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A B S T R A C T   

Carotenoids are powerful antioxidants capable of helping to protect the skin from the damaging effects of 
exposure to sun by reducing the free radicals in skin produced by exposure to ultraviolet radiation, and they may 
also have a physical protective effect in human skin. Since carotenoids are lipophilic molecules which can be 
ingested with the diet, they can accumulate in significant quantities in the skin. Several studies on humans have 
been conducted to evaluate the protective function of carotenoids against various diseases, but there is very 
limited published information available to understand the mechanism of carotenoid bioavailability in animals. 
The current study was conducted to investigate the skin carotenoid level (SCL) in two cattle skin sets – weaners 
with an unknown feeding regime and New Generation Beef (NGB) cattle with monitored feed at three different 
ages. Rapid analytical and sensitive Raman spectroscopy has been shown to be of interest as a powerful tech-
nique for the detection of carotenoids in cattle skin due to the strong resonance enhancement with 532 nm laser 
excitation. The spectral difference of both types of skin were measured and quantified using univariate and linear 
discriminant analysis. SCL was higher in NGB cattle than weaners and there is a perfect classification accuracy 
between weaners and NGB cattle skin using carotenoid markers as a basis. Further work carried out on carot-
enoid rich NGB cattle skin of 8, 12 and 24 months of age identified an increasing trend in SCL with age. The 
present work validated the ability of Raman spectroscopy to determine the skin carotenoid level in cattle by 
comparing it with established HPLC methods. There is an excellent correlation of R2 = 0.96 between the two 
methods that could serve as a model for future application for larger population studies.   

1. Introduction 

Skin is a boundary layer between the external environment and the 
internal body of cells and tissues which offers protection against foreign 
elements including the ultraviolet (UV) rays from the sun [1,2]. UV 
exposure induces the formation of free radicals in the skin and has the 
potential to destroy the cells and damage the skin leading to skin dis-
eases [3]. These free radicals are strong oxidisers of skin and are asso-
ciated with chronic diseases such as cancer, heart disease and 
age-related macular degeneration [4]. To neutralise the effect of these 
free radicals, there is a need for antioxidants capable of reacting with 
these compounds in skin and protect it from oxidation. This antioxidant 

defense system cannot be developed by the body independently, it must 
come through food rich in carotenoids and vitamins. After digestion of 
these fat-soluble carotenoids, they can accumulate in many tissues, 
including the skin’s outermost layer which is partially responsible for its 
colouration [5]. 

Accumulation of carotenoids varies greatly among animal species 
and is not fully characterized. It has been reported that dietary carot-
enoids influence longevity in humans as well as other primates [6,7] and 
may be essential for proper immune function in cattle [8]. Some re-
searchers have found that β-carotene has demonstrated a positive effect 
on fertility in cattle; in their study a deficiency in cattle resulted in 
incidence of silent estruses, less conception rates, higher embryonic 
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Fig. 1. The region of skin examined by Raman spectroscopy.  

Fig. 2. (A) Average Raman spectra of weaner and 8-month old NGB cattle skin 
obtained from the lower epidermis (inset: deconvoluted peaks for measuring 
peak areas) and (b) average peak area of major carotenoid bands (1007, 1155 
and 1522 cm− 1). 

Table 1 
Confusion matrix for the classification of weaners and NGB based on the PCA- 
LDA model.  

Predicted Groups 

Groups Weaners NGB Total 

Weaners 9 1 10 
90% 10% 100% 

NGB 2 8 10 
20% 80% 100.00% 

Total 11 9 20 
55% 45% 100.00%  

Fig. 3. (A) Average Raman spectra of NGB 8, 12- and 24-months old cattle skin 
obtained from the lower epidermis and (b) average peak area of major carot-
enoid bands. 

Table 2 
Pearson’s correlation coefficient (r) for averaged ten skin samples between NGB 
8, 12- and 24-months old cattle skin.  

Raman shift (cm − 1) 1007–1011 1161 1522 

1007–1011 1 0.68972a 0.91337a 

1161 0.68972a 1 0.53133a 

1522 0.91337a 0.53133a 1  

a Correlation is significant at the 0.05 level and ‘r’ value > 0.7 indicates strong 
correlation.  
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death and inferior composition of colostrum [9]. Data on variability in 
carotenoid concentration data in cattle are limited and may be useful for 
their management [10] which creates research interest to analyse cattle 
skin. It has been reported that the higher the dietary intake of carot-
enoids, the lower will be the risk of bacterial and fungal diseases in 
animals [11]. Carotenoid studies have been conducted on human skin 
for age-related diseases [12], or on animals [13], birds [14] or fishes 
[15] where the carotenoid pigmentation is important for the commercial 
market. 

Hides and skins are a by-product of meat industry and, in turn, 
generates returns of over a billion dollars from conversion to leather 
through the global leather industry [16]. Larger countries rely on crops 
for forage to raise cattle whereas New Zealand relies predominantly on 
pasture [17]. 

Grassland-based systems are more environmentally and animal- 
welfare friendly [18] and can provide a good source of nutrients for 
animals [19]. Also, recently consumers have become more interested in 
the origin and method of production of their food, and demand clear 
information in this regard [20]. Robust methods are required for tracing 
diet and the age of animal at the time of slaughter for authentication. 
Carotenoid pigments are potential biomarkers for authenticating car-
casses produced from animals fed on different diet [21–23]. Although 
carotenoid persistence has been studied in both lamb plasma and fat 
[24], their latency of appearance has received less attention. 

There are several types of carotenoids in human and animal skin; 
including α-carotene, β-carotene, lutein, zeaxanthin, lycopene, lutein, 
beta-cryptoxanthin; but particularly β -carotene and lycopene, play an 
important role in protection against photooxidative processes [5,25]. 
The gold standard used for the detection of carotenoids is High Perfor-
mance Liquid Chromatography (HPLC) [26,27]. The limitation with this 
technique is the high cost, extensive extraction protocol which destroys 
the sample, long sample preparation time and the technique cannot 
easily be used in vivo. Thus, there is a need for an alternative analytical 
method which requires minimal or no sample preparation, allows the 
sample recovery after analysis, is quick and has high sensitivity and 
specificity. Raman spectroscopy is a powerful laser spectroscopic tech-
nique that can be used to detect the vibrational energy level of molecules 
within the sample and gives a spectral ‘fingerprint’ of the individual 
molecules. It is considered as a valuable tool for the detection and 
quantification of carotenoids [28,29]. The positions and intensities of 
spectral bands [30] can be assessed for the structural analysis of lower 
epidermis layer of skin. Raman spectral analysis can reveal the 
biochemical information of the skin with minimal amount of sample, 

delivering fast results, resistant to water interference [31], not causing 
any damage to the sample (with low laser power) and allowing the 
possibility of in-situ detection. Carotenoids, due to its highly resonant 
polyene molecular structure [5] is ideal for Raman analysis and when 
these carotenoids are excited in the visible wavelength range (e.g. 532 
nm), behave as an ideal biomarker for Raman analysis because strong 
resonance results in more efficient scattering and increases the sensi-
tivity by several orders of magnitude [32]. In several studies using 
reflectance spectroscopy, carotenoids from plasma and adipose tissue 
were identified as biomarkers of pasture-feeding [33,34]. 

Microscopic examination of dairy cattle skin demonstrates two 
structurally different layers (Fig. 1). The upper layer, originally the outer 
surface of the skin, has hair embedded in the epidermis which is 
removed. There is a layer underneath called the lower epidermis which 
forms the grain layer of leather with hair remnants after conventional 
depilation. The Raman analysis in this study has been performed on the 
lower epidermis of cattle skin. 

This work also provides an important calibration of the Raman in-
tensity of the carotenoid against the analytical data obtained from High 
Performance Liquid Chromatography (HPLC), which is the gold stan-
dard method for determination of carotenoids in the skin. To the best of 
our knowledge this is the first Raman spectroscopy study on cattle skin 
to investigate carotenoids in weaners and New Generation Beef (NGB) 
cattle skin and to study the effect of slaughter age on carotenoid level. 

In addition to animal health, traceability of animal production sys-
tem is a challenge and an increasingly significant interest for scientists 
and farmers [33,35]. The recent study has shown that dermal caroten-
oids could serve as marker substances for the entire antioxidant status of 
cattle skin and prove Raman spectroscopy a reliable and valid method 
for investigation. 

2. Materials and methods 

2.1. Sample preparation 

Weaner cattle skins aged around 11 months at the time of slaughter 
were obtained from Venison Packers Feilding Limited, Manawatu, New 
Zealand. Another set of samples were obtained from Massey University 
Animal Science Team’s New Generation Beef (NGB)’ project. NGB cattle 
of Kiwicross X Hereford calves (Kiwicross cattle are a cross breed be-
tween Holstein-Friesians and Jerseys) were raised at Keebles and 
Haurongo Farms near the Massey University Palmerston North campus 
with approval from the Massey University Animal Ethics Committee. 
There was regular monitoring of growth rate for these calves. The calves 
were weaned at 100 kg on to herb mix (chicory, plantain, red and white 
clover) for the first few months then the calves were put onto pasture 
feed of perennial ryegrass pasture supplemented with hay/silage until 
24 months of age. Skin samples were collected after slaughter in a 
licensed meat processing facility at 8, 12 and 24 months. 

Samples were collected by New Zealand Leather and Shoe Research 
Association (LASRA®) from the same hind-quarter position on each skin 
at and stored at less than 4 ◦C until being prepared for analysis. The 
samples were sectioned using a Leica CM1850UV Cryostat to 60 μm 
thickness. Hairs from the skin were removed by shaving before 
sectioning the samples. Samples were sectioned laterally to get the lower 
epidermis. The samples were prevented from drying by continuously 
spraying water before the measurement to keep them hydrated. Ten skin 
samples from each category of 8, 12- and 24-months old animals were 
obtained, and three sections of each skin sample were put onto micro-
scopes slides for Raman analysis. 

2.2. Data acquisition and Raman spectral processing 

The samples were analysed using a custom-built Raman microscope 
based on an inverted IX71 Olympus Microscope. A 532 nm excitation 
laser (with ⁓10 mW laser power) was focused onto the sample with a 

Fig. 4. Mean difference Raman intensities using Tukey Kramers means com-
parison test of NGB 8, 12- and 24-months old cattle skin. 
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Fig. 5. Calibration curves (a-d) using Raman peak height at (I.) 1010, (II.) 1161 and (III.) 1522 cm− 1 and HPLC carotenoid concentration (μg/g) (e) average 
carotenoid concentration trend; for weaners, New Generation Beef (NGB) of 8, 12, and 24-months old cattle skin. 
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spot size diameter of ⁓1–2 μm using 40 × magnification and a 0.65 NA 
objective. A Raman edge filter (12◦ incident angle) (Iridian Spectral 
Technologies, Ontario, Canada) directed the excitation into the sample 
and rejected the Rayleigh scattered light. An additional Raman edge 
filter (normal incidence) was used to further remove any residual Ray-
leigh scattering immediately before entering the spectrometer. The 
Raman scattered light was focussed onto a 50-μm entrance slit of a 
Teledyne-Princeton Instruments FERGIE spectrometer. Lower epidermis 
of skin mounted on a glass slide was focussed and imaged using a light 
microscope. 

Triplicates of lateral sections from each cattle skin samples, were 
used for Raman measurements. Raman spectra were acquired with an 
exposure time of 5 s per frame for 10 frames (each frame was saved 
separately). Each spectrum was pre-processed with an algorithm written 
using the SciKit Learn package [36] in Python 3.7. Baseline correction, 
background subtraction and average spectra were obtained using the 
Python algorithm. Then the spectral data was smoothed with five-point 
Savitzky-Golay smoothing function to smooth spectral noise and 
normalization was done by dividing each point by the norm of the whole 
spectrum using Origin 2020b (Origin Lab Corporation, Northampton, 
Massachusetts, United States). Fitting was performed with 
Gaussian-Lorentzian functions after subtracting the baseline. The prin-
ciple of Raman spectrometry is illustrated in Fig. S1. 

Raman spectra obtained were analysed using univariate analysis by 
calculating peak area from fitted carotenoid Raman bands. For classifi-
cation, Linear Discriminant Analysis (LDA) was employed. Statistical 
significances were evaluated by analysis of variance (ANOVA) test using 
Tukey’s Means of Comparison test using origin software with signifi-
cance at a p-value below 0.05 to find statistical difference between 
means of carotenoid peak intensity values obtained between 8, 12 and 

24 months. Calibration curves were created using the peak heights 
(intensity) of carotenoid bands for univariate analysis. 

2.3. HPLC system 

To validate the Raman results, the correlation between Raman in-
tensity and high-performance liquid chromatography (HPLC) was 
measured. One cm diameter disks were punched out of the same area of 
cattle skin with a gasket punch. The disks were lyophilised on a freeze 
drier (Labconco, USA). Sections (60 μm thick) were cut from the lower 
epidermis of the lyophilised samples using a freezing microtome (Leica 
CM1850 UV, Germany). Fifteen sections from the lower epidermis of 
each skin were weighed into microcentrifuge tubes for extraction. 

The carotenoid in the sample was extracted with a solvent composed 
of 20% tetrahydrofuran (BDH Chemicals, New Zealand) in methanol 
(Fisher Chemical, USA) with 20 mg/L 2,6-Di-tert-butyl-4-methylphenol 
(Roth, Karlsruhe, Germany) as an antioxidant [26]. Each sample was 
extracted with 1 mL of solvent, facilitated by vortex mixing and 30 min 
of sonication at room temperature. The mixture was centrifuged at 13, 
000 rpm for 30 min, then the supernatant containing the carotenoid 
extract was analysed by HPLC as follows. 

The carotenoid content in the extract was separated on an Acclaim 
C30 column (Thermo Fisher Scientific, USA). The eluent was isocratic 
40% isopropanol (Fisher Scientific, United Kingdom) in methanol. Ca-
rotenoids were detected by an Ultraviolet/Visible detector (Thermo 
Scientific, DAD 3000, USA) at a wavelength of 450 nm. β-Carotene 
(Sigma-Aldrich, USA) dissolved in the extraction solvent and diluted to 
adequate concentrations was used as the calibration standard. 

Fig. 5. (continued). 
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3. Results and discussion 

3.1. Optical microscopy 

Polarised light microscopy was used to examine the lower epidermis 
and dermis of cattle skin [37]. Fig. 1 shows dermis of skin which is made 
up of large collagen fibre bundles and the lower epidermis, also called 
stratum basale, which is the deepest epidermal layer and below which 
lies the different layers of dermis. The cells in lower epidermis bond to 
the dermis via intertwining collagen fibres [38]. The lower epidermis 
was investigated throughout the study. 

3.2. Skin carotenoid level of weaners and NGB cattle skin 

In our previous work, we have examined the different layers of skin 
and found carotenoids predominantly in the lower epidermis [39]. 
Therefore, as an extension to our previous work, the current study is 
based on Raman measurements of the lower epidermis of weaners with 
an unknown feeding regime and NGB skins with a known diet. 

Ten samples were analysed from each weaner and NGB cattle skin 
sample to identify any variation in carotenoid levels and develop a 
relationship between cattle group and skin carotenoid Raman status. 
The average Raman spectra of lower epidermis of skin of weaner and 
NGB cattle skin is shown in Fig. 2. 

The results show that carotenoids are a very strong Raman scatterer 
with very high enhancement and no fluorescence emission. This is due to 
the highly conjugated structure of the carotenoids with alternate single 
and double carbon chains, methyl side chains and different end groups 
[26]. This enables the detection of carotenoids with ease even with 
complex biological systems. Raman spectra were acquired under strong 
resonance conditions with the carotenoids. The resonance effect selec-
tively enhances Raman scattering from the carotenoids due to the strong 
and narrow carotenoid absorption spectrum [40]. Fig. 2a Demonstrates 
that there are three major Raman bands in the analysis of carotenoids 
[41,42]. The Raman peak at 1522 cm− 1 is due to the stretching vibra-
tions of the conjugated C––C backbone of carotenoids and is sensitive to 
differences in carotenoids molecular conformation. The vibration band 
at 1155 cm− 1 is attributed to C–H in-plane bending and C–C stretching 
vibrations of the polyene chain. The vibration band at 1007 cm− 1 arises 
from C–CH3 in plane-rocking deformations of methyl side chains 
coupled to C–C bonds. Weaners and NGB skin samples have 1155 and 
1522 cm− 1 sensitive molecular environments whereas 1007 is insensi-
tive to any change, meaning that a carotenoid found at this character-
istic Raman peak has a similar spectrum in both categories irrespective 
of the different set of animals [43]. This is an important observation to 
assign specific carotenoid Raman signature at 1522 cm− 1 to Lutein for 
NGB and 1517 cm− 1 to β-carotene for weaner skins. Such sensitive 
spectral variation illustrates the ability to distinguish carotenoids by the 
position of this vibration [44]. It was supported by the literature where 
carotenoids are classified into two types – oxygen deficient carotenes, 
and oxygen rich xanthophylls. The carotenes are nonpolar hydrocarbons 
and include β-carotene, α-carotene, and lycopene. The xanthophylls 
have hydroxyl or keto end groups and are thus more polar compounds, 
including lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin [45]. 
Lutein is the most dominant carotenoid [46] found in animal food and is 
predominant over carotenes which are not selectively absorbed whereas 
β-carotene is predominant in diet-derived from milk [47,48]. The 
detection of β-carotene and lutein spectral peak in cattle skin differen-
tiates the two groups and may serve as a characteristic marker identified 
using Raman spectroscopy. 

Distribution of Carotenoids in weaners and NGB cattle skin. 
Spectral variation between weaners and NGB cattle skin is not sig-

nificant for quantification, therefore, detailed analysis of the above- 
mentioned spectral regions was done with deconvolution of the 
spectra of all three prominent carotenoid peaks (Fig. 2a inset). The 
analysis was carried out using the “quick peaks from peak analyser” tool 

of Origin software. For peak quantification, peak area from normalised 
spectra were calculated from fitted peaks of major carotenoid Raman 
bands 1004, 1155 and 1522 cm− 1. The main aim of Raman peak fitting is 
to determine the peak parameters such as peak area, as accurately as 
possible. Peak intensity, one of the parameters, is not considered as it is 
most of the times affected by the noise and difficult to measure with 
precision [49]. 

The distribution of carotenoids in cattle skin samples, measured by 
Raman spectroscopy, in Fig. 2b Shows that total carotenoid content in 
NGB cattle skin is 3-fold higher than weaner cattle skin (Table S1). Since 
wave number 1003 cm− 1 has contributions from phenylalanine as well 
as carotenoids, the extent of change in this peak intensity was higher 
than the change seen in wavenumbers 1156 and 1524 cm− 1. 

To support the univariate data, supervised method, linear discrimi-
nant analysis (LDA) was used. This assumes the existence of classes and 
then proceeds to constructs a function (the discriminant) that gives the 
best separation between the classes [50]. It shows how well the classes 
are separated as well as where the classification fit is robust and where it 
is misinterpreted. The principal components from the principal 
component analysis (PCA) can also be used to construct the discriminant 
function in LDA (PCA-LDA). LDA assumed that the data was Gaussian 
distributed, that all rows must belong to one group (samples are 
mutually exclusive) and that the variances are the same for both groups. 
When LDA is done on the PC scores, the mean centre of each grouping is 
calculated, and each spectrum is predicted to belong to one of the groups 
based on its distance from the centre of the group. The accuracy of the 
prediction is an indication of how well the groups are separated. The 
classification summary in the form of confusion matrix is shown in 
Table 1. 

The Wilk’s Lambda test was conducted on the discriminant variable 
and found that the discriminant function is highly significant (p < 0.05) 
in agreement with the classification summary. The cross-validation 
summary table shows that weaners has a classification accuracy of 
90% and NGB has 80% which proves that both are mutually exclusive. 

3.3. Carotenoids and skin aging 

Several human studies have been performed in the past relating the 
individual age with carotenoids [51], but this is the first-time cattle age 
is investigated using the carotenoid biomarker with a sensitive tech-
nique, Raman spectroscopy. It was established and reported in past 
studies that younger individuals have higher carotenoid content in their 
skin as compared to the older ones with the loss of major nutrients from 
the body due to diseases, skin aging, and less availability of anti-oxidants 
that weakens the defence system of the body [52] whereas this has never 
been explored for animals. With this objective, a study is designed to 
investigate total carotenoid content in cattle skin of different ages fed on 
pasture before slaughter. Skin of 8 months, 12 months, and 24 months 
old NGB cattle skin was analysed using Raman spectroscopy. 

Fig. 3a Shows the average Raman spectra of NGB cattle skin of 
different age with three major carotenoid bands. On visual examination, 
there was no spectral differences observed in the carotenoid content 
among three age groups but there is a significant variation in the skin 
carotenoid status after performing univariate analysis on the peak areas 
of prominent carotenoid peaks. Fig. 3b Shows the 1007 or 1010 cm− 1 

carotenoid peak has 34% increase in carotenoids from 8 months to 12 
months with a further increase of 20% in 24 months. Similarly, 1161 
cm− 1 also showed an increasing trend of 35% from 8 to 12 months, then 
20.2% increase at 24 months whereas 1522 cm− 1 has a maximum in-
crease of 70% from 8 to 12 months, then 40% at 24 months. 

Statistical analysis was carried out on the Raman spectral results 
using analysis of variance (ANOVA) test. For each wavenumber analysed 
(1007, 1161, and 1522 cm− 1) post hoc Tukey–Kramer means compari-
son test was conducted to identify the significant difference between the 
groups. Pearson correlation coefficient and significance differences were 
considered significant at a p-value below 0.05. 
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Pearson’s correlation was employed to test the strength of correla-
tion of the spectra of ten skin samples of each age groups. The average 
spectra obtained for different age groups correlated with each other with 
a “r” value close to 1. (Table 2). There was a significant effect of age on 
the obtained values at p < 0.05 level for the three age groups (p =
0.0019). This demonstrates that the spectra between three age groups 
were significantly different. 

For each pair of groups, the graph shows an estimate for the differ-
ence of means and the Tukey-adjusted 95% confidence intervals for the 
difference. Intervals that contain 0 indicate that the difference of means 
is not significant. Intervals that do not contain 0 indicate significant 
differences. Tukey’s Means of Comparison test has revealed further in-
formation regarding relationships between age groups and it was found 
that 24 months is significantly different from other age groups (Fig. 4.) 
with the smallest means. 

3.4. Raman spectroscopy method correlated with HPLC analysis 

To validate the performance of Raman spectroscopy, we have used 
the gold standard HPLC technique for skin carotenoid analysis. HPLC 
measurements (Table S2) were carried out on weaners and NGB cattle 
skin of different ages. (8 months, 12 months and 24 months). For perfect 
validation of Raman carotenoid results with HPLC without any possible 
interferents, ultraviolet absorbance scan of carotenoid external standard 
over a range of wavelengths from 245 nm to 600 nm was obtained which 
perfectly matched with the extracted carotenoid (Fig. S2). The peak 
intensities of major carotenoids Raman bands at 1010, 1161 and 1522 
cm− 1 was used for validation with concentration of carotenoids ob-
tained from HPLC results. Comparing the two datasets, we are aware of 
systematic errors where HPLC analysis is designed to ‘see’ a definite 
subset of species in the entire depth of microtome samples whereas 
Raman effect pick up C––C signal from carotenoid molecules with highly 
resonant Raman signal. Despite these unavoidable errors, we have ob-
tained the best correlation between Raman and HPLC data for carot-
enoid peak at 1522 cm− 1 in all age groups, as observed from Fig. 5, with 
highest R2 value 0.96 for 12 months. Raman band at 1010 cm− 1 has 
moderate correlation with HPLC data for NGB 12 months with R2 value 
0.72. Significant differences were observed in the intensities of major 
carotenoid bands of two different fed cattle skins with p-value < 0.001. 

These results validate Raman spectroscopy as an accurate and 
objective method for animal skin carotenoid measurements. 

4. Conclusions 

Raman spectroscopy has an excellent sensitivity for detecting ca-
rotenoids, because of the strong spectral signatures of the conjugated 
C–C and C––C functional modes. The study carried out on weaners and 
NGB cattle skin using carotenoids as a biomarker is highly promising. 
Univariate and linear discriminant analysis methods were used for cross- 
validating Raman results with HPLC data. There is very good correlation 
between the two different methodologies. The results obtained shows 
that Raman spectroscopy is well-suited to determine the antioxidative 
status in animal skin, selectively and sensitively. Skins of weaners had a 
lower carotenoid content compared to monitored pasture fed NGB cattle 
skin. Another observation was that older NGB cattle skin demonstrated a 
higher carotenoid content than the skins from younger animals. The 
validation results will make it possible to closely correlate both methods 
– Raman and HPLC in justifying the common conclusion after skin 
carotenoid analysis. This study helps in assessing the skin, identifying 
ways for improving the animal skin and protect it from diseases [11]. 
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