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Simple Summary: Acute diarrhea (colitis) is a major problem in adult horses and the role of the
intestinal bacteria (microbiota) is still poorly understood in this species. The aim of this study was to
compare the mucosal and luminal content microbiota of the cecum and colon of healthy and diarrheic
horses. We concluded that microbial dysbiosis (changes in the normal microbiota composition) occurs
in horses with colitis at different levels of the intestinal tract and microbiota composition is different
between the mucosa and luminal content of diarrheic horses. Changes in species associated with
dysbiosis could be used in the future for disease diagnosis, prognosis and treatment of equine colitis.

Abstract: The aim of this study was to compare the mucosal and luminal content microbiota of the
cecum and colon of healthy and diarrheic horses. Marked differences in the richness and in the
community composition between the mucosal and luminal microbiota of the cecum and large colon
of horses with colitis were observed. Microbial dysbiosis occurs in horses with colitis at different
levels of the intestinal tract, and microbiota composition is different between the mucosa and luminal
content of diarrheic horses. The changes in some key taxa associated with dysbiosis in the equine
intestinal microbiota, such as Escherichia, Fusobacterium and Lactobacillus, deserve further inquiry in
order to determine their utility for disease diagnosis and treatment.
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1. Introduction

In adult horses, the acute inflammatory process of the cecum and colon, referred to as acute
colitis or typhlocolitis, can result in profuse watery diarrhea, which is the hallmark clinical sign of
the disease [1,2]. Horses with acute diarrhea are commonly referred to equine hospitals because
they require intensive treatment [1,3,4]. Some infectious agents known to cause diarrhea include
Salmonella enterica, Clostridium difficile, Clostridium perfringens, Lawsonia intracellularis (weanlings),
Neorickettsia risticii (Potomac horse fever), coronavirus and small strongyles [1,3]. Diarrhea can also
result from non-infectious causes, such as antibiotic associated diarrhea, sand impaction and toxicities
(phenylbutazone or flunixin meglumine) [1,3]. However, despite extensive microbiological and
epidemiological investigative efforts to determine the cause of diarrhea in horses, a causal agent cannot
be established in an astonishingly large proportion (>60%) of these cases [5].

The advent of next-generation sequencing (NGS) platforms has allowed for the characterization
of microbial communities from complex environments, such as the equine hind intestinal tract [6,7].
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Marked perturbation of the intestinal microbiota, particularly with respect to microbial diversity,
has been documented in conditions such as inflammatory bowel disease, Crohn’s disease and colitis in
humans and in horses with undifferentiated colitis [7–9]. These observations suggest that in some cases
of gastro-intestinal disorders, including horses, dysbiosis could play a role in the development of disease.
A few studies using NGS showed decreased diversity and significant changes in fecal microbiota
composition of diarrheic horses [7,10,11]. Differences in microbial composition between cecal and large
colon contents have also been reported in healthy horses [12,13]. Similarly, a marked difference between
mucosal and luminal microbiota of healthy humans and patients with gastrointestinal disorders had
been observed [14,15]. These differences are driven by the presence of a mucus layer, an oxygen tension
gradient and a close interaction with the immune system [16].

The luminal and mucosal microbial communities appear therefore to play distinct roles in the
health and/or disease of the host gut [17–19]. A vast number of studies investigating the role of
the intestinal microbiota of human patients suffering from diarrhea have been published [20,21].
However, although the luminal and mucosal microbiota composition of various compartments of
the gastrointestinal tract of healthy horses have been reported, the microbial composition of those
environments of horses with colitis is unknown [13]. The aim of this study was to compare the mucosal
and luminal content microbiota in the cecum and colon of healthy and diarrheic horses.

2. Material and Methods

2.1. Animals

Healthy Horses

Three healthy adult horses euthanized for reasons unrelated to gastrointestinal diseases (2 had
chronic arthritis and one had cervical stenosis) were used for the collection of intestinal contents and
mucosal tissues. Horses were all kept on pasture without receiving any supplements, antimicrobials or
anthelmintics during the 6 weeks before sampling. All horses were euthanized with a pentobarbital
overdose within 24 h after arrival at the research facility. Cecal and colonic contents and mucosal tissue
were collected immediately after euthanasia.

2.2. Colitis Cases

Cecal and colonic content and mucosal tissue from 7 horses (Table 1) presented to the Large
Animal Hospital of the Ontario Veterinary College, University of Guelph, for diagnostic and treatment
of acute diarrhea (1 to 3 days duration) were collected during post-mortem examination immediately
after euthanasia. The breed of the horses was as follows: Thoroughbred (n = 3), Warmblood (n = 1),
Quarter Horse (n = 1), Standardbred (n = 1) and mixed-breed (n = 1). The age ranged between 1 and
21 years.

2.3. Samples Collection

For mucosal microbiota investigation, approximately 2 × 2 cm full-thickness intestinal wall
samples were excised during post-mortem examination from the cecum (mid-body) and left ventral
colon (LVC). Intestinal contents were obtained from the same sampled locations, and all samples were
collected in fecal containers and placed on ice within 60 min of euthanasia. Samples were stored at
−80 ◦C until DNA extraction was performed. Histological examination of cecum and colon segments
was undertaken in all healthy horses and colitis cases.
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Table 1. Signalment, histopathological diagnosis and antimicrobials administered to colitis cases.

Bred Age (Years) Sex Body Weight (Kg) Histophatological Diagnosis Antibiotics
Administered

QH 4 MC 345 Fibrinonecrotic typhlocolitis TMS, Pen, Gen
TB 4 Male 538 Segmental ulcerative colitis Yes, unknown
TB 19 MC 528 Fibrinonecrotic typhlocolitis TMS

STB 4 MC 536 Colonic edema Pen, Gen

Belgian 21 F 702 Transmural necrosis cecum
and colon Pen, Gen, Metro

TB 1 F 380 L. intracellularis enteritis and
necrotizing colitis Oxytetetracycline

MB 6 F N/A Necrotizing and hemorrhagic
ulcerative colitis

TMS, Metro,
Gen, pen

QH: Quarter horse, TB: Thoroughbred, STB: Standardbred, MB: mixed-breed. MC: male castrated, F: female.
TMS: Trimethoprim-Sulfametoxazol; M: Metronidazole; Gen: Gentomacin, Pen: Penicillin.

2.4. DNA Extraction and Sequencing of the V3-V4 Region of the 16S rRNA Gene

The mucosal samples were rinsed with sterile saline only once or twice to remove visible ingesta.
This step was performed with care, in order to prevent any disruption of the mucus layer. DNA was
extracted from mucosal tissues and intestinal content samples using the QIAamp DNA stool mini kit
for pathogen detection (Qiagen, Montreal, QC, Canada) as per manufacturer’s instructions.

The DNA was diluted to a final concentration of 20 ng/µL for PCR. The 16S rRNA genes were
amplified targeting the V3-V4 region [22]. The V3-V4 region of the 16S rRNA gene was amplified in
a PCR reaction mixture containing 25 µL of Kapa 2G Fast Hot Start Ready Mix 2×, 1.3 µL of MgCl2
(50 mM) (Invitrogen, Burlington, ON, Canada), 1.0 µL of BSA (2 mg/mL) (Bio-Rad, Mississauga, ON,
Canada), 16.7 µL of nuclease-free water, 2 µL of DNA and 2 µL of forward (S-D-Bact-00564-a-S-15
5′-AYTGGGYDTAAAGNG-3′) and reverse (S-D-Bact-0785-b-A-18 5′-TACNVGGGTATCTAATCC-3′)
primers (10 pMol/µL).

PCR products were then purified with magnetic beads and DNA quantification was measured by
spectrophotometry using the NanoDrop® (Roche, Mississauga, ON, Canada). The library was pooled
and sequencing was at the University of Guelph’s Advanced Analysis Centre, using an Illumina MiSeq
platform using a V3 kit (2 × 300 cycles).

2.5. Sequence Processing and Data Analysis

Bioinformatic analysis was carried using the software Mothur v.1.39.5 [23], using a previously
published protocol [24]. Good quality sequences were aligned against the SILVA database, using the
Ribosomal Data Project classifier [25]. Reads were clustered at the genus level (97% similarity).
Alpha diversity, which refers to the number of species (richness) and how they are distributed (evenness)
within each sample was calculated based on the number of genera, Chao index (which estimates the
true number of genera), Simpson and Shannon indices (which are diversity indices). Alpha diversity
indices were graphically represented as strip charts generated with R!. Beta diversity (comparison of
community similarity) was calculated using the Jaccard index to compare communities’ composition
(unweighted, considering each genus present in those communities) and the Yue and Clayton index to
compare communities’ structure (weighted, considering each genus and their abundances).

Analysis of molecular variance (AMOVA) was used to test significant differences between sites
(i.e., colon vs. cecum or content vs. mucosa) and status (i.e., colitis vs. healthy). Statistical differences
in the relative abundances between sampling sites and disease status were investigated using the
linear discriminant analysis effect size (LEfSe) [26], which applies the Kruskal–Wallis sum-rank
non-parametric test to detect differences between groups, then applying an unpaired Wilcoxon
rank-sum test. The Linear Discriminant Analysis (LDA) can be set by the user to estimate the desired
effect size; normally, an LDA greater than 2 is considered “biologically meaningful” or significant.
In theory, the greater the LDA value, the more important that taxa would be in the analysis.
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3. Results

3.1. Analysis of 16S rRNA Gene Sequencing

A total of 4,534,690 good quality reads were retained for final analysis after all bioinformatics
filters were applied. Based on the sample with the lowest number of reads, a subsample of 29,373 reads
was used to decrease non-uniform sample size bias during alpha diversity analysis. Average coverage
after subsampling was 99.91% (SD: 0.03%), indicating that the analysis was able to detect most genera
present in those samples.

3.2. Alpha Diversity

There were no differences in any of the alpha diversity indices, comparing all samples from
healthy versus diarrheic animals. Considering only cases of colitis, intestinal mucosa had significantly
greater richness than intestinal content, based on the number of observed genera (p = 0.001, Figure 1)
and on the Chao index estimator of richness (p = 0.002), but not in diversity, based on the Simpson
(p = 0.915) and Shannon (p = 0.813) indices (Supplementary Figure S1). Noteworthily, it is evident
from Figure 1 that there was much higher variability in richness (number of observed genera) among
colitis samples.
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Figure 1. Richness indicated by the number of observed genera found in the mucosal (blue) and
luminal content (red) microbiota of healthy horses and horses with colitis, demonstrating statistically
higher richness in lumen compared to mucosa of diarrheic horses. * Statistical significant different
between groups.

3.3. Beta Diversity

The results of statistical comparison of beta diversity analysis comparing community composition,
which takes into account the different genera present in each sample, are presented in Table 2.
As expected, the healthy horses had different bacterial compositions, compared to horses with diarrhea
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in both luminal content and mucosa of the cecum and colon. The comparison of community composition
between mucosal and luminal content revealed differences in both the cecum and colon of colitis
cases, but not in cecum and colonic microbiota of healthy animals. Those differences in community
composition (addressed by the Jaccard index) are clearly visualized in the principal coordinate analysis
(PCoA) plots from samples collected from the cecum (Figure 2A) and colon (Figure 2B).

Table 2. p values, degrees of freedom (df) and mean of the sum of squares (SM) obtained from the
analysis of molecular variance (AMOVA) test, comparing bacterial composition present in the intestinal
content and mucosa of the cecum and colon of horses with diarrhea and healthy controls.

p-Value df and (MS) p-Value df and (MS)

Cecum Colon

Colitis—Healthy
(content) 0.003 16 (0.272, 0.151) 0.008 17 (0.248, 0.149)

Colitis—Healthy
(mucosa) 0.010 8 (0.301, 0.109) 0.002 9 (0.290, 0.136)

Content—Mucosa
(Colitis) 0.003 19 (0.246, 0.151) 0.034 21 (0.242, 0.155)

Content—Mucosa
(Healthy) 0.108 5 (0.137, 0.079) 0.143 5 (0.124, 0.094)

Healthy Colitis

Cecum—Colon
(Content) 0.673 5 (0.070, 0.084) 0.981 28 (0.097, 0.160)

Cecum—Colon
(Mucosa) 0.615 5 (0.089, 0.089) 0.988 12 (0.084, 0.136)

Bold values represent p < 0.05.

The comparison of community composition between cecal and colonic luminal content
and cecal and colonic mucosa revealed no differences in healthy or in colitis cases (Table 2).
Furthermore, there were no statistical differences in the community structure (assessed using the Yue
and Clayton index) in any of the comparisons (all p > 0.05).

3.4. Relative Abundance and LefSe Analysis

The relative abundances of the bacterial genera, representing more than 1% of total reads found in
the cecum and colon of healthy and diarrheic horses, are presented in Figure 3.

LefSe analysis, which searches associations between each genus and the studied groups, revealed
no enriched genera differentiating luminal and mucosal microbiota in either the cecum or the colon
of healthy or diarrheic horses. In addition, no enriched taxon was detected when comparing the
microbiota between the cecum and colon of healthy horses. Conversely, when comparing healthy
versus diarrheic horses, regardless of the intestinal compartment (colon or cecum) or the sampling
site (luminal or mucosal), there were 27 taxa associated with healthy horses (LDA > 3) and 24 taxa
associated with horses with colitis (Supplementary Figure S2). Figure 4 represents the main taxa (LDA
scores > 4) significantly associated with each group. Lactobacillus spp. were strongly associated with
colitis, as well as Escherichia and Fusobacterium spp., which were most commonly found in two different
subsets of colitis samples (Supplementary Figure S3).
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Figure 2. Principal coordinate analysis (PCoA) illustrating similarities in community composition of
bacteria present in the lumen and content of the cecum (A) and colon (B) of healthy (CON) horses and
horses with colitis (COL).

All the sites sampled from healthy horses were determined to be histologically normal. In all
horses with colitis, the histopathologic examination revealed marked inflammation of the cecum
and colon. The intestinal contents taken from all horses with colitis tested negative for the
following enteropathogens: Salmonella enterica, Clostridium perfringens, Clostridioides difficile and
Neorickettsia risticii.
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4. Discussion

4.1. Comparison between Mucosal and Luminal Content

This study demonstrated marked differences in the richness (number of different species) and
in the community composition between the mucosal and luminal microbiota of the cecum and large
colon of horses with colitis. This is particularly important considering the recent findings of important
crosstalk between the intestinal microbiota and the host through the production of neurotransmitters,
direct neural stimulation of the enteric nervous system and through interaction with the local immune
system [27–29]. Differences between mucosal and intestinal content microbiota have been previously
reported in healthy horses [13], suggesting that, like in other species, many factors can dictate which
type of bacteria can attach to and colonize the mucosa. In general, data from human studies suggest
that higher diversity is expected to be found in intestinal content, compared to mucosal samples [14,30].
The present study found no differences in alpha and beta diversity between mucosal and luminal
microbiota in the cecum and large colon of heathy horses. These findings were unexpected; however, it is
possible that the small number of biological replicas prevented the detection of those differences.

The differences in community composition (which considers which species are shared between
samples), but not in community structure (which considers also at what proportion each species is
present) between content and mucosal microbiota of diarrheic horses means that they were similar
overall, but it differed when the rare (or low abundant) bacteria were included in the analysis.
This explains why the relative abundance plots (Figure 3) are similar between the both niches, since it
represents only the main taxa present in those communities (>1% abundance). It is important to
highlight that those lower abundant organisms are not necessarily less important, since they are often
a source of metabolites to sustain the abundant bacteria [31].

4.2. Comparison between Cecum and Large Colon

Differences in the microbiota between the cecum and large colon were not observed, although they
were expected. This could be explained by changes associated with the disease process, such as
increased peristalsis, generalized inflammation and impaired digestion and absorption, which together
could alter the normal physiology of the equine hindgut and make those two distinguished
compartments more similar. Each compartment of the intestinal tract has its characteristic resident
microbiota, including marked differences between the cecal and large colon in healthy horses [7,13].
Furthermore, significant differences in total and individual concentrations of volatile fatty acids (VFAs)
produced in the cecum and colon have been found, which is a direct reflection of the microbial
communities in each compartment [32].

Noteworthy, the characterization of confined microbiota changes is important because assessment
of fecal samples may not accurately reflect the changes in other compartments. In healthy horses
at least, the fecal microbiota has been shown to adequately represent bacteria from the distal gut
(large and small colon and rectum) [7,13,32], but this remains to be determined in diarrheic horses.
Horses with colic had significantly different microbiota in samples collected from the large colon
during enterotomy, compared to fecal samples collected on hospital admission [33].

4.3. Comparison between Healthy and Colitis Cases

Among several other taxa, Escherichia spp. (and unclassified Enterobacteriaceae) and Fusobacterium
spp. were strongly associated with samples from diarrheic horses. This enrichment was expected,
as Proteobacteria have been commonly associated with dysbiosis and inflammation of the
gastrointestinal tract in various species [34–37]. Dysregulated innate immune responses can elicit the
blooming of Proteobacteria, which promotes gut inflammation and further promotes inflammation
or pathogen invasion [38,39]. Additionally, increased fusobacteria in the microbiota of diarrheic
horses been reported [12,40], and the role of these taxa deserves to be investigated in equine colitis
cases. Interestingly, there was also an increased abundance of Lactobacillus within diarrheic horses,
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which is normally associated with health and is even used as a probiotic. Higher abundances of this
genus in horses with colitis have been reported, although statistical significance was not achieved
in that study [23]. Noteworthy, the descriptive nature of this study does not allow inference of
causation and the association of E. coli and lactobacilli in cases of colitis does not necessarily mean
those were causing diarrhea, but rather, may be a consequence of favorable conditions such as the
depletion of other commensals, acidification of the environment and acute inflammation. This study
reinforces previous findings that some bacteria normally associated with health, such as members
of the Lachnospiraceae family and Fibrobacter spp. could be candidates considered for restoring the
equine microbiota (probiotics).

Limitations of this study include the small number of horses enrolled, which comprised a
heterogeneous population with wide variation in age (between 1 and 21 years old) and breeds.
Nevertheless, it has been shown that the microbiota of nine-month-old horses is very similar to
adults [8] and that breed might not be a great factor of variability in the equine microbiota [9].
In addition, the treatment with antimicrobial drugs received by horses with colitis prior to sample
collection likely induced changes in the microbiota [10]. Nevertheless, the major findings reporting
differences in alpha diversity between mucosal and luminal content were found only within diarrheic
horses, and therefore it should be included as a variable, because all horses were treated with those
drugs. It is possible that antimicrobials could achieve higher concentrations closer to the mucosa,
but this would likely result in decreased richness, rather than greater richness compared to intestinal
content, as was observed in this study. In terms of diet, horses with colitis are fed only hay while in
hospital; however, details of their diets prior to admission were unknown.

5. Conclusions

Microbial dysbiosis occurs in horses with colitis at different levels of the intestinal tract and
microbiota composition is different between the mucosa and luminal content of diarrheic horses.
Shifts to key taxa associated with dysbiosis in the equine intestinal microbiota, such as Escherichia,
Fusobacterium and Lactobacillus, deserve further inquiry in order to determine their utility for disease
diagnosis and treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/10/8/1403/s1,
Figure S1: Alpha diversity indices (A) Chao, (B) Simpson and (C) Shannon, found in the mucosal (blue) and
luminal content (red) microbiota of healthy horses and horses with colitis. Figure S2: Bacterial taxa statistically
associated (LDA > 3) with samples originating from healthy horses (green) and horses with colitis (red). Figure S3:
Relative abundances of Escherichia/Shigella (A), Fusobacterium spp. (B) and Lactobacillus spp. (C) found in intestinal
samples of horses with colitis and healthy horses.
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