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Abstract: mRNA has emerged as an important biomolecule in the global call for the development
of therapies during the COVID-19 pandemic. Synthetic in vitro-transcribed (IVT) mRNA can be
engineered to mimic naturally occurring mRNA and can be used as a tool to target “undruggable”
diseases. Recent advancement in the field of RNA therapeutics have addressed the challenges
inherent to this drug molecule and this approach is now being applied to several therapeutic
modalities, from cancer immunotherapy to vaccine development. In this review, we discussed the
use of mRNA for stem cell generation or enhancement for the purpose of cardiovascular regeneration.
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1. Introduction

Advances in the biopharmaceutical industry were accelerated in the global race
toward therapies for the COVID-19 pandemic [1]. Most notably, messenger ribonucleic
acid (mRNA) vaccines galvanized the field, with lightspeed generation of new therapeutic
molecules. For example, within 42 days of the publication of the SARS-CoV-2 sequence
by Chinese scientists in January 2020 [2], Moderna sent its RNA vaccine candidate to the
National Institute of Allergy and Infectious Disease for preclinical testing. By April 2020,
Moderna launched its first clinical trial. Less than 8 months later, Moderna will be seeking
Emergency Use Authorization for its vaccine, after phase III trials revealed 95% efficacy
and excellent safety. Out of the 236 COVID-19 vaccines being developed, 29 of them are
mRNA-based [1] and the first two (BNT162 from Pfizer and MRNA1273 from Moderna) of
all the vaccines to complete the phase III clinical trial belong to this category [3,4]. These
vaccines will be the first mRNA therapeutics to reach the market. The speed by which
mRNA vaccines were developed, and their high degree of efficacy and safety, has brought
attention to the great promise of mRNA therapeutics.

Whereas the majority of drugs approved by U.S. Food and Drug Administration
(FDA) are small molecules, such drugs have limitations in the range of diseases that
are “druggable” [5,6]. In contrast, mRNA has nearly limitless range, as this biological
software can be rapidly modified to encode any therapeutic protein or antigen of interest.
Furthermore, with advances in delivery methods, pharmacokinetic and pharmacodynamic
properties, enhanced efficacy and stability and reduced immunogenicity and production
costs [7,8], mRNA therapeutics have an almost limitless potential.

mRNA therapeutics offers several advantages over the contemporary small molecule,
protein or DNA-based therapies. For example, it is difficult to generate small molecules
that will allosterically enhance the activity of a deficient enzyme. It may also be difficult to
generate a properly folded and post-translationally modified recombinant protein for the
same deficit. By contrast, mRNA encoding the wild-type enzyme is easily generated, and
when delivered to the appropriate cell type, can replace the deficient enzyme. Compared to
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DNA delivered gene vectors, RNA is biologically active in both dividing and non-dividing
cells [9] and does not need to enter the cell nucleus to generate its therapeutic effect. Fur-
thermore, with standard mRNA, there is no risk of altering the host genome. Synthetic
in vitro-transcribed (IVT) mRNA is designed to mimic naturally occurring mRNA [10], i.e.,
a single-stranded open reading frame flanked by untranslated regions, a 5′ cap for transla-
tion, and a 3′ poly(A) tail for stability [11,12]. Modified nucleosides (e.g., 5-methylcytosine
and pseudouridine) are included to reduce the cellular toxicity associated with immuno-
genicity of exogenous mRNA [13]. Furthermore, the mRNA sequence can be modified
to include synonymous codons that are optimal for a specific cell type (reflecting tRNA
abundance), or a “translational ramp” (specific initial amino acid sequence that enhances
translation) [14,15].

An mRNA-based approach lends itself to a number of therapeutic modalities, in-
cluding (a) replacement therapy to compensate for a defective gene/protein, or to supply
therapeutic proteins [16]; (b) vaccination, where mRNA encoding specific antigen(s) is
administered to trigger protective immunity [16]; (c) cell therapy, which involves transfec-
tion of mRNA into the cells ex vivo to therapeutically enhance cell survival, proliferation
and/or function [17]; (d) generation of new monoclonal antibodies using mRNA [18];
(e) gene editing, where mRNA is used to express an enzyme that edits and corrects the
disease-causing defective gene [19].

Advances in mRNA design, production and delivery has sparked the exploration of
mRNA therapy in different fields, such as immunotherapy against cancer and infectious
diseases [20], production of growth factors, generation of engineered mesenchymal stem
cells (MSCs) and regenerative medicine. In this review, we will focus on the use of mRNA
for stem cell generation or enhancement, for the purpose of cardiovascular regeneration.

2. Employing mRNA to Generate iPSCs for Stem Cell Therapy

In 2006, Yamanaka and colleagues [21] demonstrated that terminally differentiated
adult somatic cells can be reprogrammed to generate induced pluripotent stem cells (iPSCs)
by ectopic expression of a specific set of transcription factors, Pou5f1, Sox2, Klf4 and c-Myc
(OSKM) using retroviral vectors. These iPSCs are highly similar to embryonic stem cells
(ESC) in terms of self-renewal and the ability to be differentiated to all three germ layers.
Thus, human iPSCs can be used as an alternative for human ESCs, thereby avoiding poten-
tial ethical issues. This seminal discovery was transformative for the field of regenerative
medicine. Patient-specific iPSCs generated from somatic cells can be differentiated to
understand the pathobiology of genetic diseases. Furthermore, differentiated derivatives
of iPSCs could serve as therapeutic cells. For example, iPSCs generated from a patient with
a genetic disease (such as cardiomyopathy due to muscular dystrophy) could undergo ex
vivo genome editing [22]. These iPSCs could be differentiated into therapeutic cells which
could be transplanted into the patient with minimum risk of genetic incompatibility or
immune rejection.

However, viral vectors (retroviral, lentiviral or adenoviral vectors) used to generate
iPSCs confer risk of genomic integration and limit the clinical application of such iPSCs [23].
Consequently, several integration-free approaches have been developed, including the
Sendai virus [24], cell permeant recombinant proteins [25], non-integrating plasmids or
episomal DNA [26,27]. Although these approaches presented minimal risk of genome
insertion, the efficiency of iPSC generation is very low. Subsequently, iPSCs were generated
using mRNAs encoding POU5F1, SOX2, LIN28A and NANOG [28], or mRNA encoding
the Yamanaka factors [29]. Characterization of the iPSCs [29,30] generated by both mRNA-
based methods showed higher identity of the global transcriptional signature with human
ESCs by comparison to retroviral-derived iPSCs. Single nucleotide polymorphism analysis
revealed that, in comparison to mRNA-derived iPSCs, those derived using the retroviral
vectors had more mutations.

These observations suggested that an mRNA-based method is a safer choice for clini-
cal applications than retrovirus-derived iPSCs. Although mRNA-based method generated
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transgene-free iPSCs with reasonable reprogramming efficiency (4%) [31], this protocol
required daily transfection for 2 weeks. Recent efforts have simplified and optimized the
mRNA-based reprogramming protocols [32,33]. However, once generated using mRNA
technology, such iPSCs can be differentiated into clinical grade cardiomyocytes [34] using
standard differentiation protocols. Furthermore, mRNA can be used to accelerate differen-
tiation of iPSCs to the desired derivative. For example, mRNA encoding ETV2 has been
used to generate iPSC-derived ECs with high (90%) efficiency [35].

3. Employing mRNA to Directly Generate or Enhance Therapeutic Cells

It is also possible to use mRNA to directly generate therapeutic cells and/or enhance
their proliferation, survival or functions. For example, mRNA encoding reprogramming
or differentiation factors can be transfected into somatic cells that are derived from easily
accessible somatic cells (e.g., skin fibroblasts) to directly generate cardiovascular cells ex
vivo. Theoretically, these cells could be administered back to the patient by direct injec-
tion, or incorporated into biocompatible scaffolds. For example, fibroblasts have been
transdifferentiated directly into cardiomyocytes in vitro and in vivo by overexpressing
master regulators of cardiomyocyte lineage (i.e., Gata4, Mef2c and Tbx5) using a retroviral
approach [36]. Similarly, we and others have used viral vectors overexpressing master
regulators of endothelial lineage (e.g., ETV2, FLI1, GATA2 and KLF4) to transdifferentiate
fibroblasts into induced endothelial cells [37]. Rather than viral vectors, mRNA encoding
master regulators of cardiovascular lineage may be used to achieve therapeutic transdif-
ferentiation in a non-integrating manner that raises fewer safety concerns. Indeed, using
mRNA to encode these endothelial transcription factors, we have successfully transdiffer-
entiated human fibroblasts to endothelial cells with high transcriptional and functional
fidelity to authentic human endothelial cells (Meng S and Cooke JP, unpublished data).

Although optimization of mRNA constructs and delivery vehicles are still necessary
to introduce such therapies into the clinical practice, they hold great promise as proof-of-
concept studies emerge. For instance, cardiac reprogramming of human mesenchymal
stromal cells with an mRNA differentiation cocktail has been demonstrated recently [38].
Similarly, overexpression of human vascular endothelial growth factor A (VEGFA) with
mRNA promotes endothelial specification of the human ISL1+ progenitors as well as their
engraftment, proliferation and survival in vivo [39].

Mesenchymal stromal cells (MSCs) are available from different sources, such as the
umbilical cord, bone marrow, liver, adipose tissue and multiple dental tissues [40]. These
cells have the ability of self-renewal, differentiate into different cell lineages, migrate into
the site of injury and secrete proteins which reduce inflammation and promote angiogenesis
and tissue repair. Clinical trials are underway to assess the benefits of autologous MSCs in
patients with ischemic syndromes or cardiomyopathy [41,42]. These trials are made more
difficult by the heterogeneity of the quality of the biological product. A strategy to increase
the therapeutic potency and homogeneity of the cell therapy would be through mRNA en-
hancement. Indeed, synthetic mRNA is being applied to engineer MSCs. Synthetic mRNA
has been used to modulate the migratory properties of MSCs by temporal expression of
homing proteins on the cell surface. In this way, mRNA-modified MSCs may be targeted
to treat vascular inflammation. Specifically in one case [43], MSCs were transfected with
three different synthetic mRNAs, SELPLG, SLeX and IL10, to enhance vascular targeting
and the anti-inflammatory effect of MSCs, which were then systemically administered
to the mice with LPS-induced vascular inflammation. SELPLG and SLeX are the ligands
for P- and E-/L-selectin, respectively, and IL10 acts as an immunosuppressive cytokine.
The tethering capacity to the site of vascular inflammation was significantly improved in
these mRNA-engineered MSCs. Furthermore, IL10 levels were temporally increased in the
inflamed region (the mouse ear) and were associated with superior local anti-inflammatory
effect. In a similar approach [44], the therapeutic outcome of targeted delivery of MSCs
triple-engineered with SELPLG/SLeX/IL10 mRNAs was evaluated in a murine model of
multiple sclerosis, a form of neurovascular inflammation. The engineered MSCs showed
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enhanced migration and adherence to inflamed brain microvascular endothelial cells and
homing to the inflamed spinal cord. Additionally, IL10 from these MSCs inhibited the
proliferation of CD4+ T lymphocytes. In a model of brain ischemia, treatment of MSCs
with mRNA encoding integrin a4 (ITGA4) facilitated their adhesion to endothelial VCAM1
and improved the migration of MSCs into the ischemic region of the brain [45].

The C-X-C motif receptor 4 (CXCR4) is a chemokine receptor that binds to stromal
derived factor-1 (CXCL12) expressed in inflammatory sites with high affinity. MSCs
engineered with mRNA CXCR4 showed improved cell migration toward CXCL12 in
transwell experiments, suggesting that transient initiation of chemotaxis can be triggered
by mRNA-mediated chemokine receptor overexpression [46,47]. Thus, improvement of
migration of MSCs by synthesized mRNA can enhance the capability for regeneration of
damaged tissue.

4. Inflammatory Signaling in Nuclear Reprogramming and Transdifferentiation

The induction of pluripotency, as well as the transdifferentiation of one somatic cell
to another, requires inflammatory signaling. For example, although the Yamanaka factors
OSKM provide transcriptional direction, we now know that the retroviral vector also acti-
vates inflammatory signaling to increase chromatin accessibility, thereby permitting the
Yamanaka factors to act on the promoter sequences of the network of genes required for
pluripotency [48]. Whether one uses a viral vector or mRNA to induce pluripotency, acti-
vation of cell-autonomous inflammatory signaling is required for nuclear reprogramming
to pluripotency.

The inflammatory signaling that is required for nuclear reprogramming is mediated
by pattern recognition receptors (PRRs) that sense pathogen associated molecular patterns
(PAMPs) or damage associated molecular patterns (DAMPs). Foreign mRNA activates toll-
like receptors (TLRs) 3 and 7. Stimulation of these TLRs triggers inflammatory signaling
pathways that activate NFkB, IRF-3 and IRF-7, which are known to induce genes encoding
inflammatory cytokines and chemokines. In addition, these signaling pathways cause
global changes in the expression of epigenetic modifiers that shift the balance between
chromatin activators and repressors. For example, inflammatory signaling upregulates
several members of the histone acetyltransferase (HAT) family, whereas those of the histone
deacetylases (HDACs) are downregulated [48].

In addition, this inflammatory signaling causes post-translational modifications of
epigenetic modifiers that support the probability of an open chromatin state. The expression
of inducible nitric oxide synthase (NOS2) is increased by NFKB, and it translocates to the
nucleus, binding to and S-nitrosylating RING1A of the polycomb repressive complex
1 (PRC1) [49]. This S-nitrosylation of PRC1 causes it to disengage from the chromatin,
removing this suppressive influence. Similarly, the NuRD complex is also S-nitrosylated
by this inflammatory signaling process, preventing its de-acetylation and suppression of
chromatin [50]. In addition to reactive nitrogen species, the transient generation of reactive
oxygen species also appears to be required for efficient nuclear reprogramming [51].

Finally, a metabolic switch from oxidative phosphorylation to a glycolytic state is criti-
cal for transdifferentiation. Exogenous mRNA triggers a glycolytic switch, associated with
citrate export from the mitochondria [52]. In the nucleus, there is an increase in citrate con-
version to acetylcoA, thereby supplying the substrate for histone acetylation. Antagonism
of this process abrogates the nuclear reprogramming required for a phenotypic switch.

Whereas most discussion of mRNA therapeutics emphasizes the need to reduce im-
munogenicity of the constructs, it is clear that some level of inflammatory signaling is
required for exogenous mRNA to exert its effect when a change in cellular phenotype is
desired. The effect of inflammatory signaling to facilitate an open chromatin configuration
is critical for transcriptional activators to access their consensus sequences. On the other
hand, excessive activation of inflammatory signaling may interfere with a desired pheno-
typic switch. Indeed, there appears to be a “Goldilocks zone” for optimal inflammatory
signaling during nuclear reprogramming to pluripotency [50].
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5. Employing mRNA to Reverse Cardiovascular Aging

One of the major determinants of cellular aging is telomere erosion. Telomeres of
somatic cells become shorter with each division due to the “end-replication problem”, a
process that is accelerated by oxidative stress. As cells approach their Hayflick limit, the
telomere length reaches a critical threshold, triggers a DNA damage response and activates
the TP53/CDKN1A pathway, with cell cycle arrest, senescence and degeneration [53–55].
Telomerase is a protein that reverses this process by extending telomeres. This protein
is present in pluripotent stem cells, and to some extent adult stem cells, explaining the
increased replicative capacity of these cells. Telomerase is generally not present in somatic
cells, but can be reactivated in rapidly proliferating immune cells.

Our interest in using mRNA encoding human telomerase (TERT) as a therapeutic for
vascular senescence arises from our work and others in the past 25 years demonstrating that
vascular senescence is associated with an endotheliopathy that promotes atherosclerotic
processes. For example, Chang and Harley measured telomere length from cadaveric
human iliac and mammary arteries, finding telomere length shortens with increasing
age [56]. Furthermore, at every age, telomeres were shorter in iliac arteries (which are more
prone to atherosclerosis). We have shown that senescent human ECs generate less nitric
oxide (NO), are more superoxide anion (O2

-), synthesize more adhesion molecules, are more
adhesive for monocytes and have reduced ability to proliferate and align with fluid shear
stress [57]. These attributes promote vascular inflammation and atherogenesis. By contrast,
when we overexpressed telomerase using a retroviral vector, telomere lengthening was
associated with a reversal of the age-related endotheliopathy, and restoration of endothelial
proliferative capacity and function.

However, retroviral integration of telomerase in human cells raises the concern of un-
regulated growth. Accordingly, we used mRNA TERT to transiently express the telomerase,
increase telomere length, enhance replicative capacity and reverse signs of senescence in
human somatic cells [58]. After each transfection, the telomerase activity persists for no
more than 72 h (by TRAP assay). Nevertheless, 1–3 treatments increase telomere length,
population doublings and reduces the expression of the senescence marker, β galactosidase
(β gal) in fibroblasts, endothelial cells and myoblasts, although the cells ultimately plateau
in growth (Figure 1, [58]).
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Novel Therapeutic for Age-Related Diseases

It was unexpected that transient transfection with TERT could have a long-term
cellular benefit. Based on this work, we have developed a new mRNA therapeutic (codon-
optimized, UTR-modified, HPLC-purified mRNA telomerase in lipid nanoparticles) to
treat the endotheliopathy associated with vascular senescence. Our therapeutic has greater
stability and less immunogenicity so as to increase transcription and reduce toxicity. Be-
cause endotheliopathy underlies many cardiovascular disorders, as well as other age-
related diseases such as vascular dementia, peripheral arterial disease, nephrosclerosis,
pulmonary fibrosis and impaired wound healing, correction of endotheliopathy due to
senescence would be anticipated to mitigate or reverse many diseases and disorders associ-
ated with aging.

As a model of accelerated aging, we have studied cells derived from children with
Hutchison Gilford Progeria Syndrome (HGPS). We have observed that transient transfec-
tion using mRNA TERT of cells derived from HGPS children can increase telomere length,
restore replicative capacity, reduce the expression of senescence markers and improve cel-
lular functions in fibroblasts as well as iPSC-derived endothelial cells and vascular smooth
muscle cells (Figure 2, [59]). Intriguingly, and not yet explained, mRNA TERT reduces
progerin levels and improves nuclear morphology. Furthermore, we find that mRNA
hTERT treatment of HGPS cells is superior to current therapy with the farnesyltransferase
inhibitor lonafarnib as assessed by senescence markers, proliferation index and nuclear
morphology [59,60].
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fibroblasts with human telomerase (TERT) or catalytically inactive (CI) TERT mRNA [59]. ** p < 0.01;
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One caveat for telomerase therapy is the possible risk for cancer. In about 85% of
cancers, human telomerase is reactivated. However, it is very unlikely that transient expres-
sion of human telomerase using mRNA will increase the risk of cancer. We have abundant
data that show that, after transient transfection with TERT mRNA, telomerase activity
persists for less than 72 h [58]. Furthermore, although cells have improved replicative
capacity, the growth curve of TERT treated cells has a normal pattern, i.e., there is a nor-
mal log phase of growth reaching a plateau, i.e., the treated cells are not immortalized.
In fact, the treatment may reduce cancer risk: aged cells with short telomeres are more
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likely to undergo a “crisis”, which causes a DNA injury response, chromosome fusion
and telomerase reactivation, leading to cancer [61–63]. This aberration might be prevented
by telomere extension. Notably, our preliminary work suggests that mRNA telomerase
treatment reverses the markers of DNA injury in HGPS, which would be expected to reduce
the risk for oncogenesis.

6. Employing mRNA for Cardiovascular Regeneration

In addition to modifying therapeutic cells ex vivo, mRNA may be delivered directly
into a tissue to have a therapeutic effect. This was first demonstrated in 1992, when
Jirikowski and co-workers [10] injected synthetic mRNA encoding antidiuretic hormone
(vasopressin) into hypothalamus of rats with a genetic deficiency of vasopressin. These ani-
mals have diabetes insipidus, which is characterized by difficulty concentrating urine, and
the excretion of large volumes of diluted urine. Intrahypothalamic injection of vasopressin
mRNA in these animals induced the synthesis of vasopressin protein and transiently re-
versed the disease. Since then, the feasibility of using mRNA to replace defective or missing
proteins for therapeutic purposes was demonstrated in multiple studies and a variety of
tissues [64–68]. Although the majority of the mRNA-based therapies are still in pre-clinical
development, a growing number of candidates is reaching first-in-man trials [69–71].

The feasibility of direct intramyocardial injection was first reported in 2013 by
Zangi et al. [72]. In this foundational work, VEGFA mRNA was injected into the ischemic
region of murine myocardium at the time of coronary artery ligation. The local increase
in VEGFA induced the expansion and directed differentiation of endogenous heart pro-
genitors. Furthermore, this intervention markedly improved heart function and enhanced
long-term survival of mice with experimental myocardial infarction (MI). Notably, VEGFA
encoding plasmid DNA, unlike mRNA, significantly reduced survival of animals with MI
in this study. The unexpected finding might be explained by the temporal differences in
expression of VEGFA because prolonged exposure to VEGFA expressed from the plasmid
DNA was associated with abnormal vascular permeability and myocardial edema.

The efficacy of VEGFA mRNA for heart regeneration after MI was subsequently
confirmed in a large animal model by Carlsson at al [73]. In this study, MI was induced
by a permanent ligation of the mid-left anterior descending coronary artery of mini pigs,
and, 7 days after the initial surgery, naked mRNA was injected into the infarct and peri-
infarct areas. Two months after injection, significant improvements were observed in left
ventricular ejection fraction, contractility and myocardial compliance. Moreover, increased
vessel density in the peri-infarct area and decreased myocardial fibrosis were noted in the
hearts treated with VEGFA mRNA. Notably, the toxicity of the mRNA was also assessed in
this study, and neither intradermal nor intravenous administration of the construct into
both rats and cynomolgus monkeys increased serum levels of pro-inflammatory cytokines
24 h after injection.

These encouraging data led to the initiation of the first clinical trial of an mRNA
therapeutic for cardiac regeneration, which was conducted by AstraZeneca (AZD8601) in
collaboration with Moderna [74]. The EPICCURE study (NCT03370887) is a randomized,
placebo-controlled, double-blind, multicenter, phase 2a clinical trial of the safety and
efficacy of epicardial injections of VEGFA mRNA. The inclusion criteria specify patients
with stable coronary artery disease and moderately decreased left ventricular ejection
fraction who are undergoing coronary artery bypass grafting surgery [75]. The study is
currently enrolling and is estimated to be completed in early 2023 [76]. Enrolled participants
are to receive a placebo or either a low or high dose of AZD8601 (8 patients in each group)
as 30 epicardial injections in a 10-min extension of cardioplegia. Injections will be targeted
to ischemic but viable myocardial regions, which will be identified with positron emission
tomography imaging. Improvement in myocardial blood flow will be an exploratory
efficacy outcome, together with echocardiographic, clinical, functional and biomarker
measures. The initiation of EPICCURE was preceded by a randomized, double-blind,
placebo-controlled, phase 1 study in men with type 2 diabetes mellitus, where AZD8601
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was given intradermally as a single ascending dose into the forearm skin with safety
follow-up for 6 months [77]. The only causally treatment-related adverse event observed
in the trial was an injection-site reaction of mild intensity, while local skin blood flow was
significantly increased within 7 days after mRNA injection and correlated with amount of
VEGFA protein concentration in cutaneous dialysate collected at the area. Similar findings
were reported in the pre-clinical studies, where VEGF-A mRNA also facilitated healing of
diabetic wounds [78,79].

Although VEGFA is currently the most advanced mRNA therapeutic candidate for
cardiovascular regeneration, promising pre-clinical results have been reported for some
other constructs targeting distinct molecular pathways. For instance, Chen at al. demon-
strated that transcriptional co-activator yes-associated protein (YYIAP1) mRNA improved
myocardial outcome after ischemia-reperfusion (IR) injury in mice [80]. YYIAP1 mRNA
significantly reduced the innate immune inflammatory response and cardiomyocyte sur-
vival in the injured myocardium, and 4 weeks later, heart function was improved and
hypertrophic remodeling was suppressed.

Intramyocardial injection of synthetic mRNA encoding insulin-like growth factor-1
(Igf1) reduced apoptosis of cardiomyocytes after experimental MI in C57B1/6 mice [81].
The treatment augmented Akt1 phosphorylation and decreased Casp9 activity and TUNEL
positive cells within the border zone 24 h post-MI. Notably, RNA uptake by the heart
slice specimens cultured ex vivo was augmented in the presence of hypoxia compared to
normoxic conditions. This may in part relate to cell membrane-enhanced polymer/RNA
uptake following hypoxia.

The feasibility and benefits of manipulating IGF-1 signaling pathway with mRNA
were also demonstrated by Zangi et al. [82]. However, their work revealed that whereas
stimulation of Igf1 receptor may enhance survival of cardiomyocytes and cardiac progeni-
tors, it may also promote formation of epicardial adipose tissue in the injured heart. When
mRNA encoding dominant-negative mutants of the Igf1 receptor and insulin receptor
substrate 1 (Irs1) were applied to the heart surface of adult mice as a gel to inhibit Igf1
signaling in epicardial cells, it reduced the expression of adipogenic markers as well as the
fraction of hearts with epicardial adipose tissue 28 days after MI.

Follistatin-like 1 (FSTL1) is increased in the ischemic myocardium. A modified form
of FSTL1 mRNA (with replacement of asparagine with glutamine in the N-glycosylation
site at position 180) was sufficient and necessary to activate cardiomyocyte proliferation
and limit cardiac remodeling post-MI, following a single injection of mRNA into the infarct
border zone immediately after LAD ligation in mice [83].

Increased ceramide levels in mammalian heart during acute MI are associated with
higher rates of myocyte death and impaired cardiac function [84–86]. Accordingly, mRNA
encoding the enzyme acid ceramidase (Asah1) has been directly injected into the murine
myocardium following MI induction. Such treatment was also associated with improved
cardiac function, smaller scar size 28 days post-MI and longer survival [87].

Pyruvate kinase muscle isoenzyme 2 (PKM) is an isoenzyme of the glycolytic enzyme
pyruvate kinase that is expressed in cardiomyocytes during development and immediately
after birth, but not during adulthood [88]. Magadum et al. have recently discovered
that PKM regulates the cardiomyocyte cell cycle and reduces oxidative stress damage
through anabolic pathways and β-catenin [88]. In addition, these authors demonstrated
that cardiomyocyte-specific PKM mRNA promoted cardiomyocyte cell division, enhanced
cardiac function and improved long-term animal survival. To achieve specificity, kink-turn
motif, a specific binding site for L7Ae protein [89,90], was added to 5′UTR of PKM mRNA.
Subsequently, the modified PKM mRNA was co-delivered with mRNA encoding L7Ae
which included cardiomyocyte-specific microRNA recognition elements (miR1-1 and miR-
208a) within 3′UTR [91,92]. Because of these elements, translation of L7Ae was blocked
specifically in cardiomyocytes, thereby allowing PKM expression (otherwise, L7Ae would
interact with kink-turn motif on PKM mRNA and suppress its translation).
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7. Future Perspectives

With improvements in mRNA constructs to improve their stability, enhance transla-
tion and promote delivery to the target tissue, the field of RNA Therapeutics is growing
exponentially and advancing to clinical applications [93,94]. The recent success of mRNA
vaccines against SARS-CoV-2 [3,4] has attracted great interest which will further accel-
erate the growth of this exciting frontier in medicine. RNA Therapeutics is a disruptive
technology, as small biotech startups, as well as academic groups, can rapidly develop
new and personalized constructs. Our group has long-standing expertise in designing
and manufacturing RNA therapeutics for the scientific community and the demand for
our services has increased substantially within the last five years. During these years,
we learned that many small biotech companies and academic groups, who have inno-
vative ideas for promising RNA therapeutics, lack key competencies to reach the clinic,
such as manufacturing capabilities, delivery technologies or regulatory expertise. Our
hospital-based RNA Therapeutics program operates in an environment tailored to acceler-
ate novel therapeutics from conception to the clinic. Our fully integrated hospital-based
RNA therapeutic program offers a single-entry point with consultation to ensure a seamless
development and translation of RNA-based drugs into the clinic. The RNA core team
helps investigators and small companies to develop new constructs and manufactures
high quality research or clinical grade RNA. The RNA core is complemented by RNA
biologists and bioinformaticians who provide fundamental expertise in RNA design. We
are integrated with the Department of Nanomedicine, whose faculty have great expertise in
the generation of novel nanoparticles for delivery of mRNA. Our facilities for clinical grade
production of mRNA are overseen by an expert in cGMP manufacturing, who leads a team
of cGMP-trained specialists and operators. Our GLP pre-clinical studies are led by our
director of comparative medicine, who has extensive experience in designing and executing
GLP preclinical studies. We have regulatory experts that provide assistance in planning
regulatory roadmaps. For RNA therapeutics being introduced into the clinic, there is a
seamless path from our first-in-man clinical trials unit to clinical trials in the nationally
ranked Houston Methodist Hospital system. Our proprietary manufacturing processes
have been licensed to a Contract Manufacturing Organization in the Houston area. This
industry partner is capable of generating large batches of nucleic acid-based drugs for
larger clinical trials and commercialization, thereby completing our assembly line to ensure
a seamless transition from pre-clinical development and first-in-man studies to late-stage
clinical trials and commercialization. To our knowledge, we are the only academic group
with such an infrastructure, and we are excited to be working with small companies and
academic research teams to facilitate the development of novel RNA therapeutics for
cardiovascular regeneration and other applications.
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