and monitor the field distributions. The 1064-nm laser is led in from 
the opposite side of the imaging objective. Images are captured by a charge-coupled device connected to a com-
puter. Notice that in experiment the thickness of gold thin film and the depth of grooves are smaller than in 
design because thinner film allows for easier leakage and more efficient optical observation of SPP mode. 
However, the SPP modal profile remains the same on both values of film thickness and groove depth 
[Supplementary Information, Figure S1]. As clearly shown in Fig. 2(b), the incident wave is scattered by the 
grooves to excite the SPPs. Then the SPP beam is focused at a spot 8 μ m in distance from the groove region, right 
at the position of the designated object point.

Obviously the grooves pattern as shown in Fig. 2(a) can serve as the holographic mirror to form a desirable 
confocal SPP microcavity with its geometry illustrated in Fig. 2(c) and support a self-consistent fundamental 
Gaussian mode. To confirm this, we carry out numerical simulation by using the three-dimensional (3D) 
finite-difference time-domain (FDTD) method. The calculated SPP intensity distributions (normalized to the 
normally intensity of incident plane wave) at the metal surface are shown in Fig. 2(c) for λ =  1.064 μ m when 
D = 16 μm. The depth and width of the grooves are 0.3 μ m and 0.24 μ m, respectively. In Fig. 2(c) a series of circu-
lar rings appear within the cavity, indicating formation of standing waves originating from the resonance of SPP 
wave in the cavity. The SPP modal profile follows the fundamental Gaussian beam distribution. At the brightest 
spot of the beam (the white dotted line), the intensity distribution in the xz cross-sectional plane with y =  240 nm 
and along the x-axis with y =  240 nm and z =  0 are calculated and shown in Fig. 2(e,g), respectively. The field 
profile in the x-axis direction agrees very well with the fundamental Gaussian function and the SPP beam is 
strongly confined at the metal surface. As the holographic mirrors can efficiently transform the incident light into 
SPPs and store the energy within the cavity, the maximum SPP intensity can reach 1752 times the incident 
intensity.

Figure 1. Schematic illustration of SPP microcavity with mode selection. (a) 3D perspective view and (b) 
2D cross sectional picture of the cavity structure. The confocal microcavity is composed of a planar Au thin film 
supporting SPPs in the center part and two identical groove-pattern holographic mirrors reflecting SPPs to form 
steady cavity modes with both controllable transverse and longitudinal mode. The depth and the width of the 
groove are h and t, respectively, and the thickness of the gold film is H. (c) Experimental setup of leaky-mode 
observation of SPP modal profile. A 1064-nm-laser illuminates on the grooves of the gold film, a 100×  NA1.4 
Olympus oil lens is used to monitor the SPP field distributions and a charge-coupled device (CCD) to capture 
the images.
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Figure 2. Design and fabrication of SPP microcavity supporting a fundamental Gaussian mode. (a) The 
SEM picture of the fabricated groove-pattern holographic mirror to focus SPP wave to a spot on the surface of 
gold thin film. (b) Experimental images of focusing a normally incident plane wave from free space into a SPP 
spot on the gold surface. (c) Morphology of the designed microcavity structure and calculated intensity 
distributions on the metal surface. The intensity distributions correspond to the modular square of electric field. 
The calculated field profile (e) in the xz plane with y =  240 nm and (g) along the x-axis with y =  240 nm and 
z =  0. (d) SEM picture of the fabricated SPP concave microcavity. Each holographic mirrors has a size of 
20 ×  20 μ m2, and the cavity length is 16 μ m. (f) Leaky-mode observation image of the SPP field pattern in the 
concave microcavity. Both simulations and experiments show formation of a fundamental Gaussian SPP mode 
confined within the microcavity and at the surface of gold thin film.
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Experimentally we transfer the designed groove patterns (70 nm in depth) to the gold film (90 nm thick) to 
form the desired confocal SPP microcavity, with the SEM image displayed in Fig. 2(d). The area of the groove 
region of each holographic mirror is 20 μ m ×  20 μ m, and the cavity length is 16 μ m. In this confocal microcavity, 
the two groove patterns couple the incident light to SPP wave focusing at the same point in the cavity center from 
two sides. The SPP waves propagating on the metal surface are reflected back and forth by the mirrors and con-
fined in the cavity. According to ref. [38, 39], the fundamental Gaussian mode can be generated. We again use the 
leaky mode observation to monitor the field distributions of this confocal microcavity. The result is illustrated in 
Fig. 2(f) within the cavity region with the scale intentioanlly matched with the SEM picture in Fig. 2(d). Standing 
wave patterns are clearly observed and the overall field pattern is consistent with the field profile calculated by 
FDTD simulation [Fig. 2(c)], confirming experimentally the formation of SPP fundamental Gaussian mode in the 
designed and fabricated SPP microcavity. To describe the performance of the microcavity, we calculate the mode 
volume of the cavity, which is defined as λ=V D /22 . Here, D =  16 μ m and λ = 1.064 μ m, and the mode volume is 
as small as 136 μ m3.

SPP microcavity supporting first-order Gaussian mode. We go further to consider a more complicated 
SPP microcavity that supports the first-order Gaussian SPP beam transverse mode at the wavelength of 1064 nm. 
The SWH methodology is again used to design the groove-pattern holographic mirror for this microcavity. 
Different from the case of fundamental Gaussian mode, now each mirror is expected to focus the normally incident 
light from free space into two focal SPP points with equal amplitude and π phase contrast. The object waves  
are set as two cylindrical waves = − −

−
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which focus inwardly at two designated positions with = − =x yr ( 1, 0)1 1 1  and = =x yr ( 1, 0)2 2 2 , respectively. 
The reference wave UW is still a plane wave with = −U A ik zexp[ ]W W 0 . The holographic mirror is formed by etch-
ing the grooves into metal surface at the maximum intensity positions of the interference pattern formed between 
Uo and UW The SEM picture of the fabricated holographic mirror is illustrated in Fig. 3(a). The groove patterns look 
like two sets of concentric rings with relative displacement along the radial direction. Figure 3(b) illustrates the 
leaky mode observation of field distributions of this holographic mirror illuminated by a normally incident 
1064-nm laser. Two focal SPP spots are observed right at the positions deignated by the theoretical design.

When two above identical groove-pattern holographic mirrors are set opposite to each other with a distance 
D, a confocal SPP cavity as depicted in Fig. 3(c) is formed. The distance D can be adjusted to select the longitudi-
nal cavity mode. The SPP wave with the first-order Gaussian beam wavefront is self-consistent during the multiple 
back-and-forth reflections from the two mirrors and thus a first-order Gaussian transverse mode can form within 
this deliberately designed confocal SPP cavity. We can see from the FDTD simulated SPP field intensity on the 
metal surface as displayed in Fig. 3(c) that interference fringes (a signature of standing wave formation) appear 
within the cavity and the SPP beam is divided into two parts laterally (x-axis) when it transports along the cavity 
axis (y-axis) (a signature of first-order Gaussian beam formation). The maximum intensity, 152 times of the inci-
dent light intensity, occurs at the waist of the SPP first-order Gaussian beam as marked by the dotted line (y =  0). 
Figure 3(e) illustrates the calculated z component of electric field intensity in the vertical xz plane at y =  0. The 
exponentially decay of field is observed, indicating formation of a true SPP wave mode within the cavity. Besides, 
the negative and positive signs are clearly recognized, indicating the π phase difference between upper and lower 
antisymmetric parts of the SPP beam. Figure 3(g) shows that the calculated lateral field intensity distribution, i.e., 
along the x-axis with y =  z =  0, is consistent with the spatial profile of the first-order Gaussian curve. All these 
features indicate that the designed confocal microcavity with complicated holographic mirrors indeed supports a 
first-order Gaussian transverse mode of SPP beam.

We experimentally fabricate the designed SPP microcavity by directly transferring the designed groove pat-
terns to a gold film by using FIB lithography. The gold film is about 90 nm thick and the grooves are approximately 
70 nm deep. The SEM image of the fabricated confocal SPP microcavity on the metal surface is displayed in 
Fig. 3(d), where the configuration and position of the two complicated holographic mirrors can be clearly iden-
tified. The experimental observation of SPP field pattern is illustrated in Fig. 3(f), which is well consistent with 
the theorerical prediction as shown in Fig. 3(c), confirming experimentally that the designed microcavity does 
support a first-order Gaussian transverse mode of SPP beam.

Control of longitudinal mode. The resonant cavity mode of laser cavity is characterized not only by its 
transverse mode, but also by the longitudinal mode. Whereas the transverse mode in a SPP microcavity, e.g., the 
fundamental and first-order Gaussian mode, must be manipulated by complicated holographic mirrors that can 
only be realized via deliberate theoretical design, the manipulation of longitudinal modes is much simpler: chang-
ing the cavity length suffices to work. To show this, we use the 3D FDTD method to investigate the influence of 
the cavity length on the longitudinal mode. In the simulation of the fundamental Gaussian mode SPP cavity, a 
monitor is set at the center of cavity to record SPP fields under excitation of light at various wavelengths. The 
calculated intensity spectra for different cavity length D are shown in Fig. 4(a). The depth and width of grooves 
are 0.3 μ m and 0.24 μ m, respectively. When D =  16 μ m, two peaks appear in the considered wavelength range, 
with the short-wavelength peak located at λ =  1.037 μ m and the long-wavelength peak located at λ =  1.066 μ m. 
Obviously these two peaks correspond to two longitudinal modes. When D changes from 16.1 to 16.7 µm, the 
longitudinal modes continuously red shift. When D =  16.5 μ m, the peak intensity at λ =  1.082 μ m reaches maxi-
mum, then decreases when D further increases. The spectral peaks only appear in the range from 1.03 to 1.15 μ m, 
as this is the spectral width for the holographic mirrors to efficiently confine the SPPs on metal surface. The cal-
culated quality (Q) factor of the resonant peaks for different cavity lengths is explicitly noticed in Fig. 4(a). One 
can see that the cavity with D =  16.5 μ m has the maximal Q-factor.
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Figure 3. Design and fabrication of SPP microcavity supporting a first-order Gaussian mode. (a) The SEM 
picture of the fabricated groove-pattern holographic mirror to focus SPP wave to two spots on the surface of gold 
thin film. (b) Experimental images of focusing normally incident plane wave from free space into two SPP spots on 
the gold surface. (c) Morphology of the designed microcavity structure and calculated SPP intensity distributions 
on the metal surface of xy plane with z =  0. The intensity distributions correspond to the modular square of electric 
field. The calculated (e) z component of electric field profile in the xz plane with y =  0 and (g) the modular square of 
electric field profile along the x-axis with y =  0 and z =  0. (d) SEM picture of the fabricated SPP concave 
microcavity. Each holographic mirror has a size of 20 × 20 μ m2, and the cavity length is 16 μ m. (f) Leaky-mode 
observation image of the SPP field pattern in the concave microcavity. Both simulations and experiments show 
formation of a first-order Gaussian SPP mode confined within the microcavity and at the surface of gold thin film.
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The calculated intensity spectra for different cavity length D of the first-order Gaussian mode SPP cavity are 
shown in Fig. 4(b). For D =  15.6 μ m and 0.3 μ m deep grooves, two peaks appear in the considered spectral range. 
The short-wavelength peak has a Q-factor of 85 and is located at λ =  1.062 μ m, while the long-wavelength peak is 
located at λ =  1.103 μ m. With D increasing, both peaks red shift. When D =  16.5 μ m, the short-wavelength peak 
red shifts to λ =  1.091 μ m and reaches maximum in intensity, then decreases with D further increasing. 
Comparison between Fig. 4(a,b) shows that the fundamental Gaussian mode SPP cavity has a slightly higher 
Q-factor and a much higher resonant peak magnitude than the first-order Gaussian mode SPP cavity. This might 
be attributed to the higher coupling efficiency and reflection coefficient of the holographic mirrors in the former 
cavity, which are made from concentric rings of grooves, than those in the latter cavity, which are made from 
displaced and broken concentric rings of grooves. Dispite these differences, it is clear that one can efficiently con-
trol the transverse and longitudinal modes of SPP cavities.

In the above design of SPP cavity, the light source to excite SPP cavity mode is an external plane wave light. Yet, 
in practical performance of laser cavity, either classical macroscopic cavity, or current SPP cavity, or other nano-
cavity, the light source comes from gain medium that is integrated with the cavity. The gain medium, when 
pumped by external sources, will radiate at the cavity resonant wavelength and then amplify the cavity mode. To 
verify that the designed SPP microcavities can generate desirable SPP modes effectively under these practical 
working conditions, we excite the resonant modes by placing a dipole source within the cavities to model gain 
medium radiation. The orientation of the dipole source is along the z-axis and the dipole emits optical pulses 
centered at λ =  1.064 μ m with a duration of 6.05 fs. They transport within the cavity with multiple back-and-forth 
reflections by the holographic mirrors accompanied with a slight round-trip attenuation in the cavity. After a long 
time, only the cavity resonance modes survive and the consequent field pattern can be used to identify the mode 
feature. In the cavity shown in Fig. 2(c), the dipole is located at = = =P x y z( 0, 0, 20nm). SPP waves are 
excited by the dipole and reflected by the holographic mirrors. Figure 4(c) shows the calculated field pattern after 

Figure 4. Quality factor and modal profile of SPP microcavity with mode selection. (a,b) The calculated 
intensity spectra at different cavity lengths D for the fundamental and first-order Gaussian mode SPP 
microcavity, respectively. (c,d) The calculated modal profile of the fundamental and first-order Gaussian SPP 
mode excited by a dipole source after 70 periods of light oscillation, respectively.
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70 periods delay. Even after such a long time, the field pattern remains as the fundamental Gaussian mode, iden-
tical to the pattern in Fig. 2(c). In the cavity shown in Fig. 3(c), two dipoles with an initial π phase difference are 
set at the position of P1(x =  −1 μ m, y =  0, z =  20 nm) and = µ = =P x m y z( 1 , 0, 20 nm)2 . The calculated field 
pattern after 70 periods delay is shown in Fig. 4(d). It is also identical to the pattern in Fig. 3(c), which is a 
first-order Gaussian mode. The unchanged intensity profile indicates that the cavity can excite effectively the SPP 
mode under different means of pump source, and the mode can survive in the cavity for a long time.

According to standard macroscopic laser cavity theory38, 39, the transverse modes are determined by the 
geometric shape of the mirror and the associate reflection wavefront of laser beam. In the above discussions 
we have shown both theoretically and experimentally that this general rule also holds true for SPP microcavi-
ties. However, the reflection mirrors of SPP microcavity are much more complicated in geometric configuration 
than their counterparts in classical laser cavity, which are some simple concave mirrors with high reflectivity. 
Therefore, it is no longer good to use the conventional design methodology. Instead, new concepts and methodol-
ogies must be invented and adopted to realize a complete manipulation of lasers at microscale and nanoscale, not 
only the threshold and power, but also the transverse and longitudinal modal profiles. Such an appeal to higher 
performance holds not only to current SPP lasers, but also to other types of lasers, such as distributed feedback 
lasers, vertical cavity surface emitting lasers, and photonic crystal lasers, all built on the semiconductor platform.

Conclusions
In summary, we have shown easy design and realization of a plasmonic microcavity on metal surface with full 
transverse and longitudinal mode selection and manipulation via deliberately determined and fabricated holo-
graphic mirrors and adjustment of the cavity length, respectively. These holographic mirrors have a much more 
complicated geometry than their counterparts in macroscopic laser cavity. They are difficult to obtain via usual 
inverse-problem solutions but easy to solve by using the methodology of SWH. Although we only demonstrate 
fundamental and first-order transverse Gaussian mode, realization of more complicated transverse modes are 
feasible. A plasmonic microcavity with full mode selection and control, which represents a big step in nanoplas-
monics and nanophotonics, can become a basic platform for building high Q-factor, mode selected, and tunable 
SPP laser, and also can find potential applications in high-performance sensing, detecting, light-matter inter-
action enhancement, and optical information processing. In a broader aspect, the concepts and methodologies 
developed here can be used to explore full mode control in other semiconductor laser cavities and optoelectronic 
devices.
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