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Introduction

Hemoglobin, which gives blood its red color, is perhaps the

most recognized and well studied protein in nature. It is also a

critical molecule during infection, as many microbes rely on

hemoglobin to grow within their hosts. Here, we review the

importance of hemoglobin to vertebrate physiology and how

humans attempt to conceal hemoglobin from invading pathogens.

We also provide examples of the elaborate mechanisms employed

by microbes to acquire hemoglobin during infection. Finally, we

discuss how genetic variations within hemoglobin affect suscepti-

bility to infectious diseases.

Hemoglobin Metabolism within Humans

To understand how hemoglobin is utilized by invading

pathogens, one must understand the structure, function, and

metabolism of this molecule. Hemoglobin is a tetrameric globular

protein consisting of two alpha and two beta chains [1]. The alpha

and beta chains are encoded by different loci and are differentially

regulated during human development. Each of the four chains of

hemoglobin encloses an iron-containing heme co-factor responsi-

ble for oxygen binding [2]. The main function of hemoglobin is to

capture atmospheric oxygen and deliver it to host tissues for

respiration. Hemoglobin is synthesized in developing red blood

cells, which lose their nuclei and cease protein synthesis upon

maturation. In healthy adults, hemoglobin constitutes one-third of

total erythrocyte mass and approximately 15% of the whole blood

mass [2]. Mature erythrocytes circulate in the blood for

approximately three months, whereupon they become senescent

and are removed from the bloodstream by macrophages.

Hemoglobin from senescent erythrocytes is digested to facilitate

the recycling of heme-iron. In the case of erythrocyte lysis,

liberated hemoglobin is captured by the plasma protein hapto-

globin to prevent oxidative damage inflicted by hemoglobin. The

haptoglobin-hemoglobin complex is recognized by macrophages

and removed from the plasma. Any free heme that is released from

hemoglobin extracellularly is rapidly bound by another plasma

protein known as hemopexin. The above strategies for hemoglobin

and heme removal limit the toxicity associated with these

molecules, ensure iron homeostasis, and prevent microbial growth.

Hemoglobin as a Source of Iron to Invading
Pathogens

Iron is an essential nutrient for virtually all forms of life.

Hemoglobin, being by far the most abundant reservoir of iron

within humans, is thus an attractive nutrient iron source for

invading pathogens. In keeping with this, numerous bacterial

species have evolved systems to extract iron from host hemoglobin

[3]. These systems are energetically costly and are targeted by the

immune system; therefore, they are only expressed under iron-

limiting conditions. In order to release hemoglobin from red blood

cells, bacteria secrete toxins that lyse erythrocytes. Released

hemoglobin is then bound by specific receptors that are either

secreted or anchored to the cell surface of the bacteria. Upon

binding of hemoglobin, these receptors remove the heme moiety

from hemoglobin and pass it to heme transport proteins within the

cell surface (Figure 1A and 1B). To transfer heme across the

Gram-negative outer membrane, heme transport systems utilize

the energy of the proton motive force. This is achieved through the

TonB system, which transfers energy from the inner to the outer

membrane to enable substrate transport. Once in the periplasm,

heme is bound by a heme transport protein that delivers heme to

the inner membrane ABC transporter, which pumps heme into

the cytoplasm (Figure 1A) [4]. Gram-positive bacteria, which lack

an outer membrane but contain a thick cell wall, bind and pass

heme through the cell wall in a relay process with no known

energy requirement (Figure 1B). Upon crossing the Gram-positive

cell wall, heme is transported through the cell membrane by ABC

transporters. Once in the cytoplasm of either Gram-negative or

Gram-positive bacteria, heme is degraded by heme oxygenases to

release iron (Figure 1A and 1B). Alternatively, intact heme can be

incorporated into bacterial heme-containing proteins in a process

known as molecular hijacking [5]. Bacteria are not unique in their

ability to utilize hemoglobin as an iron source. Eukaryotic

pathogens, including Leishmania, Entamoeba, and Trypanosoma, have

evolved convergent mechanisms of heme-iron acquisition from

this abundant host molecule [6–8]. Protozoa capture hemoglobin

through either specific surface receptors or phagocytosis. Upon

phagocytosis, the protein portion of hemoglobin is digested to

release heme-iron [7]. The utilization of hemoglobin as an iron

source is required for infection as demonstrated by a decrease in

virulence of pathogens that are mutated for hemoglobin-iron

transporters. Therefore, surface hemoglobin receptors have been

studied as potential targets for vaccine development and

pharmacological inhibition. Impeding a pathogen’s ability to

acquire iron would inhibit numerous physiological processes that

are essential for viability, providing a novel avenue for antimicro-

bial development.
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Figure 1. Mechanisms of hemoglobin utilization by pathogens. (A) Gram-negative bacteria bind hemoglobin by either secreted or surface
receptors. Hemoglobin receptors extract heme and pass it to heme transport proteins within the cell surface. Outer membrane heme transport
systems utilize the energy of the proton motive force generated within the inner membrane by the TonB complex. Once in the periplasm, heme is
bound by a heme transport protein, which delivers heme to the inner membrane ABC transporter. ABC transporters pass heme into the cytoplasm,
where it is degraded by heme oxygenases to supply the bacterium with iron. (B) Gram-positive bacteria express secreted and cell wall–anchored
hemoglobin receptors that extract heme from hemoglobin. Hemoglobin receptors then transfer heme to the cell wall transporters that pass heme
through the peptidoglycan layer in a relay process. Heme is then transported across the cell membrane by ABC transporters. In the cytoplasm, heme
is degraded by heme oxygenases to release iron. (C) Plasmodium consumes hemoglobin by endocytosis of pockets of red blood cell cytoplasm
through cytostomes, which transfer hemoglobin to digestive vacuoles. Hemoglobin is sequentially digested by proteases and aminopeptidases in the
digestive vacuole and cytoplasm to supply Plasmodium with amino acids. The released heme is polymerized into hemozoin.
doi:10.1371/journal.ppat.1002535.g001
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Hemoglobin as a Source of Amino Acids for
Invading Pathogens

While many microorganisms target hemoglobin to acquire

heme-iron, others, such as Plasmodium, digest the protein as a

source of amino acids. Plasmodium is a genus of parasitic protists

and the causative agent of the disease malaria. Hemoglobin plays a

central role during the blood stage of Plasmodium infections.

Following invasion of erythrocytes, these parasites consume more

than half of the cellular hemoglobin within a 24-hour period [9].

This hemoglobin consumption is achieved through several distinct

mechanisms. During the initial stage of erythrocyte infection,

known as the ring stage, hemoglobin is taken up by a single large

vacuole in an actin-independent process known as a ‘‘big gulp’’

[10]. At a later trophozoit stage, hemoglobin is acquired by

endocytosis of pockets of erythrocyte cytoplasm within parasite

structures known as cytostomes. (Figure 1C) [9,11]. Cytosomes

then transfer hemoglobin to acidic digestive vacuoles in an actin-

dependent process that is regulated by Rab5 and PfPI3K proteins

[10,12]. Late-stage parasites ingest hemoglobin through phago-

trophy, which, similar to the ‘‘big gulp’’, does not require actin and

involves large vacuoles [10,13]. Hemoglobin is sequentially

digested by aspartic proteases, cysteine proteases, metallopro-

teases, and aminopeptidases in the digestive vacuole and

cytoplasm of Plasmodium to supply the parasite with amino acids

[14]. Digestion of hemoglobin has been suggested to be initiated

en route to the digestive vacuole; however, the exact localization of

different stages of this process is not uniformly agreed upon [15].

The critical importance of hemoglobin digestion is illustrated by

the fact that blocking hemoglobin proteolysis prevents parasite

development [9]. Inhibitors of hemoglobin proteases have been

suggested as potential therapeutic agents against parasites that

utilize hemoglobin as a source of amino acids.

Coping with Hemoglobin Toxicity

Hemoglobin utilization leads to the release of the reactive heme co-

factor from the globin portion of the protein. In Plasmodium, free heme

is detoxified by polymerization into crystals known as hemozoin

(Figure 1C). In fact, hemozoin formation is so abundant that its

presence within Anopheles gambiae mosquitoes provided the initial clue

that mosquitoes are the primary vector of malaria transmission [9].

Hemozoin formation during chronic infection manifests itself in the

blackening of the spleen and liver due to the accumulation of

hemozoin within these organs. Further, hemozoin appears to play a

role in modulating the immune response to Plasmodium and is toxic to

phagocytes [9]. Hemozoin crystals are generated by polymerization

of heme through the formation of a bond between the iron atom of

one heme molecule and carboxylate of another [16]. Dimers further

polymerize through the formation of hydrogen bonds between

propionates [17]. The factors that contribute to the formation of

hemozoin have been the subject of considerable debate; however,

lipids and proteins have been implicated in facilitating hemozoin

formation within the digestive vacuoles of Plasmodium [18]. Antima-

larial drugs such as chloroquine and possibly artemisinin inhibit

hemoglobin detoxification by Plasmodium, underscoring the impor-

tance of this process for malarial viability [19,20].

Bacterial pathogens utilize various strategies to reduce the toxic

effects of heme. One mechanism is somewhat similar to the one

utilized by Plasmodium whereby heme is actively sequestered by

Gram-negative bacteria, thus preventing generation of reactive

oxygen species [21]. Other bacterial species utilize heme

oxygenases, which reduce the intracellular heme concentration

through its degradation [3]. Yet other bacterial pathogens sense

either heme or its toxic effects and up-regulate ATP-dependent

export systems involved in heme detoxification. It is not clear

whether heme itself or an unknown toxic product generated by

heme is being exported; however, it is evident that both the sensing

and transport components are required for heme detoxification

[22].

Human Hemoglobin Variants and Infection

Sequence variations within the hemoglobin genes profoundly

influence susceptibility to infectious diseases. In this regard,

hemoglobin variants have been associated with altered suscepti-

bility to Plasmodium. For example, individuals who are heterozy-

gous for the hemoglobin mutation that leads to sickle cell anemia

(HbS) show increased resistance to malaria. HbS contains a

glutamine to valine substitution within the beta chain of hem-

oglobin. In individuals that are homozygous for HbS, hemoglobin

molecules aggregate within the erythrocytes, resulting in sickling of

red blood cells and severe anemia. Heterozygous individuals are

not anemic and eliminate up to 90% of Plasmodium cells within

their erythrocytes. Numerous mechanisms have been suggested for

decreased survival of Plasmodium due to HbS [23]. These include

reduced growth of the parasite, increased sickling, and enhanced

phagocytosis of infected erythrocytes. Recent studies attribute

protection provided by HbS to a reduction in actin remodeling

and cytoadherence of infected erythrocytes to capillaries, and a

decrease in heme toxicity [24–26]. Sickle cell hemoglobin is

prevalent in individuals from regions where malaria is endemic,

which has created evolutionary pressure to maintain the allele

within the population [27]. Other mutations resulting in

hemoglobinopathies have also been found to protect against

Plasmodium [23]. Altered susceptibility to malaria due to mutations

within hemoglobin is the paradigm for how human genetics

impact susceptibility to infectious diseases.

Numerous non-pathologic hemoglobin polymorphisms are

found within the human population and may impact bacterial

iron acquisition and virulence. This is supported by the finding

that variations within the amino acid sequence of hemoglobin

derived from different mammals affect iron acquisition and

virulence of the bacterial pathogen Staphylococcus aureus [28]. A

recent co-crystal structure of hemoglobin with a staphylococcal

hemoglobin receptor has revealed that the region of hemoglobin

recognized by this receptor is highly polymorphic within the

human population. Amino acid variations in this region of

hemoglobin reduce binding and utilization of hemoglobin by S.

aureus [29]. Therefore, the susceptibility of individuals to bacterial

infections may be affected by hemoglobin polymorphisms.

Further, bacterial colonization may similarly be affected due to

the fact that hemoglobin plays a role in this process [30]. Future

identification of hemoglobin polymorphisms that influence

bacterial infections may enable a personalized approach to the

prevention and treatment of infectious diseases.
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