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Abstract
This research addresses the mixed convection flow of an Oldroyd-B fluid in a doubly

stratified surface. Both temperature and concentration stratification effects are considered.

Thermal radiation and chemical reaction effects are accounted. The governing nonlinear

boundary layer equations are converted to coupled nonlinear ordinary differential equations

using appropriate transformations. Resulting nonlinear systems are solved for the conver-

gent series solutions. Graphs are plotted to examine the impacts of physical parameters on

the non-dimensional temperature and concentration distributions. The local Nusselt number

and the local Sherwood number are computed and analyzed numerically.

Introduction
Analysis of non-Newtonian fluids has great importance due to its several industrial and engi-
neering applications. In particular these fluids are encountered in the material processing,
chemical and nuclear industries, bioengineering, oil reservoir engineering, polymeric liquids
and foodstuffs. Several fluids like paints, paper pulp, shampoos, ketchup, apple sauce, slurries,
certain oils and polymer solutions are the non-Newtonian fluids. The characteristics of all
the non-Newtonian fluids cannot be explained via one constitutive relationship. Hence various
fluid models are proposed in the literature for the properties of non-Newtonian fluids. Gener-
ally non-Newtonian materials are classified under three categories namely (i) differential type
(ii) rate type and (iii) integral type. The Maxwell fluid model is the simplest subclass of rate
type fluids. This model describes only the properties of relaxation time. The characteristics of
retardation time cannot be predicted by the Maxwell fluid. An Oldroyd-B fluid model was
developed to examine both the relaxation and retardation times characteristics. Instabilities in
viscoelastic liquids were studied by Larson [1]. In this investigation, he discussed the instabili-
ties in Taylor-Couette flows, instabilities in cone-and-plate and plate-and-plate flows,
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instabilities in parallel shear flows, instabilities in external and multi-dimensional flows. The
instabilities in the flows occurring in the absence of inertial forces were investigated by Shaqfeh
[2]. Laso and Ottinger [3] presented a study to examine the numerical simulation of viscoelas-
tic liquids based on molecular models. Rajagopal and Bhatnagar [4] computed the asymptoti-
cally decaying solution of an Oldroyd-B fluid past an infinite porous plate. Thermodynamic
properties of rate type non-Newtonian fluids were investigated by Rajagopal and Srinivasa [5].
Numerical solutions of Oldroyd-B and PTT-fluids with both the linear and exponential stress
functions were developed by Alves et al. [6]. Some recent investigations on non-
Newtonian fluids can be seen in the references [7–14].

Heat and mass transfer analysis in the boundary layer flow over a stretching surface has key
role in the industrial and engineering applications, for example, manufacturing of plastic and
rubber sheets, annealing and thinning of copper wires, drawing on stretching sheets through
quiescent fluids, boundary layer along a liquid film condensation process, damage of crops due
to freezing, desalination, refrigeration and air conditioning, compact heat exchangers, solar
power collectors, human transpiration and many others (see refs. [15,16]). Heat and mass
transfer effects in boundary layer flow of viscoelastic fluid with thermal slip condition were
investigated by Turkyilmazoglu [17]. Hayat and Alsaedi [18] carried out a study to examine
the heat and mass transfer phenomena in buoyancy driven flow of an Oldroyd-B fluid. Ther-
mophoresis and Joule heating effects are further considered. Hayat et al. [19] presented the
series solutions of magnetohydrodynamic (MHD) flow of Casson fluid with heat and mass
transfer. Soret and Dufour effects are present in this investigation. Mixed convection flow of
Jeffrey fluid in the presence of heat and mass transfer is investigated by Shehzad et al. [20].
Gupta et al. [21] discussed the effect of cadmium on growth and active constituents of bacopa
monnieri. Induced magnetic field effect in mixed convection peristaltic flow of third order
fluid with nanoparticles is discussed by Noreen [22]. Bachok et al. [23] studied the boundary
layer flow of viscous fluid in presence of mixed convection and viscous dissipation. Su et al.
[24] developed a lattice Boltzmann method coupled with the Oldroyd-B constitutive equation
to stimulate flow of viscoelastic fluid. Here the numerical results of 2D channel flow agree well
with the analytical and some experimental results reported in the previous studies. Slip effects
in peristaltic flow of generalised Oldroyd-B fluids is explored by Tripathi et al. [25]. They com-
puted the homotopic solutions of the modelled differential system.

Effect of stratification is an important aspect in heat and mass transfer analyses. Stratifica-
tion of fluids occurs due to temperature variations, concentration differences or the presence of
different fluids of different densities. When the heat and mass transfer are present simulta-
neously then it is important to analyze the effect of double stratification on the convective
flows. The analysis of mixed convection in a doubly stratified medium is an important prob-
lem. It is because of its occurrence in geophysical flows (see ref. [26]). Such flows involve in the
rivers, lakes and seas, thermal energy storage systems and solar ponds etc. Chang and Lee [27]
investigated the free convection flow by a vertical plate with uniform and constant heat flux in
a thermally stratified micropolar fluid. Cheng [28] examined the combined heat and mass
transfer effect in natural convection flow from a vertical wavy surface in a power-law fluid satu-
rated porous medium. Both thermal and mass stratification effects were present. Srinivasa-
charya and Reddy [29] discussed the effect of double stratification in mixed convection flow of
micropolar fluid. Effect of double stratification on MHD free convection flow of micropolar
fluid is investigated by Srinivasacharya and Upendar [30]. Non-Darcy mixed convection flow
in a doubly stratified medium under Soret and Dufour effects is studied by Srinivasacharya
and Surender [31]. Srinivasacharya and Surender [32] addressed the effect of double stratifica-
tion on mixed convection boundary layer flow of a nanofluid past a vertical plate in porous
medium.

Temperature and Concentration Stratification Effects

PLOS ONE | DOI:10.1371/journal.pone.0127646 June 23, 2015 2 / 23



The basic theme of present study is to investigate the effects of thermal radiation, chemical
reaction, thermal and solutal stratification in the mixed convection boundary layer flow of
an Oldroyd-B fluid over a stretching surface. The studies available in the literature on this topic
mostly dealt with the thermal stratification effect. Some recent aforementioned studies investi-
gated the effects of both thermal and concentration stratification in viscous fluid flow. This is
the first attempt to study such effects for non-Newtonian fluids. Mathematical modelling is
developed under the consideration of thermal and concentration stratification effects. The
series solutions to the resulting nonlinear differential systems are constructed via homotopy
analysis method (HAM) [33–41]. The effects of various emerging parameters on the tempera-
ture and concentration fields are presented through plots and tables. The local Nusselt and the
local Sherwood numbers are computed numerically and analyzed.

Mathematical Modeling
We consider the steady two-dimensional doubly stratified mixed convection flow of an
incompressible Oldroyd-B fluid. The flow is caused by a linearly stretching surface at y = 0.
The flow occupies the domain y> 0. Boundary layer flow is considered in the presence of ther-
mal radiation and first order chemical reaction. The governing boundary layer equations for
incompressible flow of an Oldroyd-B fluid with heat and mass transfer are given below (see
Appendix for detailed derivation):
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The appropriate boundary conditions are

u ¼ UwðxÞ; v ¼ 0; T ¼ TwðxÞ; C ¼ CwðxÞ at y ¼ 0; ð6Þ

u ! 0; T ! T1ðxÞ ¼ T1; 0 þ A1x
2; C ! C1ðxÞ ¼ C1; 0 þ B1x

2 as y ! 1; ð7Þ

where u and v are the velocity components in the x– and y–directions respectively, λ1 the relax-
ation time, ν = μ / ρ the kinematic viscosity, μ the dynamic viscosity, ρ the density of fluid, λ2
the retardation time, g the gravitational acceleration, βT the thermal expansion coefficient, T
the temperature, βC the concentration expansion coefficient, C the concentration, α = k / ρcp
the thermal diffusivity of the fluid, k the thermal conductivity, cp the specific heat at constant
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pressure, qr the radiative heat flux,D the diffusion coefficient, K1 the reaction rate, Tw and T1
the temperatures of the surface and far away from the surface and Cw and C1 the concentrations
at the surface and far away from the surface. The subscript w denotes the wall condition. This
study assumes that the surface stretching velocity, wall temperature and wall concentration are

UwðxÞ ¼ ax; TwðxÞ ¼ T1; 0 þM1x
2; CwðxÞ ¼ C1; 0 þ N1x

2: ð8Þ

where a, A1, B1,M1,N1, T1,0 and C1,0 are the positive constants. The radiative heat flux qr via
Rosseland's approximation can be expressed as follows:

qr ¼ � 4s1

3m
@ðT4Þ
@y

; ð9Þ

in which σ1 is the Stefan-Boltzman constant andm is the mean absorption coefficient. We
assume that the difference in temperature within the flow is such that T4 can be written as a
linear combination of temperature. By employing Taylor's series and neglecting higher order
terms we have [18]:

T4 ffi �3T4
1 þ 4T3

1T; ð10Þ

Substituting Eq (10) in Eq (9) we get
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Using Eq (11) in Eq (4) we have
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The dimensionless variables can be defined as follows:
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Incompressibility condition is now identically satisfied and Eqs (2)–(8) and (12) become

f‴þ f f @� f 02 þ b1ð2f f 0f @� f 2f‴Þ þ b2ðf @2 � f f ivÞ þ lðyþ N�Þ ¼ 0; ð14Þ

P0 ¼ 0; ð15Þ

ð1þ RdÞy@þ Prðf y0 � 2f 0y� 2ε1f 0Þ ¼ 0; ð16Þ

�@þ Scðf�0 � 2f 0�� g�� 2ε2f
0Þ ¼ 0; ð17Þ

f ¼ 0; f 0 ¼ 1; y ¼ 1� ε1; � ¼ 1� ε2 at Z ¼ 0; ð18Þ
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f 0 ! 0; y ! 0; � ! 0 as Z ! 1: ð19Þ

In above expressions β1 and β2 are the Deborah numbers in terms of relaxation and retarda-
tion times respectively, λ is the mixed convection parameter, Grx is the Grashof number, Rex is
the local Reynolds number, N is the buoyancy ratio parameter, Rd is the thermal radiation
parameter, Pr is the Prandtl number, ε1 is the thermal stratification parameter, Sc is the
Schmidt number, γ is the chemical reaction parameter, ε2 is the solutal stratification parameter
and prime stands for differentiation with respect to η. Note that when β2 = 0, this analysis
reduced to the Maxwell fluid flow case. Eq (15) indicates that P is constant in the y–direction.
The involved variables can be defined as follows:
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The local Nusselt number Nux and the local Sherwood number Shx are given by
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Series Solutions
The initial guesses and the linear operators are

f 0ðZÞ ¼ 1� e�Z; y0ðZÞ ¼ ð1� ε1Þe�Z; �0ðZÞ ¼ ð1� ε2Þe�Z; ð23Þ

Lf ¼ f‴� f 0; Ly ¼ y@� y; L� ¼ �@� �: ð24Þ

The operators satisfy the following properties [33]:

Lf ½C1 þ C2e
Z þ C3e

�Z� ¼ 0; Ly½C4e
Z þ C5e

�Z� ¼ 0; L�½C6e
Z þ C7e

�Z� ¼ 0; ð25Þ

in which Ci (i = 1–7) are the arbitrary constants.
We can define the following zeroth-order deformation problems [36,40]:

ð1� pÞLf ½f̂ ðZ; pÞ � f 0ðZÞ� ¼ pℏfNf ½f̂ ðZ; pÞ; ŷðZ; pÞ; �̂ðZ; pÞ�; ð26Þ
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ð1� pÞLy½ŷðZ; pÞ � y0ðZÞ� ¼ pℏyNy½f̂ ðZ; pÞ; ŷðZ; pÞ; �̂ðZ; pÞ�; ð27Þ

ð1� pÞL�½�̂ðZ; pÞ � �0ðZÞ� ¼ pℏ�N�½f̂ ðZ; pÞ; ŷðZ; pÞ; �̂ðZ; pÞ�; ð28Þ
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Here p denotes the embedding parameter ℏf ; ℏy and ℏ� the non-zero auxiliary parameters

andNf,Nθ andNϕ the nonlinear operators. Setting p = 0 and p = 1 we have [35,38]:

f̂ ðZ; 0Þ ¼ f 0ðZÞ; f̂ ðZ; 1Þ ¼ f ðZÞ; ð34Þ

ŷðZ; 0Þ ¼ y0ðZÞ; ŷðZ; 1Þ ¼ yðZÞ; ð35Þ

�̂ðZ; 0Þ ¼ �0ðZÞ; �̂ðZ; 1Þ ¼ �ðZÞ: ð36Þ

When p varies from 0 to 1 then f̂ ðZ; pÞ; ŷðZ; pÞ and �̂ðZ; pÞ vary from the initial guesses
f0(η), θ0(η) and ϕ0(η) to the final solutions f(η), θ(η) and ϕ(η), respectively. Taylor series expan-
sion gives [37,39]:
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The convergence of above series strongly depends upon ℏf ; ℏy and ℏ�: Considering that ℏf ;

ℏy and ℏ� are chosen in such a manner that Eqs (37)–(39) converge at p = 1 then [33,34]:
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The mth-order problems are [33]:
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wm ¼ 0; m � 1;

1; m > 1:
ð51Þ

(

The mth-order deformation problems have the solutions

f mðZÞ ¼ f �mðZÞ þ C1 þ C2e
Z þ C3e

�Z; ð52Þ

ymðZÞ ¼ y�mðZÞ þ C4e
Z þ C5e

�Z; ð53Þ

�mðZÞ ¼ ��
mðZÞ þ C6e

Z þ C7e
�Z: ð54Þ

in which f �mðZÞ; g�mðZÞ; y�mðZÞ and ��
mðZÞ denote the special solutions.

Convergence Analysis
The series solutions (40)–(42) involve the auxiliary parameters ℏf ; ℏy and ℏ�: These parame-

ters are useful in adjusting and controlling the convergence of the obtained series solutions.
The proper values of these parameters are quite essential to construct the convergent solutions
via homotopy analysis method. To choose the suitable values of ℏf ; ℏy and ℏ�; the ℏ�curves

are plotted at 13th order of approximations. Fig 1 clearly depicts that the convergence region
lies within the domain�1:40 � ℏf � �0:35;�1:45 � ℏy � �0:35 and�1:45 � ℏ� �
�0:40: Furthermore the series solutions converge in the whole region of η when
ℏf ¼ �1:0 ¼ ℏy ¼ ℏ�: Table 1 shows that the 11th order of approximations are sufficient for

the convergent series solutions.

Fig 1. The ℏ� curves for the functions f(η), θ(η) and ϕ(η) when β1 = β2 = 0.2 = γ = Rd, λ = 0.1 =N,
Pr = 1.0 = Sc and ε1 = 0.3 = ε2.

doi:10.1371/journal.pone.0127646.g001
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Results and Discussion
This section presents the impacts of various emerging parameters including Deborah number
in terms of relaxation time β1, Deborah number in terms of retardation time β2, Prandtl num-
ber Pr, thermal radiation parameter Rd, Schmidt number Sc, chemical reaction parameter γ,
thermal stratification parameter ε1 and solutal stratification parameter ε2 on the dimensionless
temperature profile θ(η) and concentration profile ϕ(η). This purpose is achieved through the
plots in the Figs 2–9. Fig 2 is plotted to examine the effects of Deborah number β1 on the tem-
perature profile θ(η) and concentration profile ϕ(η) when β1 = 0.0, 0.25, 0.50 and β2 = 0.2 = γ =
Rd, λ = 0.1 = N, Pr = 1.0 = Sc, ε1 = 0.3 = ε2. Fig 2 examined that the temperature profile θ(η)
and concentration profile ϕ(η) are enhanced when we use the larger values of Deborah number
β1. Since Deborah number β1 has dependence on the relaxation time [4]. Larger values of Deb-
orah number β1 implies to higher relaxation time. It is well known fact that the larger relaxa-
tion time fluids have higher temperature and concentration and smaller relaxation time fluids
possess lower temperature and concentration. In view of this argument, both temperature pro-
file θ(η) and concentration profile ϕ(η) are enhanced via larger Deborah number β1. The influ-
ence of Deborah number β2 on the dimensionless temperature and concentration fields when
β2 = 0.0, 0.25, 0.50 and β1 = 0.2 = γ = Rd, λ = 0.1 = N, Pr = 1.0 = Sc, ε1 = 0.3 = ε2 is studied in
Fig 3. Fig 3 clearly depicts that the temperature θ(η) and concentration ϕ(η) are decreasing
functions of Deborah number β2 [11]. Here the Deborah number β2 is dependent on the retar-
dation time. When we increase the values of Deborah number β2, the retardation time is
increased. Such increase in retardation time is responsible for the reduction in the temperature
θ(η) and concentration ϕ(η). Here it is interesting to mention that β1 = 0 = β2 correspond to
viscous fluid case and β2 = 0 shows the Maxwellian fluid flow situation. From experimental
point of view, it is quite obvious that the values of β2 are not much than the values of β1. Influ-
ence of thermal stratification parameter ε1 on the temperature θ(η) and concentration ϕ(η) is
shown in Fig 4 when ε1 = 0.0, 0.1, 0.2 and β1 = β2 = 0.2 = γ = Rd, λ = 0.1 = N, Pr = 1.0 = Sc, ε2 =
0.3. Here the temperature and thermal boundary layer thickness are decreased while concen-
tration and its related boundary layer thickness are increased when we increase in thermal
stratification parameter. When the thermal stratification effect is taken into account, the effec-
tive temperature difference between the surface and the ambient fluid is decreased while oppo-
site behavior is observed for concentration profile [28]. Influence of solutal stratification
parameter ε2 on the temperature profile θ(η) and concentration profile ϕ(η) is shown in Fig 5
when ε2 = 0.0, 0.1, 0.2 and β1 = β2 = 0.2 = γ = Rd, λ = 0.1 = N, Pr = 1.0 = Sc and ε1 = 0.3. The
temperature profile is enhanced while the concentration profile is reduced with an increase in
solutal stratification parameter [29]. Influence of Prandtl number on the temperature profile
is shown in Fig 6 when Pr = 0.5, 0.75, 1.0, 1.25 and β1 = β2 = 0.2 = γ = Rd, λ = 0.1 = N, Sc = 1.0,

Table 1. Convergence of HAM solutions for different order of approximations when β1 = β2 = 0.2 = γ = Rd, λ = 0.1 =N, Pr = 1.0 = Sc, ε1 = 0.3 = ε2 and
ℏf ¼ �1:0 ¼ ℏy ¼ ℏ�:

Order of approximations −f'' (0) −θ' (0) −ϕ' (0)

1 0.91150 1.01333 1.15333

5 0.93405 0.98685 1.15531

11 0.93419 0.98680 1.15505

20 0.93419 0.98680 1.15505

35 0.93419 0.98680 1.15505

50 0.93419 0.98680 1.15505

doi:10.1371/journal.pone.0127646.t001
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ε1 = 0.3 = ε2. The temperature and thermal layer thickness are reduced for the increasing val-
ues of Prandtl number. Physically larger Prandtl fluids possess lower thermal diffusivity and
smaller Prandtl fluids have higher thermal diffusivity. This change in thermal diffusivity causes
a reduction in the temperature and thermal boundary layer thickness. Basically Prandtl num-
ber is the ratio of momentum diffusivity to thermal diffusivity. In heat transfer, Prandtl num-
ber is used to control the thicknesses of momentum and thermal boundary layers. Fig 7 is
plotted to examine the change in temperature profile when Rd = 0.0, 0.3, 0.6, 1.0 and β1 = β2 =
0.2 = γ, λ = 0.1 = N, Pr = 1.0 = Sc, ε1 = 0.3 = ε2. Fig 7 describes that the temperature and ther-
mal boundary layer thickness are enhanced with an increase in the thermal radiation parame-
ter. Larger values of thermal radiation parameter provide more heat to working fluid that
shows an enhancement in the temperature and thermal boundary layer thickness [20]. Influ-
ence of Schmidt number on the concentration field is shown in Fig 8 when Sc = 0.5, 0.75, 1.0,
1.25 and β1 = β2 = 0.2 = γ = Rd, λ = 0.1 = N, Pr = 1.0, ε1 = 0.3 = ε2. It is clearly observed that the
concentration and its related boundary layer thickness are decreasing functions of Schmidt
number. Schmidt number is inversely proportional to the diffusion coefficient. Hence an
increase in Schmidt number corresponds to a smaller diffusion coefficient. Such smaller diffu-
sion coefficient creates a reduction in the concentration field. Fig 9 is plotted to investigate the

Fig 2. Temperature distribution function θ(η) and concentration distribution function ϕ(η) when β1 = 0.0, 0.25, 0.50 and β2 = 0.2 = γ = Rd, λ = 0.1 =N,
Pr = 1.0 = Sc, ε1 = 0.3 = ε2.

doi:10.1371/journal.pone.0127646.g002
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effects of chemical reaction parameter when γ = 0.0, 0.3, 0.6, 1.0 and β1 = β2 = 0.2 = Rd, λ = 0.1
= N, Pr = 1.0 = Sc, ε1 = 0.3 = ε2. It is noticed from Fig 9 that the concentration and its associ-
ated boundary layer thickness are decreasing functions of chemical reaction parameter. Chemi-
cal reaction increases the rate of interfacial mass transfer. The reaction reduces the local
concentration, thus increasing the concentration gradient and its flux. As a result, concentra-
tion of the chemical species in the boundary layer decreases with an increase in chemical reac-
tion parameter. Tables 2 and 3 show the numerical values of the local Nusselt and the local
Sherwood numbers for different values of β1, β2, λ, N, Pr, Sc, Rd, γ, ε1 and ε2. The values of
local Nusselt and the local Sherwood numbers are decreased by increasing ε1 and ε2 while
these values are increased for the larger λ and N. Table 4 is computed to validate the present
results with the previous published results in a limiting sense. Here we compared our results
for a Maxwell fluid case. From this Table, we examined that the present series solutions have
good agreement with the numerical solutions of Megahed [42] in limiting sense.

Conclusions
Influence of double stratification in mixed convection flow of an Oldroyd-B fluid with thermal
radiation and chemical reaction are examined. This analysis reduces to the Maxwell fluid flow
case when β2 = 0. The main findings of this research are given below.

Fig 3. Temperature distribution function θ(η) and concentration distribution function ϕ(η) when β2 = 0.0, 0.25, 0.50 and β1 = 0.2 = γ = Rd, λ = 0.1 =N,
Pr = 1.0 = Sc, ε1 = 0.3 = ε2.

doi:10.1371/journal.pone.0127646.g003
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• Temperature and concentration fields are increased when we increase the values of β1. Here
the relaxation time is enhanced when we give rise to Deborah number that leads to the higher
temperature and concentration fields. This observation is similar that obtained in [18].

• Temperature and thermal boundary layer thickness are decreased when Prandtl number
increases. Prandtl number is used to control the heat transfer rate in industrial process [29].
The proper value of Prandtl number is quite essential to control the heat transfer rate in
industrial and engineering processes.

• Temperature and thermal boundary layer thickness are increasing functions of thermal radi-
ation parameter. An increase in thermal radiation parameter provides more heat to fluid due
to which larger temperature and thicker thermal boundary layer thickness are achieved.

• Influence of thermal stratification parameter on the temperature and concentration fields are
opposite [30]. Here temperature is decreased while concentration is enhanced for the higher
values of thermal stratification parameter.

Fig 4. Temperature distribution function θ(η) and concentration distribution function ϕ(η) when ε1 = 0.0, 0.1, 0.2 and β1 = β2 = 0.2 = γ = Rd, λ = 0.1 =
N, Pr = 1.0 = Sc, ε2 = 0.3.

doi:10.1371/journal.pone.0127646.g004
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• Temperature and concentration fields show opposite behavior for solutal stratification
parameter. It is also observed that the thermal and concentration boundary layer thicknesses
are reverse for the larger solutal stratification parameter.

• Concentration field and associated boundary layer thickness are reduced when we increase
the values of chemical reaction parameter. For γ = 0 our analysis reduces to the case when
there is no chemical reaction.

• Table 4 shows that our solutions have an excellent agreement with the previous published
numerical results in limiting sense.

• The used technique for the solutions development and analysis has advantages over the other
in the sense of following points:

a. It is independent of small/large physical parameters.

b. It provides a simple way to ensure the convergence of series solutions.

c. It provides a large freedom to choose the base functions and related auxiliary linear
operators.

Fig 5. Temperature distribution function θ(η) and concentration distribution function ϕ(η) when ε2 = 0.0, 0.1, 0.2 and β1 = β2 = 0.2 = γ = Rd, λ = 0.1 =
N, Pr = 1.0 = Sc and ε1 = 0.3.

doi:10.1371/journal.pone.0127646.g005

Temperature and Concentration Stratification Effects

PLOS ONE | DOI:10.1371/journal.pone.0127646 June 23, 2015 13 / 23



• Besides this the presented analysis is capable of describing relaxation and retardation times
feature which many polymers show. Such analysis is particularly useful in polymer extrusion
coating process, blood related viscoelastic effects in hemodynamic [43–45] etc. Such analysis
provides a stimulus for future investigations on the topic in regimes of magnetohydrodynam-
ics and convective conditions of heat transfer at the surface. It should be pointed out that pre-
sented analysis is not able to describe the rheological fluid properties in terms of normal
stress effects, shear thinning and shear thickening features. Further the present analysis just
deals with the hydrodynamic flow situation due to which the effects of viscous dissipation
and Joule heating are ignored. In future one can discuss the hydromagnetic flow case in the
presence of Joule heating and viscous dissipation.

Appendix
Here we include the derivation of the governing equation. The constitutive equation for
an Oldroyd-B fluid is expressed as follows:

tij ¼ �pdij þ Sij; ðA1Þ
where τij represents the components of Cauchy stress tensor, p the pressure, δij the

Fig 6. Temperature distribution function θ(η) when Pr = 0.5, 0.75, 1.0, 1.25 and β1 = β2 = 0.2 = γ = Rd, λ = 0.1 =N, Sc = 1.0, ε1 = 0.3 = ε2.

doi:10.1371/journal.pone.0127646.g006
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components of identity tensor and the components of an extra stress tensor Sij is defined as
follows:

1þ l1
D
Dt

� �
Sij ¼ m 1þ l2

D
Dt

� �
Aij

1; ðA2Þ

where μ denotes the dynamic viscosity, λ1 and λ2 are the relaxation and retardation times

respectively,Aij
1 the components of first Rivlin-Ericksen tensor and D

Dt
the contravariant

convective derivative which can be written below in the forms

Dbi

Dt
¼ @bi

@t
þ vrbi;r � vi;rb

r; ðA3Þ

Dbij

Dt
¼ @bij

@t
þ vrbij;r � vi;rb

rj � vj;rb
ir: ðA4Þ

The above expressions represent a contravariant vector and a contravariant tensor having
rank 1 and 2 respectively, (where vi denote the components of velocity and “,” represents the
covariant derivative). In case of Cartesian coordinates the covariant derivative reduces to the

Fig 7. Temperature distribution function θ(η) whenRd = 0.0, 0.3, 0.6, 1.0 and β1 = β2 = 0.2 = γ, λ = 0.1 = N, Pr = 1.0 = Sc, ε1 = 0.3 = ε2.

doi:10.1371/journal.pone.0127646.g007
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usual partial derivative. The equations governing the flow are

vi
;r ¼ 0; ðA5Þ

ra ¼ tij;j � rg; ðA6Þ

where ρ denotes the fluid density, g the gravitational field and the definition of acceleration ‘a’
is

ai ¼ @vi

@t
þ vrvi;r: ðA7Þ

By applying the operator 1þ l1
D
Dt


 �
; Eq (A6) gives

r 1þ l1

D
Dt

� �
ai ¼ 1þ l1

D
Dt

� �
ð�dijp;j þ Sij

;jÞ � r 1þ l1
D
Dt

� �
g ðA8Þ

Fig 8. Concentration distribution function ϕ(η) when Sc = 0.5, 0.75, 1.0, 1.25 and β1 = β2 = 0.2 = γ = Rd, λ = 0.1 = N, Pr = 1.0, ε1 = 0.3 = ε2.

doi:10.1371/journal.pone.0127646.g008
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or

r 1þ l1

D
Dt

� �
ai ¼ 1þ l1

D
Dt

� �
ð�dijp;jÞ þ 1þ l1

D
Dt

� �
Sij

� �
;j

� r 1þ l1
D
Dt

� �
g: ðA9Þ

Assuming to derive the above equation that D
Dt


 �
;j
¼ 0 and Eq (A2), we get the following

equation:

r 1þ l1

D
Dt

� �
ai

¼ 1þ l1
D
Dt

� �
ð�dijp;jÞ þ m 1þ l2

D
Dt

� �
Aij

1

� �
;j

� r 1þ l1
D
Dt

� �
g

¼ 1þ l1
D
Dt

� �
ð�dijp;jÞ þ m 1þ l2

D
Dt

� �
Aij

1;j � r 1þ l1
D
Dt

� �
g:

ðA10Þ

Fig 9. Concentration distribution function ϕ(η) when γ = 0.0, 0.3, 0.6, 1.0 and β1 = β2 = 0.2 = Rd, λ = 0.1 =N, Pr = 1.0 = Sc, ε1 = 0.3 = ε2.

doi:10.1371/journal.pone.0127646.g009
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Table 3. Values of local Nusselt number (Rex)
−1/2Nux and local Sherwood number (Rex)

−1/2Shx for different values of Pr, Sc, Rd, γ, ε1 and ε2 when
β1 = 0.2 = β2 and λ = 0.1 =N.

Pr Sc Rd γ ε1 ε2 −(1 + Rd)θ0 (0) −ϕ0 (0)

0.5 1.0 0.2 0.2 0.3 0.3 0.60210 0.96913

1.0 0.95671 0.96073

1.5 1.24219 0.95807

1.0 0.5 0.2 0.2 0.3 0.3 0.95754 0.61970

1.0 0.95671 0.96073

1.5 0.95647 1.22937

1.0 1.0 0.0 0.2 0.3 0.3 0.89755 0.95936

0.3 0.98338 0.96143

0.5 1.03215 0.96284

1.0 1.0 0.2 0.0 0.3 0.3 0.95674 0.89936

0.2 0.95671 0.96073

0.5 0.95667 1.04369

1.0 1.0 0.2 0.2 0.0 0.3 1.08817 0.96706

0.5 0.86751 0.95648

1.0 0.63912 0.94576

1.0 1.0 0.2 0.2 0.3 0.0 0.95736 1.12364

0.5 0.95628 0.85206

1.0 0.95519 0.58011

doi:10.1371/journal.pone.0127646.t003

Table 2. Values of local Nusselt number (Rex)
−1/2Nux and local Sherwood number (Rex)

−1/2Shx for different values of β1, β2, λ andNwhen Pr = 1.0 =
Sc, Rd = 0.2 = γ and ε1 = 0.3 = ε2.

β1 β2 λ N −(1 + Rd)θ0 (0) −ϕ0 (0)

0.0 0.2 0.1 0.1 0.97961 0.97656

0.2 0.95671 0.96073

0.4 0.93563 0.94621

0.2 0.0 0.1 0.1 0.92966 0.94168

0.2 0.95671 0.96073

0.4 0.97899 0.97648

0.2 0.2 0.0 0.1 0.95032 0.95590

0.2 0.96267 0.96528

0.5 0.97862 0.97761

0.2 0.2 0.1 0.0 0.95636 0.96045

0.2 0.95706 0.96101

0.5 0.95809 0.96186

doi:10.1371/journal.pone.0127646.t002

Table 4. Comparative values of –f@(0) for various values of β1 when β2 = λ =N = 0.

β1 Megahed [42] Present work

0.0 0.999978 1.0000

0.2 1.051945 1.0519

0.4 1.101848 1.1019

0.6 1.150160 1.1501

0.8 1.196690 1.1967

1.2 1.285253 1.2853

1.6 1.368641 1.3686

2.0 1.447616 1.4476

doi:10.1371/journal.pone.0127646.t004
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For an incompressible steady and two-dimensional flow one can write

rai þ rl1

D
Dt

ai ¼ �dijp;j þ l1
D
Dt

ð�dijp;jÞ

þmAij
1;j þ ml2

D
Dt

Aij
1;j � rg � rl1

D
Dt

g for i ¼ 1; 2;

ðA11Þ

a1 ¼ vrv1;r ¼ u
@u
@x

þ v
@u
@y

; ðA12Þ

a2 ¼ vrv2;r ¼ u
@v
@x

þ v
@v
@y

; ðA13Þ

dij ¼ f 1 i ¼ j

0 i 6¼ j
; i; j ¼ 1; 2: ðA14Þ

For x-component of momentum equation we have

D
Dt

ai ¼ vra1;r � v1;ra
r

¼ u
@

@x
u
@u
@x

þ v
@u
@y

� �
þ v

@

@y
u
@u
@x

þ v
@u
@y

� �

� @u
@y

u
@v
@x

þ v
@v
@y

� �
� @u

@x
u
@u
@x

þ v
@u
@y

� �

¼ u2
@2u
@x2

þ v2
@2u
@y2

þ 2uv
@2u
@x@y

ðA15Þ

dijp;j ¼
@p
@x

; ðA16Þ

D
Dt

dijp;j ¼
D
Dt

ðd11p;1 þ d12p;2Þ

¼ D
Dt

@p
@x

� �
;

¼ u
@

@x
@p
@x

� �
þ v

@

@y
@p
@x

� �
� @u

@x
@p
@x

� @u
@y

@p
@x

;

¼ u
@2p
@x2

þ v
@2p
@x@y

� @u
@x

@p
@x

� @u
@y

@p
@x

;

ðA17Þ

Aij
1;j ¼ A11

1;1 þA12
1;2 ¼

@2u
@x2

þ @2u
@y2

; ðA18Þ

D
Dt

Aij
1;j ¼ u

@3u
@x3

þ u
@3u
@x@y2

þ v
@3u
@x2@y

þ v
@3u
@y3

� u
@2v
@x2

þ v
@2v
@y2

� �
@u
@y

� @2u
@x2

þ @2u
@y2

� �
@u
@x

:

ðA19Þ
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Using Eqs (A12–A18) and Eq (A11) becomes

r u
@u
@x

þ v
@u
@y

� �

¼ �rl1 u2
@2u
@x2

þ 2uv
@2u
@x@y

þ v2
@2u
@y2

� �
� @p
@x

� l1 u
@2p
@x2

� @u
@x

@p
@x

� @u
@y

@p
@x

þ v
@2p
@x@y

� �

þ m
@2u
@x2

þ @2u
@y2

� �
� rg

þ ml2

u @3u
@x3

þ @3u
@x@y2

� �
þ v @3u

@x2@y
þ @3u

@y3

� �

� @2u
@x2

þ @2u
@y2

� �
@u
@x

� @2v
@x2

þ @2v
@y2

� �
@u
@y

0
BB@

1
CCA:

ðA20Þ

Similarly y-component of momentum equation can be written as follows:

r u
@v
@x

þ v
@v
@y

� �

¼ �rl1 u2
@2v
@x2

þ 2uv
@2v
@x@y

þ v2
@2v
@y2

� �
� @p

@y

� l1 v
@2p
@x2

� @v
@x

@p
@x

� @v
@y

@p
@x

þ u
@2p
@x@y

� �

þ m
@2v
@x2

þ @2v
@y2

� �

þ ml2

u @3v
@x3

þ @3v
@x@y2

� �
þ v @3v

@x2@y
þ @3v

@y3

� �

� @2u
@x2

þ @2u
@y2

� �
@v
@x

� @2v
@x2

þ @2v
@y2

� �
@v
@y

0
BB@

1
CCA:

ðA21Þ

Here u and v show the velocities parallel to the x- and y-axes respectively and ν the kine-
matic viscosity.

Using the boundary layer approximations, i.e.,

x ¼ Oð1Þ; u ¼ Oð1Þ; y ¼ OðdÞ; v ¼ OðdÞ;
n ¼ m

r
¼ Oðd2Þ; l1 ¼ Oð1Þ; l2 ¼ Oð1Þ; p ¼ Oð1Þ; ðA22Þ
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Eqs (A20) and (A21) reduce to the form

r u
@u
@x

þ v
@u
@y

� �
þ rl1

u2@2u
@x2

þ v2@
2u

@y2

þ2uv@
2u

@x@y

0
B@

1
CA ¼ � @p

@x
þ m

@2u
@y2

þ ml2

u@
3u

@x@y2
þ v@

3u
@y3

�@u
@x

@2u
@y2

� @u
@y

@2v
@y2

0
B@

1
CA� rg;

ðA23Þ

1

r
@p
@y

¼ � l1
r

� @v
@y

@p
@x

þ u
@2p
@x@y

� �
: ðA24Þ

Using boundary condition (6), Eq (A23) becomes

� @p
@x

¼ r1g: ðA25Þ

Putting Eq (A25) in Eq (A23) we get

r u
@u
@x

þ v
@u
@y

� �
þ rl1

u2@2u
@x2

þ v2@
2u

@y2

þ2uv@
2u

@x@y

0
B@

1
CA

¼ m
@2u
@y2

þ ml2

u@
3u

@x@y2
þ v@

3u
@y3

�@u
@x

@2u
@y2

� @u
@y

@2v
@y2

0
B@

1
CAþ ðr1 � rÞg: ðA26Þ

Taylor's series expansion about ρ1 gives

r ¼ r1 þ @r
@T

� �
ðT � T1Þ þ

@r
@C

� �
ðC � C1Þ

þ @2r
@T2

� � ðT � T1Þ2
2!

þ @2r
@C2

� � ðC � C1Þ2
2!

þ ::::

ðA27Þ

Neglecting square and higher terms of (T – T1) and (C – C1) we have

ðr1 � rÞ ¼ bTðT � T1Þ þ bCðC � C1Þ; ðA28Þ

This is Boussinesq approximation with

bT ¼ � 1

r
@r
@T

� �
and bC ¼ � 1

r
@r
@C

� �
; ðA29Þ

Substituting Eq (A28) into Eq (A26) we get

u
@u
@x

þ v
@u
@y

þ l1

u2@2u
@x2

þ v2@
2u

@y2

þ2uv@
2u

@x@y

0
B@

1
CA ¼ n

@2u
@y2

þ nl2

u@
3u

@x@y2
þ v@

3u
@y3

�@u
@x

@2u
@y2

� @u
@y

@2v
@y2

0
B@

1
CA

þgðbTðT � T1Þ þ bCðC � C1ÞÞ:

ðA30Þ
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