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Abstract

Background: Sequencing studies of exonic regions aim to identify rare variants contributing to complex traits. With
high coverage and large sample size, these studies tend to apply simple variant calling algorithms. However,
coverage is often heterogeneous; sites with insufficient coverage may benefit from sophisticated calling algorithms
used in low-coverage sequencing studies. We evaluate the potential benefits of different calling strategies by
performing a comparative analysis of variant calling methods on exonic data from 202 genes sequenced at 24x in
7,842 individuals. We call variants using individual-based, population-based and linkage disequilibrium (LD)-aware
methods with stringent quality control. We measure genotype accuracy by the concordance with on-target GWAS
genotypes and between 80 pairs of sequencing replicates. We validate selected singleton variants using capillary
sequencing.

Results: Using these calling methods, we detected over 27,500 variants at the targeted exons; >57% were
singletons. The singletons identified by individual-based analyses were of the highest quality. However,
individual-based analyses generated more missing genotypes (4.72%) than population-based (0.47%) and LD-aware
(0.17%) analyses. Moreover, individual-based genotypes were the least concordant with array-based genotypes and
replicates. Population-based genotypes were less concordant than genotypes from LD-aware analyses with
extended haplotypes. We reanalyzed the same dataset with a second set of callers and showed again that the
individual-based caller identified more high-quality singletons than the population-based caller. We also replicated
this result in a second dataset of 57 genes sequenced at 127.5x in 3,124 individuals.

Conclusions: We recommend population-based analyses for high quality variant calls with few missing genotypes.
With extended haplotypes, LD-aware methods generate the most accurate and complete genotypes. In addition,
individual-based analyses should complement the above methods to obtain the most singleton variants.
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Background
With rapid advances in sequencing technology, large-
scale sequencing studies enable discovery of rare poly-
morphisms. Exome and targeted sequencing studies are
especially popular in the studies of complex traits.
These designs focus on small genome regions likely to
be enriched for functional variants [1-3], achieving
higher coverage of an important subset of the genome
and facilitating larger sample sizes [4,5]. While variant
calling typically improves with increasing read coverage
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[6], exome and targeted experiments tend to generate
uneven coverage. For studies averaging 40x to 120x,
empirical coverage per targeted position per sample can
range from less than 5x to over 150x [7-10]. At high
coverage, genotypes can be called with high precision
using basic calling strategies [3]. However, at regions
with local low coverage, calling genotypes accurately is
challenging, leading to more errors and missing data
[11]. In studies with low mean coverage, advanced vari-
ant calling algorithms compensate by combining read
information with linkage disequilibrium (LD) informa-
tion across large samples [12,13]. However, it is unclear
if such algorithms substantially improve genotypes in
datasets with heterogeneous coverage. To address this
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question, we evaluated the performance of advanced
variant calling algorithms in targeted sequencing exper-
iments. Our goal was to provide specific guidelines for
applying variant calling algorithms to these studies.
Variant calling algorithms fall into three major categor-

ies depending on how information from shotgun sequen-
cing data is aggregated across individuals and genomic
positions [14]. The first category involves individual-based
single marker callers (IBC), which assign genotypes based
on aligned reads from a single individual at a single pos-
ition [15-19]. These callers are typically applied to high-
depth exome sequencing data [7,8]. The second category
of algorithms is population-based single marker callers
(PBC), where reads per position from all samples jointly
determine polymorphism and allele frequencies. Based on
estimated allele frequencies, these methods then call geno-
types using per individual read data [11,20]. PBC is typic-
ally used in low-pass sequencing studies [12,21,22]. The
third category of calling algorithms utilizes linkage dis-
equilibrium (LD) information across several hundred kilo-
bases flanking each variant base identified by an IBC or
PBC [12,23,24]. Similar to widely used imputation algo-
rithms [25], these LD-aware calling methods (LDC) phase
existing variant calls into haplotypes, then update geno-
types according to the joint evidence across similar haplo-
types. LDC, though computationally demanding, have
been used in combination with PBC to successfully inter-
pret low-coverage, genome-wide data such as that in the
1000 Genomes Project [21,22].
To compare the performance of the three types of al-

gorithms in large-scale sequencing datasets with high
coverage, we analyzed 7,842 European individuals, each
sequenced at 202 targeted genes [26]. The average per
targeted site per individual coverage was 24x, but with a
wide range from 0 to >75x (Additional file 1: Figure
S1a). Genotype data from previous genome-wide asso-
ciation studies (GWAS) provided long haplotypes for
LD-aware genotype calling. We generated four sets of
variant calls from this dataset, using (1) IBC, (2) PBC,
(3) LDC based on only the sequencing data and (4)
LDC after combining the sequencing data with flanking
GWAS data. We focused on a fixed number of variants
per call set after ranking the variants by quality control
metrics, and assessed the quality of each filtered call set
by transition to transversion ratio and the percentage of
called variants confirmed in SNP databases. Moreover,
we evaluated genotype accuracy by collating 80 pairs of
experimental replicates and by comparing sequencing
calls with on-target genotypes from previous GWASs.
We further validated a subset of caller-specific single-
tons at the heterozygous individuals with an independ-
ent capillary sequencing experiment. Finally, to ensure
applicability of our comparison findings to other stud-
ies, we investigated our dataset using alternative
approaches of IBC and PBC. We also generated IBC
variant calls from an additional dataset with average
coverage of 127.5x, sequenced at 57 genes from 3,142
individuals [10], and compared these calls with an exist-
ing PBC call set.
We found that at a fixed number of variant sites, IBC

identified a larger proportion of extremely rare variants
of high quality, particularly singletons, while capturing
most of the common polymorphic sites that were identi-
fied by the other callers. We replicated the result in the
additional high-coverage dataset and by using different
variant caller implementations. However, IBC genotypes
at common variants were of the lowest quality by all
measures. They were the least concordant with GWAS
genotypes and within sequencing replicate pairs. More-
over, the IBC call set contained 4.72% missing genotypes,
due to low coverage or low quality calls. In the PBC set,
the percentage of missing genotypes dropped to 0.47%
by using a population allele frequency prior. PBC also
showed improved heterozygous concordance with on-
target GWAS genotypes as well as between replicates.
Without flanking markers, LDC achieved similar geno-
type accuracy with PBC, while further reducing the
missing genotypes to 0.17%. With extended haplotypes
from flanking GWAS markers, LDC achieved the same
level of missing genotypes (0.17%) and the highest geno-
type concordance among all callers.

Methods
Data description
To understand the strengths and limitations of individual-
based, population-based and LD-aware variant calling
methods, we analyzed sequence read data from 7,842 unre-
lated European individuals. The next-generation sequen-
cing data was part of a large-scale targeted sequencing
experiment generated for the purpose of identifying vari-
ants associated with 12 common diseases and cardiovascu-
lar and metabolic phenotypes, previously described in
Nelson et al. [26]. This experiment targeted 2,218 exons of
202 genes of potential drug interest, covering 864kb (~1%)
of the coding genome. Each exon was captured to include
the coding sequence plus UTR and 50 bp flanking se-
quence on each end. Each sample had on average 0.6 mil-
lion 100 bp paired-end Illumina reads, with overall average
depth of 24x, but depth averaged per individual per tar-
geted site ranged from 0x to over 75× (Additional file 1:
Figure S1a). In particular, six genes had low mean coverage
(<10×) across all exons; the mean coverage across gene re-
gions and across individuals spanned a range of 7× to 35×
(Additional file 1: Figure S1b).
Among the 7,842 individuals considered, 80 were inde-

pendently sequenced twice. All 7,842 individuals had
been previously typed on one of Illumina (300k, 550k,
610k) or Affymetrix (500k, 6.0) chips for genome-wide
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association studies (GWASs). Prior to variant calling, we
aligned reads using BWA 0.5.9 (http://bio-bwa.source-
forge.net) [27] with human genome build 36 as reference.
We removed duplicate reads using Picard (http://picard.
sourceforge.net/). We recalibrated base quality scores
using Genome Analysis Toolkit (1.0.5974) from the Broad
Institute [18]. We combined the GWAS genotype data
from various chips using PLINK [28] (Additional file 1).

Variant calling
We used likelihood-based models for genotype and SNP
calling, as outlined in Li et al. [12]. For each of the 10
possible genotypes (AA, AC, AT, AG, CC, CT, CG, TT,
TG, GG) at each locus, the model computes genotype
likelihood Pr(reads|genotype). These likelihoods are cal-
culated per genomic position with aligned reads. Base
quality scores of the reads are refined using the base
alignment quality (BAQ) adjustment to account for
base calling error rates and mapping uncertainty [29].
Using Bayes' rule, these likelihoods are combined with
a model-specific prior on the genotype π(genotype) to
generate posterior probabilities Pr(genotype|reads). We
considered 3 categories of calling algorithms that reflect
how information is aggregated across individuals and
positions.

Individual-based single marker caller (IBC)
IBC applies an individual-based prior which assumes each
allele has a probability θ = 0.001 of being different from
the reference. For variant sites, we assigned uniform prior
probabilities for transitions and transversions to avoid bias
in the evaluation of genotype quality based on transition
to transversion ratio (Ts/Tv). By computing the genotype
likelihoods using aligned reads per individual, the model
assigns the most likely genotype when the posterior prob-
ability reaches a threshold of 99%; genotypes with lower
posterior probability are marked as missing. We used
glfSingle (http://genome.sph.umich.edu/wiki/GlfSingle) to
call genotypes. By calling also the reference homozygous
genotypes, we obtained the union set of all variant sites
and genotypes across all individuals.

Population-based single marker caller (PBC)
PBC uses a two-step procedure to call variants [12].
First, upon observing at least one read carrying a non-
reference allele, the model applies a population genetic
prior that estimates the probability of the site being
polymorphic as a function of sample size, with per base
pair heterozygosity of θ = 0.001 under the stationary
neutral model [30]. As with IBC, the model assumes a
prior with uniform Ts/Tv. Second, per polymorphic
site, PBC estimates the population allele frequency f
using aligned reads from all individuals, assuming a
biallelic site in Hardy-Weinberg equilibrium. These
allele frequency priors combine with the likelihoods calcu-
lated per individual to generate posterior genotype prob-
abilities. We used the PBC implemented as glfMultiples
(http://genome.sph.umich.edu/wiki/GlfMultiples), which
also generated variant calls for NHLBI GO Exome Se-
quencing Project (ESP) and contributed to 1000 Genomes
Project analyses [21,22,31].
In this study, we used a posterior probability threshold

of 99% for the most likely genotype, which was the same
threshold as for the ESP [31]. To maintain independence
between experimental replicates, we generated two call
sets, each including 7,762 unique samples plus 80 sam-
ples, one from each sequence replicate pair.

LD-aware caller (LDC)
Starting from a set of variant calls, LDC updates the
genotype of each individual at each marker using a
Hidden Markov Model derived from the haplotype-
based model used in the imputation software MACH
[32]. The LDC algorithm starts with randomly phased
haplotypes for each individual. Per iteration, the algo-
rithm compares one sequenced sample with a randomly
picked subset of haplotypes. It updates each genotype or
imputes missing genotypes, based on the similarity of
the sample haplotype to the reference haplotypes. In
addition to identifying the most likely genotype, LDC
calculates the expected number of reference alleles car-
ried by each individual (dosage). Per variant site, LDC
also estimates the correlation coefficient R2 between true
allele counts and estimated allele counts, as a measure
of imputation quality. This caller, previously used in
low-pass sequencing studies [12,22], has been imple-
mented as ThunderVCF (http://genome.sph.umich.edu/
wiki/ThunderVCF).
We used LDC to refine each of the two PBC call sets

described above. We applied the standard setting of 30
iterations and 200 reference haplotypes per iteration. We
considered two scenarios with different haplotype infor-
mation: First, we applied LDC on short haplotypes, which
consisted only of the PBC variant calls at the sequences
captured in the sequencing experiment. Second, we cre-
ated long haplotypes by combining PBC variant calls with
GWAS-genotypes from flanking markers within 500 kb
from both ends of each target gene. In both scenarios, we
masked GWAS genotypes within the target regions and
used these markers as measures of genotype quality.

Variant quality control
To remove potentially false variant calls caused by tech-
nical artifacts, we followed the filtering and support vec-
tor machine (SVM) approach used in the ESP [31] and
Zhan et al. [10]. Initial filtering included quality metrics
based on read alignments, nearby indels and excess het-
erozygosity (Additional file 1). For LD-aware calls, we

http://bio-bwa.sourceforge.net
http://bio-bwa.sourceforge.net
http://picard.sourceforge.net/
http://picard.sourceforge.net/
http://genome.sph.umich.edu/wiki/GlfSingle
http://genome.sph.umich.edu/wiki/GlfMultiples
http://genome.sph.umich.edu/wiki/ThunderVCF
http://genome.sph.umich.edu/wiki/ThunderVCF


Lo et al. BMC Bioinformatics  (2015) 16:75 Page 4 of 10
imposed an additional R2 quality control criterion, which
filters sites with R̂2 < 0:7.
SVM generates a summary score for each site based on

the initial quality metrics, classifying good and bad calls
with respect to training call sets (Additional file 1). We
ranked these scores and selected the 27,500 top-ranked
variants per call set for comparison. We set the cutoff to
compare only variants with positive SVM scores.
After selecting 27,500 top-ranked variants per call set

from SVM classification, we filtered individual genotypes of
each variant to discard those with more than 1% estimated
error. From IBC genotypes, we removed and marked as
missing the genotypes with PHRED quality score less than
20 or with genotype depth less than 7x. As the quality of
PBC genotypes is less affected by individual genotype
depth, we only filtered with PHRED quality < 20. Analo-
gously, we filtered LD-aware genotypes with a posterior
probability ratio < 99:1 between the genotypes with the
highest and the second highest posterior probability.
Comparing call sets
We compared 4 sets of 27,500 variants, generated using
IBC, PBC, LDC without flanking haplotypes and LDC
with flanking haplotypes. First, we evaluated the overall
quality of each call set by calculating transition to trans-
version ratios (Ts/Tv), stratified by variant type as anno-
tated by ANNOVAR (hg19, gencodeV7, http://www.
openbioinformatics.org/annovar/) [33] and by minor al-
lele count. Second, we compared our call sets to the Sin-
gle Nucleotide Polymorphism database (dbSNP, release
135, http://www.ncbi.nlm.nih.gov/SNP/), a recent public
archive of confirmed variants.
We then characterized IBC-specific variants and PBC-

specific variants by their Ts/Tv and read coverage. Most
of the IBC- and PBC-specific variants were singletons.
We performed an independent capillary sequencing ex-
periment on 32 IBC-specific and 41 PBC-specific single-
ton variants, sampled from individuals from the CoLaus
study [26] carrying the singleton heterozygous genotypes
(Additional file 1). Error rates from this validation pro-
vided estimates of false discovery rates of caller-specific
singletons. Finally, we extended the validation to 51
caller-specific singletons with SVM scores below the cut-
off, to assess the quality of discarded sites from each set.
We assessed genotype quality of each call set by four

summary statistics: (1) The percentage of missing geno-
types from no calls and filtered genotypes (2) The pair-
wise heterozygote mismatch rates (he) between our
genotype calls from sequencing and the genotypes from
GWAS chips at the on-target markers. he is defined as
the number of genotypes called as heterozygous in one
set but homozygous in the other, divided by the total
number of heterozygous genotypes in both sets. (3) he
for the 80 sequence replicate pairs, at variant sites where
at least one individual per pair is heterozygous. (4) The
shared variants between each pair of call sets and calcu-
lated the he between every pair of callers.
To investigate the effect of sample size on the differ-

ence in performance between IBC and PBC, we per-
formed down-sampling analyses on our original dataset,
evaluating the ability of the PBC caller to identify vari-
ants called as singletons by IBC. For simplicity, we fo-
cused on variants that were called as singletons in the
full dataset of 7,842 individuals (IBC singletons). We
generated random samples of 50, 100, 500, 1,000, 2,500
and 5,000 individuals from the original dataset by se-
quentially adding individuals and used PBC to call vari-
ants in each of the samples. For each down-sampled
dataset, we calculated the proportion of IBC singletons
identified by PBC and recorded the genotype quality of
these PBC singletons. We repeated the full random sam-
pling experiment 10 times and averaged the results.
To assess if our results were driven by the specific

choice of calling algorithms, we applied the individual-
and population-based settings of GATK UnifiedGenoty-
per (version 3.1.1-g07a4bf8) [11] to our original dataset.
The UnifiedGenotyper follows the same genotype likeli-
hood framework described above for variant calling. In
particular, it uses the same model for individual- and
population-based calling, where it estimates simultan-
eously the population allele frequency and most likely
genotypes. To generate individual-based calls, popula-
tion size is set to 1. We generated individual- and
population-based variants for our targeted exon data
with 7,842 samples. We compared the two resulting call
sets, focusing on the singletons specific to each analysis.
To replicate our results in a second dataset with higher

sequencing coverage, we considered an additional dataset
obtained from the AMD Consortium, which sequenced
3,142 individuals at 57 genes from 10 age-related macular
degeneration loci [10]. The average coverage was 127.5x,
but 10% of the genes suffered from low average coverage of
around 10x (Additional file 1: Figure S2). We generated
IBC variant calls and compared them with existing PBC
variant calls of this dataset, obtained from the project inves-
tigators. We evaluated the IBC-specific singletons, particu-
larly those at sites with local low coverage, and contrasted
them with singletons identified by IBC and PBC.

Results
Summary of variant call sets
In the complete call sets of 7,842 individuals, the
individual-based single marker caller (IBC) generated
31,970 variants while the population-based single marker
caller (PBC) generated 29,147 variants. The LD-aware
caller (LDC) modified genotypes from PBC, hence it
generated the same number of variants. We filtered each

http://www.openbioinformatics.org/annovar/
http://www.openbioinformatics.org/annovar/
http://www.ncbi.nlm.nih.gov/SNP/


Lo et al. BMC Bioinformatics  (2015) 16:75 Page 5 of 10
call set separately and ranked the variants using a sup-
port vector machine (SVM). We observed 30,297 IBC,
27,690 PBC variants and 27,535 LDC variants with posi-
tive SVM scores. To compare call sets for a fixed call
rate, we focused on the top 27,500 variant sites from
each set. In the IBC set, 59.4% of the calls were single-
tons (MAF = 0.06%), while 57.7% of the PBC and LDC
calls were singletons (Table 1). Over 81% of variants in
each call set had minor allele counts ≤ 5. Most of these
rare variants were novel; only 26-27% of variants from
each call set were recorded in the dbSNP database
(Table 1).
Combining our four filtered call sets each of 27,500

SNPs, our analyses generated a total of 29,652 auto-
somal SNPs. We identified 1,035 variants not previously
found in the Nelson et al. analyses of the same dataset
[26]. Among these, 509 (48.16%) were IBC-specific,
while 445 (42.10%) were in all call sets (Additional file
2: Database S1).
The IBC call set had the highest percentage of missing

genotypes (4.72%), while the PBC call set had a substan-
tially lower percentage (0.47%) (Table 1). The LDC call
set had the lowest percentage of missing genotypes
(0.17%). Typically LDC genotypes have no missing data;
in our analysis, missing genotypes in LDC were a result
of filtering genotypes with more than 1% uncertainty.

Overall quality of variant call sets
We assessed the quality of the variants included in the
four call sets by calculating the transition-to-transversion
ratio (Ts/Tv). A Ts/Tv > 2 is expected for intergenic sites;
Ts/Tv is typically much higher in coding regions due to
purifying selection [31]. In our data, Ts/Tv of the unfil-
tered IBC call set was 2.27, and Ts/Tv of the unfiltered
PBC and LDC call sets were both 2.46. Ts/Tv of all call
sets increased after SVM classification at the 27,500 vari-
ant cutoff (Table 1), indicating reasonable quality control.
We then focused on the quality of these SVM top-ranked
call sets. As Table 1 shows, the IBC call set attained the
highest Ts/Tv of 2.71, while PBC and LDC without flank-
ing haplotypes had a Ts/Tv of 2.59. LDC with flanking
haplotypes had a Ts/Tv of 2.58.
Table 1 Summary statistics of 27,500 top-ranked SNPs per ca
ratio (Ts/Tv) and missing genotypes

All SNPs

Call set #SNPs % dbSNP Known Ts/Tv Novel Ts/Tv

IBC 27500 25.72% 3.02 2.54

PBC 27500 26.87% 3.02 2.45

LDC 27500 26.85% 3.01 2.45

LDC + F 27500 26.81% 3.00 2.45

Abbreviations: IBC = individual-based single marker caller, PBC = population-based s
F = LD-aware caller with flanking haplotypes. Expanded table showing quality of ca
Comparing Ts/Tv between known variants and novel
variants, we observed that known variants (in dbSNP)
generally had higher Ts/Tv than novel variants (Table 1).
Singletons had slightly lower Ts/Tv compared to the cor-
responding overall call set, as singletons represent recent
mutations that are less affected by purifying selection
[34]. Analogously, known variants had a higher Ts/Tv
because such variants are typically older and have been
subjected to purifying selection for longer.
At exonic variants, all call sets attained Ts/Tv greater

than 3, with nonsynonymous variants having lower Ts/
Tv than synonymous variants (Additional file 1: Table
S1). The coding variants had higher Ts/Tv than non-
coding variants in all call sets, because coding sequences
contains higher proportion of CpG sites enriched for
transitions compared to non-coding regions, and be-
cause transitions are enriched at degenerate sites within
coding regions. Intergenic and flanking variants had Ts/
Tv around 2 in all call sets, consistent with expectations
(Additional file 1: Table S1).
Evaluating singleton variants
Most caller-specific variants were singletons. We found
4,203 caller-specific variants out of 29,652 in the union
call set. Of these, 1,850 (44.02%) were IBC-specific,
1,787 (96.59%) being singletons with Ts/Tv 1.97. On the
other hand, 1,731 (41.18%) variants were shared between
PBC and LDC sets, but not found by IBC. We consid-
ered sites in this category as PBC-specific since LDC did
not introduce new sites, but only modified genotypes at
sites called by PBC. Of these PBC-specific sites, 1,260
(72.79%) were singletons with Ts/Tv 1.08.
IBC identified more singletons at low coverage than

PBC, even after an additional filtering of all genotypes
with less than 7x coverage (Figure 1). Independent capil-
lary sequencing experiment validated 30 out of 30 (100%)
IBC-specific singletons, and 38 out of 41 (92.68%) PBC-
specific singletons (Additional file 1: Table S2). This differ-
ence in validation rates was not statistically significant
(Fisher’s exact p-value = 0.258). Relaxing the SVM thresh-
old to 29,000 SNPs per call set, IBC-specific and PBC-
ll set and quality assessed by transition-to-transversion

Singletons %Missing
genotypesOverall Ts/Tv #SNPs Ts/Tv

2.71 16325 (59.36%) 2.57 4.71

2.59 15877 (57.73%) 2.44 0.47

2.59 15857 (57.66%) 2.44 0.17

2.58 15869 (57.71%) 2.44 0.17

ingle marker caller, LDC = LD-aware caller without flanking haplotypes, LDC +
ll sets broken down by variant class is included in Additional file 1: Table S1.
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specific singletons still had comparable validation rates, at
91.30% (42/46) and 92.45% (49/53) respectively.
Notably, 99.13% of PBC-specific sites were in the IBC

unfiltered (complete) call set of 31,970, including all
471 sites with minor allele count >1. On the other hand,
only 177 (9.57%) IBC-specific sites were in the PBC
complete call set of 29,147; the majority was undiscov-
erable using PBC. Therefore, we extended the validation
experiment to IBC-specific singleton calls ranked below
29,000, where no singletons from PBC could be sampled
from the CoLaus subset. Capillary sequencing showed
that these IBC-specific singletons at the lowest ranks
had a validation rate of 81.82% (18/22; Additional file 1:
Table S2).
To compare the performance of singleton calling be-

tween IBC and PBC in a different dataset with higher
average coverage, we repeated these analyses on a tar-
geted sequencing dataset of 3,142 individuals se-
quenced at a mean coverage of 127.5x [10]. We
generated an IBC call set which contained 33,615 vari-
ants with Ts/Tv 2.12, while the existing PBC call set
contained 31,527 variants with Ts/Tv 2.10. Comparing
these two call sets, IBC called 1,913 more singletons
than PBC. These additional singletons had Ts/Tv 1.63.
Interestingly, the additional singletons with high qual-
ity were located in regions with low coverage. At depth
<10x and with an extra genotype quality filter of >10,
IBC identified 864 additional singletons with Ts/Tv
2.18. At the same genotype depth and quality thresh-
olds, IBC and PBC shared 911 singleton variant calls
with Ts/Tv 2.13 (Additional file 1: Figure S3). When we
relaxed the genotype depth threshold to < 20x, IBC
identified 1,360 additional singletons with Ts/Tv 1.90,
while IBC and PBC shared 2,745 singletons with Ts/Tv
2.07.
We evaluated the impact of sample size on the differ-
ence in performance between IBC and PBC by down-
sampling the data to sample sizes of 1, 50, 100, 500,
1,000, 2,500 and 5,000 and calling variants in these
smaller datasets using PBC. We compared the PBC sin-
gletons from each down-sampled set to high-quality IBC
singletons from the original dataset of sample size 7,842.
We observed that for sample sizes > 1, PBC failed to
identify all IBC singletons. The proportion of IBC single-
tons called by PBC decreased as sample size increased.
The quality score of the singletons called by PBC also
decreased with sample size. At sample size = 100, PBC
called 89.6% of the IBC singletons with average quality
score of 73.7; at sample size = 5,000, the percentage
dropped to 84.0% with average singleton quality score
69.5 (Additional file 1: Figure S4).

Evaluating non-singleton variants
We assessed genotype quality of common variants by
comparing genotypes at 378 on-target variants shared
between all call sets and the GWAS data from the same
individuals (Table 2a). The IBC call set had the highest
discordance with GWAS genotypes, with heterozygous
mismatch he = 0.82% discordant genotypes. While het-
erozygous mismatch rates were comparable between
PBC and LDC with no flanking haplotypes, at he = 0.38%
and 0.39% respectively, the rate was lower for LDC with
flanking haplotypes, at 0.32% (Table 2a).
Genotype concordance between sequencing replicate

pairs provided a second metric of robustness of each
calling algorithm (Table 2b). he at replicate pairs
followed the same qualitative trend as the GWAS com-
parison (Table 2a), where IBC had the highest he =
1.01% at replicate pairs. The heterozygous mismatch
rates were 0.34% for PBC and 0.36% for LDC without



Table 2 Heterozygous mismatch (a) between sequence calls and GWAS genotypes at 378 on-target GWAS markers, (b)
between 80 sequence replicate pairs and (c) between pairs of algorithms

Heterozygous mismatch rate

IBC PBC LDC LDC + F

(a) All samples at 378 GWAS markers 0.82% 0.38% 0.39% 0.32%

(b) 80 sequence replicate pairs at all called variants 1.01% 0.34% 0.36% 0.20%

(c) Pairwise comparison of callers

vs PBC 0.42% – – –

vs LDC 0.93% 0.35% – –

vs LDC + F 1.01% 0.41% 0.30% –
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flanking haplotypes. With flanking haplotypes, he =
0.20% between experimental replicates of LDC. This
mismatch rate was lower than the he with GWAS geno-
types, suggesting that the error rate of chip-based
genotyping was higher than the error rate for LDC
genotypes.
The non-missing genotypes between each pair of call sets

had less than 1% heterozygote discordance (Table 2c). IBC
and PBC call sets had low discordance, with he = 0.42%.
The PBC and LDC call sets also had similar discordance,
with he = 0.35% and 0.41% respectively. The two LDC call
sets were the least discordant, with he = 0.30%. IBC and
LDC call sets had higher heterozygous discordance, with
he = 0.93% between IBC and LDC without flanking haplo-
types, and he = 1.01% between IBC and LDC with flanking
haplotypes. These mismatch rates were consistent with the
above comparisons with GWAS genotypes and between se-
quence replicates (Table 2).
Complex calling algorithms called additional geno-

types at sites that had missing calls at less complex
calling algorithms (Table 3a). To evaluate specifically
the quality of these additional sites, we calculated the
heterozygous mismatch rates with GWAS genotypes
(Table 3b). Comparing each algorithm with progres-
sively more complex alternatives at the 378 on-target
variant sites with GWAS information, we observe that
the PBC call set contained 15,727 (5.68%) more heterozy-
gous genotypes than the IBC call set, with he = 0.85%.
Thus PBC generates high-quality genotypes at most sites
that cannot be called with IBC. LDC without flanking hap-
lotypes generated 3,113 (1.06%) while LDC with flanking
Table 3 Heterozygous mismatch (a) between each call set and G
additional heterozygous genotypes in more complex algorithms

All samples at 378 GWAS markers

(a) Number of heterozygous genotypes (hets)

Heterozygous mismatch

(b) Number of additional hets and heterozygous mismatch not in IB

not in P

not in LD
markers generated 3,664 (1.25%) more heterozygous geno-
types than PBC. Mismatch rates in these extra genotypes
varied widely between the two settings; calls from LDC
without flanking markers had a mismatch rate of 2.41%
while calls from LDC with flanking markers had an error
rate of 0.71% (Table 3b).
Alternative implementations of variant callers
To evaluate the consistency of these observations across
other implementations of variant callers, we analyzed
the same dataset using GATK UnifiedGenotyper. We
generated individual-based (G-IBC) and population-
based (G-PBC) call sets. The G-IBC call set contained
34,704 variants with Ts/Tv 2.21, while the G-PBC call set
contained 33,696 variants with Ts/Tv 2.23. Each call set
contained about 32% singletons: the G-IBC call set con-
tained 11,001 singletons with Ts/Tv 2.13, and the G-PBC
call set contained 10,678 singletons with Ts/Tv 1.77. The
proportion of singletons was substantially higher in our
IBC call set (59.36%) generated using glfSingle and PBC
call set (57.73%) generated using glfMultiples, as well as
in previous analyses of the same dataset (60.32%) [26]
using the SOAP caller [15]. Since a high proportion of
singletons identified by glfSingle and glfMultiples have
been experimentally replicated or validated (see above),
GATK UnifiedGenotyper is conservative when calling sin-
gletons. Nevertheless, G-IBC identified about 3% more
singletons than G-PBC and these had significantly higher
Ts/Tv, replicating the pattern observed in our analyses
using glfSingle and glfMultiples.
WAS genotypes at 378 on-target markers, and (b) between
and the GWAS markers

IBC PBC LDC LDC + F

276,761 293,730 298,220 298,531

0.82% 0.38% 0.39% 0.32%

C – 15,727 (0.85%) 17,937 (1.23%) 18,308 (0.47%)

BC – – 3,113 (2.41%) 3,664 (0.71%)

C – – – 1,145 (0.87%)
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Multi-allelic variants
IBC identified 523 on-target SNPs with more than one
non-reference allele. Of these, 513 SNPs (1.87% of
27,500 IBC SNPs) had two non-reference alleles (trialle-
lic) and 10 had three non-reference alleles. Following the
population genetics calculations used in Nelson et al.
[26], we predicted that ~0.9% of variants would be trial-
lelic and that a third allele would be called at 0.5% of
biallelic sites due to sequencing error. Under a model of
homogeneous mutation rate, we would thus expect a
proportion of ~1.4% observed triallelic SNPs. Similar to
others [26,35], we observed an excess of triallelic SNPs.
Most of the triallelic variants were rare: 205 (38.53%) had

two singleton non-reference alleles, and 253 (47.56%) had
one singleton non-reference allele and one more common
non-reference allele. For the 10 SNPs showing all four alleles,
8 had at least one singleton non-reference allele. Nelson
et al. [26] validated 10 out of 10 singleton triallelic variants
from the same dataset. Among the 523 multi-allelic variants
called by IBC, PBC called 509 biallelic, identifying the non-
reference allele with more information (higher allele fre-
quency or higher read depth). PBC identified the remaining
14 multi-allelic SNPs as monomorphic.

Computational burden
The computational burden of variant calling increases
when the algorithm aggregates more information across
individuals and sites. Hence IBC is the fastest algorithm
and LDC is the slowest. IBC used about 250 CPU-hours
to generate all variants for all 7,842 individuals, while
PBC used 400 CPU-hours. For IBC, each individual at a
specific genomic region can be analyzed in parallel. For
PBC, all individuals have to be considered jointly, but
genomic positions are independent and can be analyzed
in parallel. In terms of memory usage, IBC consumed
negligible memory since it only needed to read in the
genotype likelihoods for one position per individual. For
PBC, memory consumption increased roughly linearly
with sample size. To analyze our dataset with 7,842 indi-
viduals, the maximum memory usage was 7.9 Gb. In our
down-sampling analyzes, sample sizes of 1,000 and 5,000
consumed 1.1 Gb and 5.3 Gb memory respectively.
The LDC model considers all haplotypes jointly, with

run time increasing in quadratic scale with the number
of haplotypes included in the reference panel, which is
the state space of the underlying Hidden Markov Model.
Other factors affecting run time included length of each
haplotype, number of iterations, and total sample size.
We performed LD-aware calling per gene for 15,684
haplotypes at 202 genes, using a reference panel size of
200 for 30 iterations. After running PBC, LDC with
flanking haplotypes took about 3000 CPU-hours. With-
out flanking haplotypes, LDC took about 2000 CPU-
hours. To speed up the process while retaining sufficient
LD information, LDC can be run in parallel on larger
genomic regions, such as a 1Mb region or a chromo-
some. Memory usage increased linearly with the number
of variants in the gene: each gene contained 300 to
2,000 variant sites after adding GWAS flanking geno-
types, with the memory required for running LD-aware
algorithm ranging from 45 Mb to 300 Mb.
We performed all analyses on a Dell C6100 blade ser-

ver with four discrete dual 6-core Intel Xeon X5660
CPUs at 2.80 GHz. 128 GB RAM and 1 TB of local
SATA disk were available on this system.

Discussion
We performed an extensive comparison between calling
algorithms of various complexity on a large sequencing
dataset capturing exons of 202 drug-targeted genes with
mean coverage of 24x. As a result of the capturing
process necessary for targeted sequencing, we observed
a wide range of coverage per targeted position, echoing
the outcomes of other exome sequencing studies aiming
at high coverage [10,36]. Thus, our work provides gen-
eral guidelines for using variant calling algorithms on ex-
ome and targeted sequencing datasets.
Existing calling algorithms aggregate different levels of

information from sequence reads. We considered three
major groups of likelihood-based models: (1) Individual-
based single marker caller (IBC) uses aligned reads at
each marker per individual, (2) population-based single
marker caller (PBC) uses aligned reads at each marker
for all samples to estimate population allele frequency,
(3) LD-aware genotype refinement caller (LDC) uses
linkage disequilibrium information from loci surround-
ing each called variant. Many different approaches exist
for each model; each uses a variation of individual-
based, population-based or haplotype-based priors. Pre-
vious studies have shown comparable performance be-
tween glfSingle/glfMultiples and earlier versions of the
GATK UnifiedGenotyper [37]. By comparing sets of IBC
and PBC from the same developer, we observed excess
high-quality singletons in individual- over population-
based algorithms.
Comparing filtered call sets of identical size (27,500)

for each caller, IBC discovered more rare variants than
PBC. In particular, at lower coverage, IBC was able to
identify more high-quality singletons than PBC. We rep-
licated this result twice, in a second dataset with higher
coverage and in the original dataset using a different ap-
proach of the callers. We observed that the ability of
PBC to detect singletons depended on sample size: With
increasing sample size, PBC identified fewer singletons,
and the quality of the identified singletons decreased.
This advantage of IBC over PBC can be partly explained
by the fact that in larger samples, singletons have an al-
lele frequency < 0.001. Hence the prior for a site being a



Lo et al. BMC Bioinformatics  (2015) 16:75 Page 9 of 10
singleton is stronger in the individual-based caller and
less evidence is required to call a singleton.
While we found significant differences between caller-

specific sites, IBC and PBC call sets had >99% concordance
at the high-quality, non-missing heterozygous genotypes.
Our validation experiment confirmed all selected IBC-
specific singletons, with very few unconfirmed singletons in
the PBC call set. Moreover, most PBC-specific singletons
were in the IBC unfiltered (complete) call set. We observed
the same trend of IBC generating an augmented set of sin-
gletons in high coverage sequencing data (>120x), where
IBC almost doubled the number of high-quality singletons
at sites with local low coverage (<10x).
Furthermore, only IBC was capable of identifying poly-

morphisms with more than one non-reference allele,
which led to discovery of an additional 1.9% of rare al-
leles in the sample. The excess of triallelic sites over the
theoretical prediction of 1.4% is likely the result of het-
erogeneity of mutation rate due to sequence context and
genomic environment. Existing associations between
multiallelic variants and disease phenotypes [38,39] sug-
gest that properly accounting for such variants can in-
crease the power of a sequencing study.
While IBC had strengths in identifying singletons,

PBC generated better overall genotype quality. At com-
mon variants, PBC genotypes overcame low coverage at
specific samples, achieving fewer missing genotypes and
higher accuracy than IBC calls. The discordance between
IBC and GWAS genotypes was low (0.82%), but more
than two times higher than the GWAS discordant rates
of the other call sets.
LDC achieves even higher genotype accuracy than

IBC and PBC by using haplotype information to im-
pute missing genotypes from an existing single-marker
call set. Imputation is typically more effective with lon-
ger haplotypes. In our study, we created long haplo-
types by combining sequencing data with SNPs from
previous GWAS genotyping chips. LDC with such
flanking haplotypes achieved the highest accuracy and
the least missing genotypes. As targeted sequencing
studies might not have chip data to generate long hap-
lotypes, we studied if LDC would still improve geno-
type accuracy with haplotypes based only on the
sequencing data. Without flanking haplotypes, LDC
had fewer missing data at the common variants over
PBC, yet with a slightly higher mismatch rate. In par-
ticular, the additional heterozygote genotypes at common
GWAS markers had a high mismatch rate of 2.43%, despite
an overall mismatch rate of 0.39%. This suggested that
using LDC on short haplotypes to impute missing geno-
types created a relatively large number of imputation er-
rors. Comparison between sequence replicates further
demonstrated that LDC without flanking haplotypes had
minimal benefit over PBC. As LDC imposes a considerable
computational burden, it seems questionable whether this
caller should be used when flanking haplotypes are not
available.

Conclusions
In summary, while IBC generated high quality unique
singletons, as well as multiallelic variants, its resulting
call set contained more missing genotypes and genotyp-
ing errors at common variants. PBC calls showed a sub-
stantial decrease in the number of missing genotypes
and errors over IBC calls at these variants. Only when
flanking haplotypes were available, LDC calls showed
noticeable refinement of PBC genotypes, resulting in a
call set with the highest concordance with GWAS geno-
types and between experimental replicates. Therefore,
IBC had strengths in calling extremely rare variants,
while PBC combined with LDC had strengths in calling
the more common variants.
Based on these results, we recommend a two-fold calling

strategy for targeted sequencing studies with medium to
high coverage in a large sample. We recommend first to
use a population-based single marker caller to generate ac-
curate common variants and most of the rare variants. Sec-
ond, we recommend using individual-based single marker
caller to enrich the call sets with additional singletons. If
flanking markers around targeted regions are available, des-
pite the computation burden, we recommend using LD-
aware caller to refine and impute population-based calls at
high accuracy, resulting in a complete call set.
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