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Valence band behaviour of 
zirconium oxide, Photoelectron and 
Auger spectroscopy study
Zakaria Azdad, Laurent Marot   , Lucas Moser   , Roland Steiner & Ernst Meyer

In this study X-ray Photoelectron Spectroscopy and Ultraviolet Photoelectron Spectroscopy were 
combined to investigate the effect of oxygen incorporation on the valence band behaviour of ZrOx. The 
Auger transitions involving valence bands are found to mimic the self-folded density of state measured 
using Ultraviolet Photoelectron Spectroscopy. The valence band once constructed in a sub-oxide form, 
stays at a fixed energy position despite the change in the stoichiometry. This behaviour is found to be 
useful in setting a reference for X-ray Photoelectron Spectroscopy charge correction. The results of 
the charged corrected spectra were compared to other methods and found to be in great agreement. 
Finally, a correlation between the core-level binding energy and the structural property of ZrOx is given.

Zirconium dioxide (ZrO2) has been studied extensively due to its physical and chemical properties, whether 
in high temperature fuel cells1–3, gas sensors4–6, protective coating for metal anti-corrosion7–9, or insulator on 
metal-oxide semiconductor devices10–12. ZrO2 still attracts attention of other fields, thus the understanding of its 
electronic behaviour is crucial for the development of various technology sectors. Using photo-electron spectros-
copy techniques to study the properties of such an insulator is a challenging task. Indeed, the build-up of static 
charges at the surface for thicknesses above 5 nm can randomly shift the measured spectra13,14 depending on the 
thickness, micro-structure of the film and exposure time to X-ray photoelectron spectroscopy (XPS) excitation. 
As an example, we mention that the reported band gap value of ZrO2 varied from 3.8 to 5.8 eV for the monoclinic 
phase depending on the measurement techniques15–18. This large range between reported values has been puz-
zling both experimentalists and theoreticians and no clear explanation has been given up-to date19.

Although previous studies already addressed surface oxidation of metallic Zr under various oxygen atmos-
phere using photo-electron spectroscopy techniques20–23, they did not provide a full interpretation of the valence 
behaviour of ZrOx films. In the current investigation, the oxidation state of the films as well as their thicknesses 
have been controlled directly by reactive magnetron sputtering. This method allowed us to avoid the charging 
effect and to eliminate the contribution of the substrate to the measured signal. The study of Auger, core-level 
and valence spectra using XPS and Ultraviolet Photoelectron Spectroscopy (UPS) of the ZrOx films showed that 
the variation of the oxidation state do not influence the position of the O2p bands but rather the band edge of 
the upper valence band. Auger transitions involving valence bands could therefore be used as a reference for 
charge correction of the XPS spectra and give a better understanding of the evolution of the valence bands upon 
oxidation. Based on Auger transition corrections, an attempt to correlate the obtained results with the structural 
properties of ZrOx will be presented.

Results and Discussion
In order to investigate the valence band behaviour and the Auger transitions of ZrOx as a function of oxygen 
incorporation, several thin film samples were prepared with magnetron sputtering under different argon/oxygen 
atmosphere that led to various O

Zr
 ratios (calculated from XPS measurements). In a first stage, bulky films 

(≥40 nm) were prepared and analysed by in situ XPS and UPS measurements (without breaking the vacuum). A 
Zr film was first deposited in a pure argon atmosphere and the core-level spectra (Zr3d and O1s) of this metallic 
film = .( )0 07O

Zr
 are presented in Fig. 1 along with other O

Zr
 ratios. As can be seen, the measured core-level spec-

trum of Zr3d was deconvoluted into two doublets as described by Morant et al.24 which correspond to Zr in 
metallic state (Zr0) at 178.7 eV and to a sub-oxide (Zr1+) located at 179.8 eV binding energy (BE). For the metallic 
component, due to the continuous distribution of states across the Fermi level (EF), the asymmetric tail at high 
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energy should be taken into account when fitting the XPS spectrum. In our case, an asymmetry factor was fixed 
at 0.1, slightly lower than the value reported by Ma et al.25 and Lyapin et al.26 (0.13 and 0.18, respectively). 
Figure 1b displays the as-measured intensity of O1s core-level. The weak photo-emission intensity confirms the 
metallic feature of the deposited film which is only composed of 7 at.% oxygen. Nevertheless for an accurate fitting 
of the measured spectrum, both absorbed oxygen and oxide component were considered, with BE determined at 
531.7 and 530.4 eV respectively (see Fig. 1b).

The Auger spectrum of the metallic film 





= .( )0 07O
Zr

 is presented in red in Fig. 2a along with other O
Zr

 ratios. 
As can be seen, the spectrum is composed of four main transitions: M45(M)N1(M)N23(M), M45(M)N23(M)N23(M), 
M45(M)N1(M)V(M) and M45(M)N23(M)V(M) where the M in brackets stands for metallic, and located in the 
energy range of the reported values from literature27–29. In addition to these main transitions, a weak peak is 
observed at 161.7 eV and its origin is not determined (same peak has been observed by Tunable et al.30). The UPS 
spectrum of the same metallic film (red curve, Fig. 1b) exhibits an O2p and Zr4d band of equivalent intensity due 
to the high photo-ionization cross section of oxygen31.

Figure 1.  (a) Core level Zr3d spectra (XPS) for bulky (≥40 nm) metallic 





= .( )0 07O
Zr

 and partially oxidized 

films 





= . 





= .( )0 25 and 0 9O
Zr

O
Zr

 as well as for thin oxide films 





= .( )5mn, 1 3O
Zr

 with different oxidation 
states: Zr0 for metallic, Zr1+, Zr2+, Zr3+ for sub-oxides and Zr4+ for stoichiometric oxide. (b) Core level O1s 
spectra (XPS) for the corresponding Zr3d spectra. The open circles stand for the measured spectrum and the 
black lines correspond to the sum curve of all components represented in the coloured lines. The vertical lines 
are given as a guide to the eye.

Figure 2.  (a) As measured Auger spectra for the indicated O
Zr

 ratios with arbitrary vertical shift where the 
inserted arrows indicate the KE of the Auger transitions. The colored lines stand for the different components. 
The open circles are the spectrum data points after background subtraction. The solid lines behind the open 
circles represent the sum of the different components. (b) Normalized UPS spectra for the corresponding Auger 
spectra using helium I (HeI).
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In a second step, a partially oxidized film was deposited by adding oxygen to the argon atmosphere with a 
composition O

Zr
 = 0.25. The measured core-level spectrum of Zr3d (see Fig. 1a) shows a dominant peak of Zr0 state 

as well as two smaller peaks attributed to sub-oxides (Zr1+ and Zr2+), indicating that the film still possesses metal-
lic features but contains more oxidized Zr compared to the previous film. The measured core level of O1s can, as 
above, be deconvoluted into two peaks located at 531 and 532.4 eV BE attributed to Zr-O bonding and adsorbed 
oxygen respectively (see Fig. 1b). The recorded Auger spectrum of the partially oxide film with O

Zr
 = 0.25 displays 

a splitting of M45(M)N23(M)V(M) into M45(M)N23(M)V(M) and M45(O)N23(O)V(O) (where O stands for oxide). 
These transitions are located at 149.4 and 143.5 eV KE and are related to the electronic transitions from Zr4d and 
O2p orbitals observed in the valence spectrum (see Fig. 2b). On one hand, M45(M)N23(M)V(M) transition has a 
sharp peak assigned to transitions involving Zr4d orbitals. On the other hand the broad peak attributed to M45(O)
N23(O)V(O) is a consequence of the electronic transitions from the broad O2p non-bounding and O-cation 
hybridized bonding orbitals. The difference in energy between these transitions is 5.9 eV, in agreement with the 
value known for metallic Zr surface exposed to low oxygen concentration (5.7 eV32). For the other transitions, a 
shift of 2 eV towards lower KE is observed. Regarding the UPS spectrum shown in Fig. 2b, one can notice the 
presence of a shoulder next to the O2p band located around 3.2 eV. This shoulder is attributed to oxygen defect 
states33 and is also observed for O

Zr
 = 0.9.

Increasing the O
Zr

 ratio influences the Auger transitions due to the change in the chemical environment that Zr 
atoms experience. The Auger spectra for O

Zr
 = 0.9 shows a shift between 2.5 and 3.8 eV towards lower KE for tran-

sitions involving core levels (CCC for core-core-core) with respect to pure metallic film, while the position of the 
CCV (Core-core-valence) transition remains fairly unchanged (see Fig. 2a). Furthermore, from the valence band 
spectrum we can notice an increase in the O2p density of state and a decrease in the Zr4d density of state (see 
Fig. 2b). This population inversion is also observed in the measured intensity of the CCV transitions where the 
M45(O)N23(O)V(O) intensity becomes higher than the M45(M)N23(M)V(M) intensity, highlighting the formation 
of ionic bonding with oxygen by increasing the oxygen content. This observation was confirmed with XPS meas-
urements as the Zr3d core-level spectrum (see Fig. 1a) exhibits five components among which four are attributed 
to oxidized species (three sub-oxides and one stoichiometric oxide located at 179.5, 180.9, 182.2 and 183.5 eV BE 
respectively). Yet, as a metallic component of Zr remained distinguishable both in UPS (Zr4d) and in XPS (Zr0), 
no shifts due to charging are expected.

Further increase in the O
Zr

 ratio led to strong variations of the measured Auger and core-level spectra which 
make their interpretation controversial without accounting for sample charging. In order to eliminate the charg-
ing effect, a very thin film of about 5 nm and O

Zr
 = 1.3 was employed. UPS and XPS measurement were systemati-

cally performed and the results were compared to metallic and partially oxidized zirconium films 
= . . .( )0 07, 0 25 and 0 09O

Zr
. As can be seen from the XPS measurement (see Fig. 1a), it was not possible to deposit 

a stoichiometric film at room temperature with the present setup (Zr2+ and Zr3+ sub-oxides). Regarding the O1s 
core level spectrum, the peaks are shifted compared to previous measurements and it could originate from the 
complete oxidation of the film. From UPS measurement (see Fig. 2b), the increase in the oxygen concentration 
shows no variation of the O2p bands position located at 5.6 eV below the Fermi level. Despite the 
non-stoichiometry of the film in this work, the same O2p band position was found in the UPS and XPS analysis 
of ZrO2 performed by Sayan et al. in34, confirming the validity of the present study. Going back to the analysis of 
Fig. 2b, the intensity of the metallic Zr4d band at the Fermi edge was found to diminish with increasing O

Zr
 ratio. 

Simultaneously, a broad peak centered at 13.5 eV below the Fermi level appeared and was attributed to Zr4d (2+) 
transitions17. Furthermore, the shoulder attributed to oxygen defect states at 3.2 eV completely vanished as 
enough oxygen was available during the growth process. Also the width of the O2p O-cation hybridized bonding 
orbitals becomes narrower as the incorporated oxygen increases, while O2p non-bounding orbitals show a 
decrease in their intensity indicating the formation of strongly bounded Zr-O.

Comparing the Auger and the UPS spectra from Fig. 2, one can note that the M45(M)N23(M)V(M) and M45(O)
N23(O)V(O) are mimicking the Zr4d and O2p valence density of state (V-DOS) respectively. The first transition 
shows a decrease of its intensity and vanishes as the amount of oxygen increases. The second shows a relatively 
small increase of its intensity without shifting the position. An other interesting feature is the non equal shift in 
the CCC transitions for O

Zr
 = 1.3 film. The M45(O)N1(O)N23(O) and M45(O)N23(O)N23(O) are shifted of about 3.6 

and 5.6 eV respectively. This difference suggests a variation in the interactions between Zr-O and O-O with 
increasing oxygen content30. Since the O2s bands are closer in energy to Zr4p than with Zr4s, the overlap of O2s 
wave function with Zr4p is much stronger than Zr4s and can explain the non-equal shift in Auger transitions. The 
small peak existing at 152.2 eV KE was referred to an Auger peak of sulfur (S) contamination by Vaughan et al. 
in35. However, in our case XPS dedicated scans revealed no trace of neither S2p nor S2s core-level. We believe that 
this peak could originate from Auger recombination process, that can results in emission of electrons from the 
conduction band.

The combined analysis of UPS and Auger spectra has proven that increasing the O
Zr

 ratio has no effect on the 
position of the O2p valence band and thus on the Auger transitions involving valence bands M45(M)N23(M)V(M), 
which could therefore be taken as a reference for charge correction of the spectra.

To visualize the effect of the sample charging, different thick films (≈40 nm) were deposited with 
radio-frequency (RF) magnetron sputtering under different conditions, insuring the same stoichiometry but dif-
ferent surface roughness measured using non contact atomic force microscopy (see Figure S1 Supplementary 
Information). X-ray diffractometer (XRD) measurements have confirmed that all the films have monoclinic 
phase with crystallite size around 5 nm (calculated by the Scherrer’s formula36) oriented along [−111] direction 
(see Figure S2 Supplementary Information).
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The behaviour of the MNV transitions discussed before was implemented to correct the shift of the measured 
core-level spectra due to charging in bulk films. From the as measured spectra, the effect of the surface charging 
shows a random shift of the Zr3d core-level (see Figure S3a Supplementary Information). Correcting the BE of 
Zr3d using MNV transition as a reference gave the same value of the BE that is commonly reported in the litera-
ture and attributed to non-stoichiometric state of zirconium. The ratio O

Zr
 = 1.3 shows indeed that the deposited 

films are in a sub-oxide form (see Figure S3b of supplementary information). To verify the implemented method, 
we exposed one of the deposited films to air and we measured the core-levels of C, O and Zr. The C1s core-level 
was measured at 287.4 eV, higher than the usually adsorbed carbon located at 285 eV. The Zr3d peak was measured 
at 184.2 eV, which exceeds the binding energy of zirconium, while O1s was measured at 532 eV. By using C1s BE 
285 eV for charge correction37,38, the Zr3d is found at 181.6 and O1s at 529.4 eV (see Table 1). The error of ±0.2 eV 
of the corrected BE is due to the C1s peak reference position that can be found in the literature. Note also that the 
BE of the core-level O1s before and after exposing the sample to air is not the same. This difference is due to for-
mation of carbonyl/C=O bounds that appear clearly from the core-level spectra of both C1s and O1s (see 
Figure S4 of Supplementary Information). To further check the validity of this method, we deposited a thick film 
of 54 nm of ZrO1.3 and a systematic measurement of both core-level and Auger spectra was performed. The bind-
ing energy of both Zr3d and O1s were located at 183.4 and 531.4 eV, respectively. The MNV transitions from the 
Auger spectra is found at 141.8 eV KE, meaning that the spectrum is shifted by 1.7 eV. Applying this shift to the 
core-levels, Zr3d and O1s are found at 181.7 and 529.7 eV respectively. To verify this hypothesis a gold (Au) thin 
film of about 1 nm was deposited on the same sample without breaking the vacuum. The peak position of Au4f was 
found at 86.3 eV (see Figure S5a of Supplementary Information). The BE of Zr3d and O1s were measured at 184.1 
and at 532.1 eV respectively (see Figure S5b,c of Supplementary Information). If one applies the shift correction 
using Au4f peak at 84 eV, then the Zr3d and O1s peak are at 181.8 and 529.8 eV (see Table 1). The striking agree-
ment between the two method is obvious.

Now that we can correct the charging of our sample properly we can attribute the shift in BE to changes of the 
film morphology. Ex-situ XRD measurements were performed on thin films with different O

Zr
 ratios, thicknesses 

around 80 nm and shown in Fig. 3b, where the thickness is measured by scanning electron microscopy (SEM) 
cross-section (see Figure S6 of Supplementary Information). A general trend of changing the structure from 
nearly amorphous to highly crystalline structure is accompanied by a change in the crystalline orientation and 
appearance of new phases upon increasing oxygen concentration in the film. Furthermore, the binding energy of 
stoichiometric component of ZrOx moves toward lower BE as the transition from poorly amorphous film to crys-
talline film occurs. This BE shift of the Zr3d5/2 can only be due to the change in the structure since the increase of 
the oxidation state of Zr does not influence the position of the core level of the oxide component24. The increase 
in the O

Zr
 ratio from 1 to 1.2 induces a change in the crystalline orientation and disappearance of the Zr3d metallic 

component. Due to the shift observed in the measured spectra, we applied the same correction method used 
before. Both Zr3d core level BE (181.9 eV) and crystalline structure are similar to the sub-oxides obtained before, 
confirming that the increase in the O

Zr
 ratio with conservation of the crystalline structure has no effect on the BE. 

Another interesting fact is that for O
Zr

 = 1.3 with multi-crystalline phase, the Zr3d binding energy after correction 
is found at 182.1 eV. This slight difference in the binding energy can be explained by the change in the work func-
tion due to inhomogeneous surface energies caused by the presence of different crystalline phase. The further 
increase of the O

Zr
 ratio to 1.4 does not affect the binding energy as the crystalline structure is conserved.

Conclusions
The correlation between the Auger transitions and the valence band with increasing oxygen content in zirconium 
has been addressed. The localized O2p band and the MNV transition have served as reference for charge correc-
tion of the XPS spectra due to sample charging. This approach was compared to the commonly used methods 
either by exposing the sample to air or by depositing an Au thin film on top of the samples. While these methods 
do not allow to study the evolution of the electronic structure without contamination of the sample, the new 
implemented approach provides a good understanding of the electronic behaviour of zirconium under different 
oxides form and micro-structure. Especially, it was proven that the binding energy of ZrOx moves toward lower 
BE due to a transition from poorly amorphous film to crystalline film with increasing oxygen content. The behav-
iour of the valence band with increasing oxygen content for zirconium dioxide could also be effective to study 
similar type of oxide families such as TiO2 or HfO2.

Zr3d O1s C1s/Au4f

Air exposure

As deposited 184.2 532 —

After exposure to air 184.2 532.2 287.4

After charge correction using C1s peak 181.6 529.4 285

After charge correction using MNV transitions 181.8 529.8 —

Au thin film

As deposited 183.4 531.4 —

Au film on the top 184.1 532.1 86.3

After charge correction using Au4f peak 181.8 529.8 84

After charge correction using MNV transitions 181.7 529.7 —

Table 1.  BE in eV before and after charge correction for carbon exposed film and Au film deposited on the top.
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Methods
Different thin films were prepared using pulsed direct current (DC) or radio frequency magnetron sput-
tering under different argon/oxygen atmosphere. The description of the setup can be found elsewhere39. The 
samples were transferred from the high vacuum plasma chamber to the ultra-high vacuum chamber housing 
a photo-electron spectrometer without breaking the vacuum. The electron spectrometer is equipped with a 
hemispherical analyzer (Leybold EA10/100 MCD) and a non-monochromatized magnesium Kα X-ray source 
(hν = 1253.6 eV) was used for core level spectroscopy. The binding energy scale was calibrated using the Au4f7/2 
line of a cleaned Au sample at 84.0 eV. The acquisition mode was set to constant analyzer energy with 29 eV pass 
energy (0.05 eV step size) and normal electron escape angle. The typical resolution is 0.8 eV. The deconvolution 
of the spectra was performed using Unifit software package40. For UPS measurements, a helium discharge lamp 
emitting in ultraviolet range (HeI = 21.2 eV) was used. In addition, for structural information, XRD measure-
ments were recorded using a SIEMENS D5000 instrument. The thickness measurements was investigated using 
cross view of SEM (Hitachi S-4800 field emission at 5 kV).
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