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Abstract: Various sensors have been proposed to address the negative health ramifications of
inadequate fluid consumption. Amongst these solutions, motion-based sensors estimate fluid intake
using the characteristics of drinking kinematics. This sensing approach is complicated due to the mutual
influence of both the drink volume and the current fill level on the resulting motion pattern, along
with differences in biomechanics across individuals. While motion-based strategies are a promising
approach due to the proliferation of inertial sensors, previous studies have been characterized by
limited accuracy and substantial variability in performance across subjects. This research seeks to
address these limitations for a container-attachable triaxial accelerometer sensor. Drink volume is
computed using support vector machine regression models with hand-engineered features describing
the container’s estimated inclination. Results are presented for a large-scale data collection consisting
of 1908 drinks consumed from a refillable bottle by 84 individuals. Per-drink mean absolute percentage
error is reduced by 11.05% versus previous state-of-the-art results for a single wrist-wearable inertial
measurement unit (IMU) sensor assessed using a similar experimental protocol. Estimates of
aggregate consumption are also improved versus previously reported results for an attachable sensor
architecture. An alternative tracking approach using the fill level from which a drink is consumed
is also explored herein. Fill level regression models are shown to exhibit improved accuracy and
reduced inter-subject variability versus volume estimators. A technique for segmenting the entire
drink motion sequence into transport and sip phases is also assessed, along with a multi-target
framework for addressing the known interdependence of volume and fill level on the resulting drink
motion signature.

Keywords: non-wearable health monitoring sensors; automatic fluid intake monitoring;
inertial sensors

1. Introduction

The underconsumption of water is a considerable global health concern [1,2]. Estimates suggest
that 20% of adults exhibit significant dehydration, which is associated with numerous adverse health
outcomes [3]. Recent evidence suggests that even mild underconsumption of water may have various
negative health ramifications, including reduced cognitive function, obesity, and cancer [4]. The lack
of an appropriate fluid intake is especially concerning for elderly individuals, due to the degradation
of regulatory mechanisms with age [5].

To promote hydration maintenance, numerous sensing technologies have been demonstrated for
tracking fluid consumption. Solutions include augmented drinking containers [6], which are currently
available in the commercial marketplace, along with wearable [7] and contactless architectures [8].
Amongst these approaches, inertial measurement unit (IMU) sensors are a commonly employed
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sensing modality. IMU sensors have been used to implement motion-based consumption estimation
strategies for both augmented container [9] and wearable [10] hydration trackers.

Previous research has also proposed a container-attachable IMU sensor for hydration tracking
applications [11]. This approach alleviates the restrictiveness of augmented containers by allowing for
simplistic reconfiguration across multiple drinking vessels [12]. In addition, the non-wearable form
factor of this device is especially promising for deployment amongst the at-risk elderly population,
who may reject wearable solutions due to either preferences or various physical limitations [13].
The detection of drinking events for container-attached devices is also simplified versus wearable
sensors, which may exhibit false alarms for arm movements exhibiting similar kinematics to drinking
(i.e., eating, etc.) [14].

While IMU-based sensing is a promising solution for hydration tracking, prior work employing
this modality has achieved only limited accuracy [14]. Moreover, while previous container-attachable
studies have qualitatively described the relationship between the motion pattern of the bottle and
drink volume [11], a direct description of the container’s inclination during drinking has not been used.
Finally, while approaches estimating the fill level of a drink have been explored for alternative sensing
architectures as a potential mechanism to improve the system’s performance, this approach has not
been considered for an attachable sensing form factor [7].

The research described herein seeks to address these limitations for an attachable triaxial
accelerometer sensor. An image of the sensor prototype attached to the bottle used in the collections
described within this manuscript is shown in Figure 1.
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Figure 1. Refillable bottle with attached sensor prototype.

By utilizing a feature space which more thoroughly describes the kinematics of the container
during drinking, we seek to improve accuracy and reduce inter-subject variability versus prior studies
utilizing only a limited motion description [14]. In addition, we seek to improve performance by
forming aggregate consumption estimates based upon fill level estimates. As prior studies have
demonstrated the ability to accurately classify fill levels with low resolution [3], we hypothesize that
aggregate consumption estimates utilizing this quantity may improve performance.

2. Related Work

Successful estimation of the fluid intake associated with a drinking event may be conceptualized
as a two-stage process. Namely, the drinking event must first be segmented from the streaming sensor
output (i.e., sip detection), followed by the estimation of drink volume from the partitioned data.
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While the prior task, which constitutes a particular case of online gesture detection or spotting [15],
remains an area of active research interest (i.e., [10,16]), this review focuses solely on the latter portion
of the problem statement. Details regarding drink event spotting for our container-attachable sensor
can be found in [17].

Amft et al. [7] classified the initial fill level from which a drink was consumed using a magnetic
coupling sensor system attached at both the shoulder and wrist. An experiment was conducted, in which
three participants consumed 30 drinks from nine different container types in a scripted sequence.
Drinks were consumed at three initial fill levels (full, half-full, and near empty), with subjects instructed
to ingest only a minimal amount during each drink to avoid overconsumption. Individual-specific
classifiers achieved an average classification accuracy of 72% across all subjects and container types.
The classification accuracy varied considerably across subjects, ranging from 58% to 83%. While the
estimation of aggregate consumption using fill level information is feasible, practical deployment
requires increased resolution, along with a consideration of the effect of a varying drink volume on the
estimation process. Moreover, the requirement of individual-specific training data limits the practical
feasibility of this technique.

Mirtchouk et al. [18] estimated drink volume using multiple wearable audio and motion sensors.
Sensors included an acoustic earbud, along with two commercial smartwatches and a commercial
headset with embedded IMU sensors. Six participants consumed 171 drinks of multiple liquid types
(i.e., coconut water, coffee, etc.) over a 72 hour period in an unscripted experiment intended to mimic
real-world deployment. Regression models were trained using a leave-one-drink-out approach to
account for the lack of consistent consumption patterns across participants. The mass of each drink
was estimated with a best-case mean absolute percentage error (MAPE) of 47.2% under the assumption
of a known fluid type. While multi-sensor systems are useful for laboratory collections, their feasibility
for practical deployment is limited.

To eliminate the multiple sensor requirement of prior work, Hamatani et al. [14] proposed
FluidMeter, a tracking system utilizing the embedded IMU sensor within a commercial smartwatch.
While the results for multiple experiments were reported, the Lab-micro+ dataset most closely resembles
the experiments conducted herein. In this experiment, 16 individuals consumed 1069 drinks in a
laboratory setting. The ground-truth mass of each drink was recorded using a digital scale. Linear
regression models utilizing both the sip duration and the integral of the accelerometer signals not
parallel to the forearm were employed to estimate drink mass. A best-case MAPE of 58.9% was
achieved for the integration model trained using leave-one-subject-out (LOSO) validation. While
variability across subjects was not reported for the Lab-micro+ dataset, models trained with this data
exhibited considerable dispersion in accuracy across subjects (MAPE ranging from 57.9% to 11.0%)
when applied to dedicated in-situ collection (Wild-office dataset). MAPE for the in-situ collection using
ground-truth data collected with a commercial smart bottle was 31.8%. While Fluidmeter offers an
unobtrusive mechanism for consumption tracking for existing smartwatch users, some individuals
may refuse to adopt the requisite technology to employ this approach. Moreover, while the authors
noted the influence of both fill level and drink volume on the resulting motion signature, no methods
were explored to address this interdependence within the estimation process.

Limited volume estimation results have been previously reported for the attachable architecture
considered herein. Dong et al. [11] introduced the proposed sensing methodology, providing results
for an experiment where seven subjects took 10 drinks from a refillable bottle. Various regression
models using four hand-engineered features extracted from the accelerometer component parallel to
the vertical axis of the bottle were evaluated. A best-case average aggregate consumption estimation
error of 25% across subjects was achieved using support vector machine (SVM) regression models
trained in a LOSO framework. A technique for estimating the relative drink mass using features
describing the container’s inclination during drinking, denoted as the inclination signature (IS) feature
set, was introduced in [19]. The utility of the proposed feature set for predicting the volume of each
drink was evaluated by training an SVM classifier for a subset of the data described herein (1200 drinks)
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using a 90%/10% train/test split. For preliminary proof-of-concept, drink instances were classified
according to their relative volume using various percentile-based partitions. For a median partition,
a minimum classification error of 29.2% was achieved using a subset of the aforementioned feature set
selected using filter-based techniques.

Characteristics of the aforementioned literature are summarized in Table 1.

Table 1. Summary of related work reporting volume estimation results on a per-drink basis.

Paper
Identifier

Sensing
Modality

Estimation
Quantity/
Approach

# of Subjects/
# of Drinks

User-Specific vs.
Out-of-Subject

Model

Best Reported
Per-Drink

Performance
Metric

Amftet
et al. [7]

Wearable
magnetic

coupling sensors
on wrist and

shoulder

Fill level
classification (3

levels: full,
medium, near

empty)

3 subjects/
810 drinks User-Specific

72%
classification

accuracy

Mirtchouket
et al. [18]

Earbud, two
smart watches,
smart glasses

with embedded
IMUs

Volume
regression

6 subjects/
285 drinks

Mixed (i.e., both
user-specific and

out-of-subject
training data)

47.2% MAPE

Hamataniet
et al. [14]:

Lab-micro+
collection

Commercial
smartwatch with
embedded IMUs

Volume
regression

16 subjects/
1069 drinks

Out-of-subject
(user-specific

results reported for
benchmarking)

58.9% MAPE

Hamataniet
et al. [14]: Wild

office dataset

Commercial
smartwatch with
embedded IMUs

Volume
regression

16 subjects/
178 drinks

Out-of-subject,
with models
trained on

Lab-micro + data
and ground-truth

collected via
commercial smart

bottle

34.6% MAPE

Griffith et al.
[19]:

Bottle-attachable
IMU Sensor

Binary volume
classification
with median

volume
partition

64 subjects/
1200 drinks

Mixed (i.e., both
user-specific and

out-of-subject
training data)

29.2%
classification

error for
median

partition

Current
Manuscript

Bottle-attachable
IMU Sensor

Volume and fill
level

regression

84 subjects/
1908 drinks Out-of-subject

52.4% MAPE
(volume

regression)

3. Materials and Methods

3.1. Data Collection

Eighty-four college-aged subjects (52 male, 32 female, aged 18–37) completed 161 trials of an
experiment requiring the consumption of 12 drinks from a refillable 750 mL bottle shown in Figure 1.
Subjects self-identified as healthy during the consent process. The proctor did not observe any motor
deficiencies (i.e., tremors, etc.) influencing the drink motion pattern during any of the trials. Subjects
were permitted to complete a maximum of four trials over multiple sessions.

To begin the experiment, the bottle was filled to a consistent level, as determined visually
by the experimental proctor. To ensure that a variety of drink volumes were captured, subjects
were instructed to consume either a small, medium, or large drink prior to each sip, according to
their personal preferences. The bottle was placed on an electronic scale following each drink to
record the ground-truth mass. Variations from protocol (i.e., grasping and transporting the bottle
without completing a drink, etc.) were noted by the proctor to allow for removal in pre-processing.
The ground-truth fill level was estimated offline using knowledge of the bottle’s geometry. Two trials
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were discarded after collection due to hardware failure, yielding a total valid data set of 159 trials
(1908 drinks).

All subject recruitment, data collection, and record storage was conducted according to protocol
approved by the Institutional Research Board at Michigan State University. The univariate distribution
of the initial fill ratio (fill level normalized to total fillable height) and mass of each drink collected,
along with their joint distribution, are depicted in Figure 2. As shown, drink instances are skewed
towards larger fill ratios due to the protocol of filling the bottle completely at the beginning of each
trial. The volume distribution is right skewed due to the variability in large drink consumption
across individuals.
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3.2. Hardware

A prototype sensor module consisting of a triaxial accelerometer (ADXL345, Analog Devices,
Norwood, MA, USA), gyroscope (InvenSense IMU-3000, TDK, San Jose, CA, USA), and 802.15.4
wireless transceiver (IRIS Mote Module, MEMSIC, Andover, MA, USA) was connected to the refillable
bottle, as depicted in Figure 1, for all experiments. Only data from the accelerometer was used within
the current work. The sensor was placed beneath the lid at the bottom of the bottle to avoid interference
with gripping. The local coordinate frame of the sensor was aligned with the bottle geometry as
follows: (1) the x axis was aligned parallel to the vertical axis of the bottle, such that the accelerometer
signal only consisted of the static acceleration due to gravity when the bottle was placed stationary on
a level surface (i.e.: a = gx), (2) the y and z axes were aligned parallel and normal to the surface of the
bottle, respectively.
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Data from the sensor module was transmitted to a base station (IRIS Wireless measurement
system, MEMSIC, Andover, MA, USA) connected to a PC via USB at a target polling frequency of
20 Hz. All files were processed offline using MATLAB (Mathworks, Natick, MA, USA). A diagram of
the collection system is shown in Figure 3.
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3.3. Preprocessing

To begin preprocessing, the bias of each component was estimated by averaging the initial
50 samples of each recording while the bottle was stationary. Portions of the signal corresponding
to variations in protocol were then removed. Each file was subsequently parsed into macro-events
using a threshold-based algorithm exploiting the stationary placement of the bottle between drinks.
This process captured the entire interval for which the bottle was in motion (i.e., both transport to and
from the mouth, along with sipping).

After partitioning, signals were resampled to the target frequency of 20 Hz to account for variability
in the base station polling interval. Smoothing was performed using a two-sample moving average
filter to mimic the frequency response of the original work conducted in [11]. The sensor’s inclination
with respect to gravity, which is equivalent to that of the container under ideal sensor alignment,
was then estimated under the assumption of negligible dynamic acceleration, as specified in (1):

θ = tan−1

√
a2

y + a2
z

ax
(1)

where a j denotes the conditioned jth component of the accelerometer. Variation in the inclination over
a single trial is depicted in Figure 4.
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3.4. Micro-Event Partitioning

Further partitioning was conducted to isolate the drinking portion of the total segmented event.
As described in similar work (i.e., [14]), this segmentation was motivated by the substantial variation
that may occur in the transport motion pattern, depending on the specific drinking scenario, which
does not necessarily influence drink volume. For the experiments described herein, variability in the
transport motion pattern could be associated with the order of the drink within the trial (i.e., more
careful handling for full containers, more rapid transport as the subject becomes familiar with protocol,
etc.). In addition, differing orientation of the container upon retrieval may also introduce variability.

To isolate the drinking portion of the event, the asymmetry of the container about its vertical
axis was exploited. Namely, as the lid of the container encourages consumption from the opposite
edge, we hypothesized that while axial rotations may occur during transport, such rotations would be
minimized during drinking to avoid spilling. As originally demonstrated in [20], these rotations may
be quantified by computing the sensor’s angular position within the cross-sectional plane of the bottle,
as specified in (2).

α = tan−1 (
az

ay
) (2)

As shown for a random sample of drinks in Figure 5, α maintains a relatively constant value near the
middle of each event. This stationary interval is used to define the following micro-event partition:

• Lift: The portion of the macro-event proceeding the sip micro-event;
• Sip: The portion of the micro-event for which α is estimated as stationary;
• Place: The remainder of the macro-event after termination of the sip micro-event.

To isolate the sip micro-event, the sample-over-sample difference signal of α was initially
thresholded to a maximum value of 8 degrees. All intervals meeting the threshold criteria which were
separated by less than two samples were then merged, with the largest resulting interval extracted.
The resulting micro-partition for the four random drink events depicted in Figure 5 is shown in Figure 6.
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3.5. Feature Engineering

A set of 33 hand-engineered features describing the container’s inclination during drinking were
developed based upon visual observations during the experiment and resulting inclination estimates.
In addition to key kinematic quantities (i.e., maximum inclination, maximum rate of inclination,
etc.), amplitude values of both the raw and normalized curves were binned to create a low-level
time-invariant description of the signal. Previously denoted as the IS feature set [11], the version
employed herein has been slightly modified from its original form to employ exclusive binning in
order to reduce the correlation between features. This modified feature set is summarized in Table A1
(Appendix A).

For purposes of benchmarking, linear regression (LR) models utilizing previously identified
characteristic motion features (i.e., sip duration and integral of inclination) [14] were also evaluated.
While motivated by the methods of [14], it should be re-emphasized that a direct comparison is not
applicable due to differences in the sensor placement (i.e., wearable versus attachable).
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3.6. Machine Learning

To promote comparability with prior work, leave-one-trial-out (LOTO) validation was performed.
This approach is consistent with the target use case, where models trained on a broad pool of users
would be employed on a new user absent of customization. While a LOTO approach includes
some subject-specific training data, the magnitude of this contribution is limited (i.e., maximum
subject-specific training data of 1.9%). LOTO was chosen versus a LOSO approach to ensure that the
sizes of the training and testing sets were consistent across evaluations.

A set of support vector machine (SVM) regression models was trained for both volume and
fill ratio estimation. Linear, medium (kernel scale = 5.7), and coarse (kernel scale = 23) Gaussian
kernel functions were considered. Hyperparameters were set to the default values, as established in
MATLAB’s Regression Learner toolbox. SVMs were chosen based upon their superior performance for
the current sensor architecture in [11], where they outperformed both neural network and tree-based
regression models. Features were standardized using z-score normalization.

3.7. Performance Metrics

Multiple performance metrics were used to assess the quality of the estimation on both a per-drink
and aggregate basis. MAPE was used to quantify the estimation performance on a per-drink basis.
This metric was chosen over alternative measures (i.e., root mean squared error, etc.) due to its
utilization in prior work (i.e., [14,18]). For assessing the aggregate (i.e., multi-drink) consumption
estimation accuracy, mean overall absolute percentage error (MOAPE) was used. Within the remainder
of this manuscript, MOAPE(n) denotes the computation of MOAPE after the completion of n drinks
within a trial. While MAPE provides the most rigorous assessment of the model’s performance,
MOAPE is useful for exploring utility in practical scenarios where aggregate consumption is of primary
concern (i.e., estimating total daily consumption, estimating consumption during exercise, etc.).

4. Results and Discussion

4.1. Micro-Event Partitioning Analysis

The correlation between micro-event durations and drink volume is provided in Table 2. Consistent
with the hypothesis presented in Section 3.4, sip duration is more strongly correlated with volume
versus the two transport durations. Correlations between sip duration, along with the previously
proposed motion feature related to the integral of the inclination [14], are shown in Table 3 for various
ranges of controlled fill levels.

Table 2. Correlation between features and volume label.

Micro-Event Duration Pearson Correlation Coefficient (Corr. Coeff.)
(Entire Dataset)

Lift Duration 0.189
Sip Duration 0.449

Place Duration 0.159

Table 3. Correlation between previously reported motion features and volume for various fill ratio
(FR) ranges.

Motion Feature
Corr. Coeff.

(Entire Dataset
N = 1908)

Corr. Coeff.
(FR > 50%
N = 1576

Corr. Coeff.
(FR > 70%
N = 1075)

Corr. Coeff.
(FR > 90%
N = 413)

Sip Duration 0.449 0.457 0.471 0.557
Integral of Inclination Over Sip Duration 0.536 0.543 0.571 0.672
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Results are consistent with those presented in [14], which reported a correlation coefficient with
drink volume of 0.69 and −0.60/−0.55 for sip duration and the integral of accelerometer signals not
parallel to the forearm (which were denoted as being related to container inclination), respectively.
Moreover, it should be noted that the strength of the correlation between both motion features and
volume increases when the fill level is restricted within a narrower range of values. This result is
also consistent with prior work [14], which denoted an influence of both volume and fill level on the
resulting motion signature. The utility of the proposed micro-event partitioning process for volume
estimation is explored in the remainder of this section.

4.2. Volume Estimation

Variation in MAPE for the various learning models considered is depicted in Figure 7. Models
computed for the sip micro-event only are labeled as Stat., with all other reported results computed for
the entire macro-event duration. Consistent with the wearable results in [14], LR models employing
the integral of inclination outperformed those using duration. The level of improvement is enhanced
versus the results presented in [14]. We hypothesize that this difference is associated with the use of
the inclination estimate of the container, as opposed to the individual accelerometer channels which
are related to this quantity.
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All SVM models outperformed the simplistic single factor LR motion models. Moreover, all SVM
models exhibited superior performance to the previous best-case reported MAPE of 58.9% for a single
wearable sensor in an experiment using scale-based ground-truth [14]. Only minimal differences in
MAPE were observed for models utilizing the proposed sip micro-event segmentation versus those
computed based on the entire drinking event.

Variation in MAPE across trials is depicted in Figure 8 for the best-case volume estimator (medium
kernel, sip micro-event partition). Consistent with prior observations [14], dispersion in the observed
error metric is substantial, with a standard deviation of 28.18%.

Volume MOAPE for varying drink sequence lengths is presented in Table 4. The aggregate
estimation accuracy generally improves with an increased sequence length, with reductions being
more pronounced for the proposed IS-based SVM models. While not directly comparable due to
the employment of the more stringent MOAPE cumulative metric herein, the best-case aggregate
consumption estimation accuracy of 19.49% is improved versus the average value of 25% reported
in [11].
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Table 4. Variation in volume mean overall absolute percentage error for multiple prompt periods (bold
values emphasize the best performing model for each period).

Model Identifier MOAPE(3) MOAPE(6) MOAPE(9) MOAPE(12)

Duration Only–LR 36.74% 34.41% 33.51% 32.42%
Integral Only–LR 28.68% 27.76% 27.59% 27.79%
IS–Linear SVM 32.87% 26.40% 23.44% 21.46%

IS Stat.–Linear SVM 33.74% 26.64% 23.52% 21.56%
IS–Coarse Gaussian SVM 31.55% 25.49% 22.58% 20.75%

IS Stat.–Coarse Gaussian SVM 31.79% 25.39% 22.48% 20.65%
IS–Medium Gaussian SVM 30.52% 24.98% 21.62% 19.64%

IS Stat.–Medium SVM 30.55% 24.86% 21.71% 19.49%

While the best-case MOAPE(12) value exceeds that computed for the in-the-wild data set reported
in [14] (16.95%), direct comparability is limited by the inclusion of potential sip detection-related errors
(i.e., both false alarms and missed drink detections) in this latter metric, along with the utilization
of a commercial smart-bottle for ground-truth labeling (the vendor only reports the accuracy of “a
fraction of an ounce” for this device). Variability of the best-case aggregate estimator (medium kernel,
entire macro-event duration) is presented in Figure 9. Similar to MAPE, inter-subject variability is
considerable (standard deviation of 14.75%). For purposes of comparison, the standard deviation
across participants for the in-the-wild dataset in [14] was 14.17%.Sensors 2019, 19, x FOR PEER REVIEW 12 of 19 
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4.3. Fill Level Estimation

Variation in fill ratio MAPE for the multiple models considered is depicted in Figure 10. Sip duration
was replaced with maximum inclination for a single-factor LR benchmark model due to its strong
correlation with the fill ratio. This relationship is emphasized by the considerable increase in this
quantity over the course of the experiment, as shown in Figure 4. Fill ratio estimation accuracy is greatly
improved versus volume prediction for both the single factor regression and more complex SVM
models. Variability in MAPE for the best-case estimator (coarse kernel, entire macro-event partition) is
shown in Figure 11. Error dispersion across trials is greatly reduced versus volume estimators. Namely,
the fill ratio MAPE standard deviation is 3.39%, versus 28.18% for the best-case volume MAPE.
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The fill ratio MOAPE is shown in Table 5 for varying drink sequence lengths. In contrast to volume
estimation, the point nature of fill ratio estimates does not allow for sequential error cancelation across
multiple drinks. Accuracy generally degrades with an increasing sequence length. We hypothesize that
this discrepancy might be associated with the aforementioned skewing of training data towards larger
fill ratios. The variability in fill ratio MOAPE(12) estimates across trials is depicted in Figure 12 for
the best-case estimator (coarse kernel, sip micro-event), with a standard deviation of 8.58% observed
(versus 14.75% for volume MOAPE(12) estimates).
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Table 5. Variation in the mean overall absolute percentage error for multiple prompt periods—fill ratio
estimation (bold values emphasize the best performing model for each period).

Model Identifier MOAPE(3) MOAPE(6) MOAPE(9) MOAPE(12)

Max. Inclination Only–LR 10.90% 7.64% 8.12% 12.57%
Integral Only–LR 18.20% 9.14% 13.27% 22.88%
IS–Linear SVM 8.82% 8.18% 7.99% 9.95%

IS Stat.–Linear SVM 9.29% 8.30% 8.20% 10.28%
IS–Coarse Gaussian SVM 8.82% 8.18% 7.99% 9.95%

IS Stat–Coarse Gaussian SVM 8.68% 7.99% 7.96% 9.86%
IS–Medium Gaussian SVM 8.24% 8.22% 8.04% 10.80%

IS Stat.–Medium SVM 7.98% 7.87% 8.08% 11.10%
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4.4. Residual Volume Estimation

Fill ratio estimates for pairs of drinks may be used to estimate the aggregate inter-drink
consumption for a known container geometry, as specified in (3), where V̂i: f denotes the estimated
aggregate consumption from drink i to f ; β is a container-specific linear density parameter; and vk and
F̂Rk denote the ground-truth volume and estimated fill ratio at the initiation of drink k, respectively.

V̂i: f ≈

f∑
k=i

vk ≈ β
(
F̂Ri − F̂R f+1

)
(3)

This mechanism, hereby denoted as residual volume estimation, was assessed herein based upon the
noted superior accuracy and reduced inter-subject variability of fill ratio versus volume estimators.
The comparison was performed using the MOAPE(11) metric. This sequence length was chosen as it
represents the maximum number of drinks which can be assessed using initial fill ratio estimates for our
12-drink protocol. As shown in Table 6, the enhanced accuracy of fill ratio estimates does not improve
aggregate consumption estimates versus those formed through the summation of drink-level volume
estimates (hereby denoted as cumulative consumption estimation). This discrepancy is attributed to
the ability of the latter method to benefit from the cancelation of sequential estimation errors within a
drink sequence. Moreover, normalization effects during the conversion to the aggregate consumption
volume (i.e., residual volume-based OAPE) serve to distort the achieved accuracy in fill ratio estimation
(i.e., fill ratio APE). This distortion is more pronounced for trials with smaller levels of aggregate
consumption, as emphasized in Figure 13 and specified in (4).
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OAPE( j) =

∣∣∣F̂R j+1 − FR j+1
∣∣∣

1− FR j+1
=

APE j+1

1− FR j+1
(4)

Table 6. Comparative mean overall absolute percentage error after 11 drinks: residual versus cumulative
volume estimation approach.

Model Identifier Residual Volume Technique
(FR-Based)

Cumulative Volume Technique
(Volume-Based)

Linear SVM—IS 28.10% 21.65%
Coarse Gauss SVM—IS 26.84% 20.79%
Med Gauss SVM—IS 29.04% 20.01%
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4.5. Multi-Target Estimation Framework

Based upon the observations summarized in Table 3, various techniques were explored for
developing volume estimators incorporating fill ratio information. The first approach conditioned the
training set using the estimated fill ratio. Namely, training data was restricted to the 150 samples whose
fill level labels were closest to the estimated fill ratio in the Euclidean sense. While the computational
overhead of this approach is not feasible in practical deployment, similar techniques could be realized
by selecting from a pretrained model library for targeted fill ratio ranges.

To explore the maximum achievable benefit of this approach, an analysis was conducted using
ground-truth fill ratio information in addition to estimates. Moreover, to assess the utility of explicitly
mandating this form of fill ratio incorporation, a strategy of appending the fill ratio into the feature
space was also considered. The results for all four analysis combinations are presented in Table 7
for the best-case macro-event volume estimator (coarse Gaussian SVM). Estimated fill ratios were
obtained using the coarse Gaussian SVM regression model. As demonstrated, while ground-truth fill
ratio information improves volume estimation accuracy, no benefit is realized using noisy fill ratio
estimates. Moreover, the proposed approach of restricting training data to examples with similar fill
ratios produced only minimal error reduction versus feature space expansion. We hypothesize that
this limitation is associated with the reduction in available training data using the prior method.
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Table 7. Volume estimation accuracy enhancement using fill ratio information (baseline value with no
fill ratio information: 52.77%).

Strategy for Incorporating Fill
Ratio Information

Using Ground-Truth Fill
Ratio Values

Using Estimated Fill Ratio
Values

Partition Training Set 48.59% 54.99%
Add as Feature 49.90% 52.66%

4.6. Limitations

Although the proposed attachable architecture offers notable advantages versus competing
approaches, it is characterized by some fundamental limitations. Namely, the sensing approach
described herein is restricted to drinking vessels in which flow is introduced through inclination (i.e.,
no straw-based containers, etc.). Moreover, the attachable device limits ubiquity versus wearable
sensors, due to the requirement that dedicated hardware be manually repositioned on the container
before each drinking episode.

Beyond these innate restrictions, generalization of the results presented herein is limited by the
scripted nature of the experiment. Further analysis exploring the efficacy of the proposed approaches
for the intended use case, which includes the requirement of drink spotting amongst potentially
confounding activities (i.e., handling, bottle maintenance, etc.), is required. Moreover, the described
techniques should also be assessed for more natural (i.e., no scripted volume prompts) consumption
patterns. Finally, experiments should be conducted for additional types of drinking containers (i.e,
mugs, glasses, etc.).

4.7. Future Work

Future work will focus on further analysis of the collected dataset, including the incorporation
of gyroscope data within the estimation process. In addition, an analysis of the effect of sensor
placement on the estimation performance using a subset of data for which two sensors were attached at
varying positions will be conducted. Furthermore, more sophisticated analysis techniques, including
the application of end-to-end learning strategies, along with more complete multi-target regression
approaches yielding the joint estimation of both volume and fill ratio [21] will be explored. In addition
to analyzing existing data, further data collection addressing the mentioned limitations in the prior
subsection will be conducted.

5. Summary

A container-attachable IMU sensor for tracking fluid consumption was demonstrated herein.
Consumption estimates were formulated using support vector machine regression models with
hand-engineered features describing the inclination of the container during drinking. Results were
presented for an experiment consisting of 1908 drinks consumed by 84 participants. MAPE was
reduced by 11.05% on a per-drink basis versus the prior state-of-the-art for a single wearable IMU in
an experiment utilizing scale-based ground-truth values [14]. A MOAPE of 19.49% was achieved over
the 159 trials conducted. This multi-drink estimation accuracy improves upon previously reported
results for a container-attachable sensing architecture [11].

Consistent with prior motion-based studies, errors in volume estimates were shown to demonstrate
considerable inter-subject variability, as quantified by a MAPE standard deviation of 28.18% for the
best-case estimator. As a possible alternative tracking approach, aggregate consumption estimates
using fill level information were explored. Fill ratio estimates were shown to exhibit an improved
accuracy (best-case MAPE of 7.77%) and reduced inter-subject variability (corresponding standard
deviation of 3.39%) versus volume estimates. Aggregate consumption estimates based upon the fill
ratio did not exhibit an improved accuracy versus those obtained through the summation of individual
drink volume estimates.
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In addition, a technique for segmenting the entire drink motion sequence into transport and sip
micro-events was proposed and demonstrated. While this micro-partitioning did not considerably
affect the estimation accuracy for the scripted results considered herein, it may be useful for in-the-wild
applications where variability in transport motion patterns is enhanced. Furthermore, the possibility
to improve volume estimation accuracy by exploiting the influence of fill level on the resulting motion
pattern was investigated. While the inclusion of ground-truth fill ratio data as both an additional
feature and conditioning factor in training data was shown to improve the accuracy, the utilization of
noisy fill ratio estimates provided no performance improvement.
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Appendix A

The inclination signature feature set is specified in Table A1, where θ j = {θ1,θ2, . . . ,θD} denotes
the inclination estimate of the jth drink event defined according to (1).

Table A1. Inclination signature (IS) feature set.

Feature
ID

Feature
Symbol Feature Definition Description

1 θ∗ max
(
θ j

)
Maximum inclination angle during drink event

2 D length(θ j) Duration of drinking event

3–11 Aθk

count
(
θ j < T(k)

)
, k = 1

count
(
T(k− 1) ≤ θ j < T(k)

)
k ∈ {2, 7}

count
(
θ j
≥ T(k)

)
, k = 8

T(k) ∈
{
20
◦

, . . . , 90
◦
}

Number of samples for which inclination angle
satisfies specified amplitude range criteria

12–20 ARPk

count
(
θ j

θ∗ < P(k)
)
, k = 1

count
(
P(k− 1) ≤ θ j

θ∗ < P(k)
)
,

k ∈ {2, 7}
count

(
θ j

θ∗ ≥ P(k)
)
, k = 8

P(k) ∈ {20%, . . . , 90%}

Number of samples for which normalized inclination
angle satisfies relative amplitude criteria

21 Qθ
θ∗
D Ratio of maximum inclination value to duration

22 θ mean
(
θ j

)
Mean inclination angle

23 DθR
argmax(θ j)

D−argmax(θ j)

Ratio of time for which inclination angle is increasing
relative to decreasing

24–25 Sθ, ST
θ T

U∑
m=1

θ
j
m

Riemann sum approximation to integral of inclination
curve over entire duration (U = D) or inclination

interval (U = argmax
(
θ j

)
)

26 REθ
θ∗−θ1

argmax(θ j)−1
Slope of line intersecting inclination trajectory start of

trajectory time of maximum value

27 FEθ
θD−θ∗

D−argmax(θ j)
Slope of line intersecting inclination trajectory at time

of maximum value and end of trajectory

28/29
θ′T
∗/

θ′A
∗

max
(
θ
(
1 : argmax

(
θ j

))′ j)
/

max
(
θ
(
argmax

(
θ j

)
: D

)′ j) Maximum rate of inclination/declination, where θ′ j is a
numerical estimate of the derivative of θ j

30/31 θ
′

T/

θ
′

A

mean
(
θ
(
1 : argmax

(
θ j

))′ j)
/

mean
(
θ
(
argmax

(
θ j

)
: D

)′ j) Mean rate of inclination/declination

32/33
sθ′T /
sθ′A

std
(
θ
(
1 : argmax

(
θ j

))′ j)
/

std
(
θ
(
argmax

(
θ j

)
: D

)′ j) Standard deviation of inclination/declination rate
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